Особое место в Солнечной системе занимает Земля - единственная планета, на которой в течение миллиардов лет развиваются раз­личные формы жизни.

Во все времена люди хотели знать, откуда и каким образом произошел мир, в котором мы живем. Когда в культуре господствовали мифологические представления, происхождение мира объяснялось, как, скажем, в «Ведах» распадом первочеловека Пуруши. То, что это была общая мифологическая схема, подтверждается и русскими апокрифами, например, «Голубиной книгой». Победа христианства утвердила религиозные представления о сотворении Богом мира из ничего.

С появлением науки в ее современном понимании на смену мифологическим и религиозным приходят научные представления о происхождении мира. Наука отличается от мифологии тем, что стремится не к объяснению мира в целом, а к формулированию законов развития природы, допускающих эмпирическую проверку. Разум и опора на чувственную реальность имеют в науке большее значение, чем вера. Наука – это, в определенной степени, синтез философии и религии, представляющее собой теоретическое освоение действительности.

2. Происхождение Земли.

Мы живем во Вселенной, а наша планета Земля является ее мельчайшим звеном. Поэтому, история возникновения Земли тесно связана с историей возникновения Вселенной. Кстати, а как она возникла? Какие силы повлияли на процесс становления Вселенной и, соответственно, нашей планеты? В наше время существует множество различных теорий и гипотез относительно этой проблемы. Величайшие умы человечества дают свои взгляды по этому поводу.

Значение термина Вселенная в естествознании более узкое и приобрело специфически научное звучание. Вселенная – место вселения человека, доступное эмпирическому наблюдению и проверяемое современными научными методами. Вселенную в целом изучает наука, называемая космологией, то есть наукой о космосе. Слово это не случайно. Хотя сейчас космосом называют все находящееся за пределами атмосферы Земли, не так было в Древней Греции, где космос принимался как «порядок», «гармония», в противоположность «хаосу» - «беспорядку». Таким образом, космология, в основе своей, как и подобает науке, открывает упорядоченность нашего мира и нацелена на поиск законов его функционирования. Открытие этих законов и представляет собой цель изучения Вселенной как единого упорядоченного целого.

Сейчас происхождение Вселенной построено на двух моделях:

а) Модель расширяющейся Вселенной. Наиболее общепринятой в космологии является модель однородной изотропной нестационарной горячей расширяющейся Вселенной, построенная на основе общей теории относительности и релятивистской теории тяготения, созданной Альбертом Эйнштейном в 1916 году. В основе этой модели лежат два предположения:

1) свойства Вселенной одинаковы во всех ее точках (однородность) и направлениях (изотропность);

2) наилучшим известным описанием гравитационного поля являются уравнения Эйнштейна. Из этого следует так называемая кривизна пространства и связь кривизны с плотностью массы (энергии). Космология, основанная на этих постулатах, - релятивистская.

Важным пунктом данной модели является ее нестационарность. Это определяется двумя постулатами теории относительности:

1) принципом относительности, гласящим, что во всех инерциональных системах все законы сохраняются вне зависимости от того, с какими скоростями, равномерно и прямолинейно движутся эти системы друг относительно друга;

2) экспериментально подтвержденным постоянством скорости света.

Красное смещение – это понижение частот электромагнитного излучения: в видимой части спектра линии смещаются к его красному концу. Обнаруженный ранее эффект Доплера гласил, что при удалении от нас какого-либо источника колебаний, воспринимаемая нами частота колебаний уменьшается, а длина волны соответственно увеличивается. При излучении происходит «покраснение», то есть линии спектра сдвигаются в сторону более длинных красных волн.

Так вот, для всех далеких источников света красное смещение было зафиксировано, причем, чем дальше находился источник, тем в большей степени. Красное смещение оказалось пропорционально расстоянию до источника, что и подтверждало гипотезу об удалении их, то есть о расширении Мегагалактики – видимой части Вселенной.

Красное смещение надежно подтверждает теоретический вывод о нестационарности области нашей Вселенной с линейными размерами порядка нескольких миллиардов парсек на протяжении, по меньшей мере, нескольких миллиардов лет. В то же время кривизна пространства не может быть измерена, оставаясь теоретической гипотезой.

б) Модель Большого Взрыва. Наблюдаемая нами Вселенная, по данным современной науки, возникла в результате Большого взрыва около 15-20 млрд. лет назад. Представление о Большом Взрыве является составной частью модели расширяющейся Вселенной.

Все вещество Вселенной в начальном состоянии находилось в сингулярной точке: бесконечная плотность массы, бесконечная кривизна пространства и взрывное, замедляющееся со временем расширение при высокой температуре, при которой могла существовать только смесь элементарных частиц. Затем последовал взрыв. «Вначале был взрыв. Не такой взрыв, который знаком нам на Земле и который начинается из определенного центра и затем распространяется, захватывая все больше и больше пространства, а взрыв, который произошел одновременно везде, заполнив с самого начала все пространство, причем каждая частица материи устремилась прочь от любой другой частицы», - писал в своей работе С. Вейнберг.

Что же было после Большого взрыва? Образовался сгусток плазмы – состояния, в котором находятся элементарные частицы – нечто среднее между твердым и жидким состоянием, который и начал расширяться все больше и больше под действием взрывной волны. Через 0,01 сек после начала Большого Взрыва во Вселенной появилась смесь легких ядер. Так появились не только материя и многие химические элементы, но и пространство и время.

Данные модели помогают выдвинуть гипотезы о происхождении Земли:

1. Французский ученый Жорж Бюффон (1707-1788) предпо­ложил, что земной шар возник в результате катастрофы. В очень отдаленное время какое-то небесное тело (Бюффон счи­тал, что это была комета) столкнулось с Солнцем. При столк­новении возникло множество «брызг». Наиболее крупные из них, постепенно остывая, дали начало планетам.

2. По-другому объяснял возможность образования небесных тел немецкий ученый Иммануил Кант (1724-1804). Он предполо­жил, что Солнечная система произошла из гигантского холод­ного пылевого облака. Частицы этого облака находились постоянном беспорядочном движении, взаимно притягивали друг друга, сталкивались, слипались, образуя сгущения, которые ста­ли расти и со временем дали начало Солнцу и планетам.

3. Пьер Лаплас (1749-1827), французский астроном и матема­тик, предложил свою гипотезу, объясняющую образование и развитие Солнечной системы. По его мнению, Солнце и пла­неты возникли из вращающегося раскаленного газового обла­ка. Постепенно остывая7ш5о сжималось, образуя многочис­ленные кольца, которые, уплотняясь, создали планеты, а центральный сгусток превратился в Солнце.

В начале нашего столетия английский ученый Джеймс Джине (1877-1946) выдвинул гипотезу, которая так объясняла образование планетной системы: когда-то вблизи Солнца про­летала другая звезда, которая своим тяготением вырвала из него часть вещества. Сгустившись, оно дало начало планетам.

4. Наш соотечественник, известный ученый Отто Юльевич Шмидт (1891-1956) в 1944 г. предложил свою гипотезу обра­зования планет. Он полагал, что миллиарды лет назад Солнце было окружено гигантским облаком, которое состояло из час­тичек холодной пыли и замерзшего газа. Все они обращались вокруг Солнца. Находясь в постоянном движении, сталкива­ясь, взаимно притягивая друг друга, они как бы слипались, образуя сгустки. Постепенно газово-пылевое облако сплющива­лось, а сгустки стали двигаться по круговым орбитам. Со вре­менем из этих сгустков и образовались планеты нашей Сол­нечной системы.

Нетрудно заметить, что гипотезы Канта, Лапласа, Шмидта во многом близки. Многие мысли этих ученых легли в основу современного представления о происхождении Земли и всей Солнечной системы.

Сегодня учёные предпологают, что

3. Развитие Земли.

Древнейшая Земля весьма мало напоминала планету, на которой мы сейчас живем. Её атмосфера состояла из водяных паров, углекислого газа и, по одним, - из азота, по другим – из метана и аммиака. Кислорода в воздухе безжизненной планеты не было, в атмосфере древней Земли гремели грозы, её пронизывало жёсткое ультрафиолетовое излучение Солнца, на планете извергались вулканы. Исследования показывают, что полюса на Земле менялись, и когда-то Антарктида была вечнозеленой. Вечная мерзлота образовалась 100 тыс. лет назад после великого оледенения.

В XIX веке в геологии сформировались две концепции развития Земли:

1) посредством скачков («теория катастроф» Жоржа Кювье);

2) посредством небольших, но постоянных изменений в одном и том же направлении на протяжении миллионов лет, которые, суммируясь, приводили к огромным результатам («принцип униформизма» Чарльза Лайелля).

Успехи физики XX века способствовали существенному продвижению в познании истории Земли. В 1908 году ирландский ученый Д. Джоли сделал сенсационный доклад о геологическом значении радиоактивности: количество тепла, испущенного радиоактивными элементами, вполне достаточно, чтобы объяснить существование расплавленной магмы и извержение вулканов, а также смещение континентов и горообразование. С его точки зрения, элемент материи – атом – имеет строго определенную длительность существования и неизбежно распадается. В следующем 1909 году русский ученый В. И. Вернадский основывает геохимию – науку об истории атомов Земли и ее химико-физической эволюции.

На этот счет существуют две, наиболее распространенные точки зрения. Ранняя из них полагала, что первоначальная Земля, сформировавшаяся сразу после аккреции из планетезималей, состоящих из никелистого железа и силикатов, была однородна и только потом подверглась дифференциации на железо-никелевое ядро и силикатную мантию. Эта гипотеза получила название гомогенной аккреции. Более поздняя гипотеза гетерогенной аккреции заключается в том, что сначала аккумулировались наиболее тугоплавкие планетезимали, состоящие из железа и никеля и только потом в аккрецию вступило силикатное вещество, слагающее сейчас мантию Земли от уровня 2900 км. Эта точка зрения сейчас, пожалуй, наиболее популярна, хотя и здесь возникает вопрос о выделении внешнего ядра, имеющего свойства жидкости. Возникло ли оно после формирования твердого внутреннего ядра или внешнее и внутреннее ядра выделялись в процессе дифференциации? Но этот вопрос однозначного ответа не существует, но предположение отдается второму варианту.

Процесс аккреции, столкновение планетезималей размером до 1000 км, сопровождался большим выделением энергии, с сильным прогревом формирующейся планеты, ее дегазацией, т.е. выделением летучих компонентов, содержащихся в падавших планетезималях. Большая часть летучих веществ при этом безвозвратно терялась в межпланетном пространстве, о чем свидетельствует сравнение составов летучих в метеоритах и породах Земли. Процесс становления нашей планеты по современным данным длился около 500 млн. лет и проходил в 3 фазы аккреции. В течение первой и главной фазы Земля сформировалась по радиусу на 93-95% и эта фаза закончилась к рубежу 4,4 – 4,5 млрд. лет, т.е. длилась около 100 млн. лет.

Вторая фаза, ознаменовавшаяся завершением роста, длилась тоже около 200 млн. лет. Наконец, третья фаза, продолжительностью до 400 млн. лет (3,8-3,9 млрд. лет окончание) сопровождалась мощнейшей метеоритной бомбардировкой, такой же, как и на Луне. Вопрос о температуре первичной Земли имеет для геологов принципиальное значение. Даже в начале ХХ века ученые говорили о первичной «огненно-жидкой» Земле. Однако этот взгляд полностью противоречил современной геологической жизни планеты. Если бы Земля изначально была расплавленной, она давно бы превратилась в мертвую планету.

Следовательно, предпочтение нужно отдать не очень холодной, но и не расплавленной ранней Земле. Факторов нагрева планеты было много. Это и гравитационная энергия; и соударение планетезималей; и падение очень крупных метеоритов, при ударе которых повышенная температура распространялась до глубин 1-2 тыс.км. Если же, все-таки, температура превышала точку плавления вещества, то наступала дифференциация – более тяжелые элементы, например, железо, никель, опускались, а легкие, наоборот, всплывали.

Но главный вклад в увеличение тепла должен был играть распад радиоактивных элементов - плутония, тория, калия, алюминия, йода. Еще один источник тепла – это твердые приливы, связанные с близким расположением спутника Земли - Луны. Все эти факторы, действуя вместе, могли повысить температуру до точки плавления пород, например, в мантии она могла достигнуть +1500 ОС. Но давление на больших глубинах препятствовало плавлению, особенно во внутреннем ядре. Процесс внутренней дифференциации нашей планеты происходил всю ее геологическую историю, продолжается он и сейчас. Однако, уже 3,5-3,7 млрд.лет назад, при возрасте Земли в 4,6 млрд.лет, у Земли было твердое внутреннее ядро, жидкое внешнее и твердая мантия, т.е. она уже была дифференцирована в современном виде. Об этом говорит намагниченность таких древних горных пород, а, как известно, магнитное поле обусловлено взаимодействием жидкого внешнего ядра и твердого внешнего. Процесс расслоения, дифференциации недр происходил на всех планетах, но на Земле он происходит и сейчас, обеспечивая существование жидкого внешнего ядра и конвекцию в мантии.

В 1915 году немецкий геофизик А. Вегенер предположил, исходя из очертаний континентов, что в карбоне (геологический период) существовал единый массив суши, названный им Пангеей (греч. «вся земля»). Пангея раскололась на Лавразию и Гондвану. 135 млн. лет назад Африка отделилась от Южной Америки, а 85 млн. лет назад Северная Америка – от Европы; 40 млн. лет назад Индийский материк столкнулся с Азией и появились Тибет и Гималаи.

Решающим аргументом в пользу принятия данной концепции А. Вегенера стало эмпирическое обнаружение в конце 50-х годов расширения дна океанов, что послужило отправной точкой создания тектоники литосферных плит. В настоящее время считается, что континенты расходятся под влиянием глубинных конвективных течений, направленных вверх и в стороны и тянущих за собой плиты, на которых плавают континенты. Эту теорию подтверждают и биологические данные о распространении животных на нашей планете. Теория дрейфа континентов, основанная на тектонике литосферных плит, ныне общепринята в геологии.

4. Глобальная тектоника.

Много лет назад отец-геолог подвел своего маленького сына к карте мира и спросил, что будет, если береговую линию Америки придвинуть к побережью Европы и Африки? Мальчик не поленился и, вырезав соответствующие части из физико-географического атласа, с удивлением обнаружил, что западное побережье Атлантики совпало с восточным в пределах, так сказать, ошибки эксперимента.

Эта история не прошла для мальчика бесследно, он стал геологом и поклонником Альфреда Вегенера, отставного офицера германской армии, а также метеоролога, полярника, и геолога, который в 1915 году создал концепцию дрейфа континентов.

Свою лепту в возрождение концепции дрейфа внесли и высокие технологии: именно компьютерное моделирование в середине 1960-х годов показало хорошее совпадение границ континентальных масс не только для Циркум-Атлантики, но и для ряда остальных материков - Восточной Африки и Индостана, Австралии и Антарктиды. В результате в конце 60-х появилась концепция тектоники плит, или новой глобальной тектоники.

Предложенная сначала чисто умозрительно для решения частной задачи -распределения землетрясений различной глубинности на поверхности Земли, - она сомкнулась с представлениями о дрейфе континентов и мгновенно получила всеобщее признание. К 1980 году - столетию со дня рождения Альфреда Вегенера – стало принято говорить о формировании новой парадигмы в геологии. И даже о научной революции, сопоставляемой с революцией в физике начала XX века…

Согласно этой концепции, земная кора разбита на несколько огромных литосферных плит, которые постоянно двигаются и продуцируют землетрясения. Первоначально было выделено несколько литосферных плит: Евразийская, Африканская, Северо – и Южноамериканская, Австралийская, Антарктическая, Тихоокеанская. Все они, кроме Тихоокеанской, чисто океанической, включают в себя части как с континентальной, так и океанической корой. И дрейф континентов в рамках этой концепции - не более чем их пассивное перемещение вместе с литосферными плитами.

В основе глобальной тектоники лежит представление о литосферных плитах, фрагментах земной поверхности, рассматриваемых, как абсолютно жесткие тела, перемещающиеся словно по воздушной подушке по слою разуплотненной мантии - астеносфере, со скоростью от 1-2 до 10-12 см в год. В большинстве своем они включают как континентальные массы с корой, условно называемой «гранитной», так и участки с корой океанической, условно называемой «базальтовой» и образованной породами с низким содержанием кремнезема.

Учёным совершенно не ясно, куда движутся материки и некоторые из них не согласны с тем, что движится земная кора, а если движутся, то за счёт действия каких сил и источников энергии. Широко распространённое предположение о том, что причиной движения земной коры служит тепловая конвекция, по сути, неубедительно, ибо оказалось, что такого рода предположения идут вразрез с основными положениями многих физических законов, экспериментальных данных и многочисленных наблюдений, включая данные космических исследований о тектонике и строении других планет. Реальных схем тепловой конвекции, не противоречащих законам физики, и единого логически обоснованного механизма движения вещества, одинаково приемлемых для условий недр звёзд, планет и их спутников, до сих пор не найдено.

В срединно-океанических хребтах образуется новая разогретая океаническая кора, которая, остывая, снова погружается в недра мантии и рассеивает тепловую энергию, идущую на перемещение плит земной коры.

Гигантские геологические процессы, такие как вздымание горных хребтов, мощные землетрясения, образование глубоководных впадин, извержение вулканов, - все они, в конце концов, порождаются движением плит земной коры, при котором происходит постепенное охлаждение мантии нашей планеты.

Земная суша образуется твердыми горными породами, зачастую покрытыми слоем почвы и растительностью. Но откуда эти горные породы берутся? Новые горные породы формируются из вещества, рождающегося глубоко в недрах Земли. В нижних слоях земной коры температура намного выше, чем па поверхности, а составляющие их горные породы находятся под огромным давлением. Под воздействием жара и давления горные породы прогибаются и размягчаются, а то и вовсе плавятся. Как только в земной коре образуется слабое место, расплавленные горные породы - их называют магмой - прорываются на поверхность Земли. Магма вытекает из жерлов вулканов в виде лавы и распространяется на большой площади. Застывая, лава превращается в твердую горную породу.

В одних случаях рождение горных пород сопровождается грандиозными катаклизмами, в других проходит тихо и незаметно. Существует множество разновидностей магмы, и из них образуются различные типы горных пород. К примеру, базальтовая магма очень текуча, легко выходит на поверхность, растекается широкими потоками и быстро застывает. Иногда она вырывается из жерла вулкана ярким "огненным фонтаном" - такое происходит, когда земная кора не выдерживает ее давления.

Другие виды магмы гораздо гуще: их густота, или консистенция, больше похожа на черную патоку. Содержащиеся в такой магме газы с большим трудом пробиваются на поверхность сквозь ее плотную массу. Вспомните, как легко пузырьки воздуха вырываются из кипящей воды и насколько медленнее это происходит, когда вы нагреваете что-нибудь более густое, к примеру кисель. Когда более плотная магма поднимается ближе к поверхности, давление на нее уменьшается. Растворенные в пей газы стремятся расшириться, но не могут. Когда же магма наконец вырывается наружу, газы расширяются столь стремительно, что происходит грандиозный взрыв. Лава, обломки горных пород и пепел разлетаются во все стороны, как снаряды, выпущенные из пушки. Подобное извержение случилось в 1902 г. на о-ве Мартиника в Карибском море. Катастрофическое извержение вулкана Моптапь-Пеле полностью разрушило порт Сеп-Пьер. Погибло около 30 000 человек

Геология дала человечеству возможность использования геологических ресурсов для развития всех отраслей техники и технологии. Вместе с тем, интенсивная техногенная деятельность привела к резкому ухудшению экологической мировой обстановки, настолько сильной и быстрой, что нередко под вопрос ставится существование человечества. Мы потребляем намного больше, чем природа в состоянии регенерировать. Поэтому проблема устойчивого развития в наши дни является подлинно глобальной, мировой проблемой, касающейся всех государств.

Несмотря на увеличение научно-технического потенциала человечества, уровень нашего незнания о планете Земля все еще очень велик. И по мере прогресса в наших знаниях о ней, количество вопросов, остающихся нерешенными, не уменьшается. Мы стали понимать, что на процессы, происходящие на Земле, оказывают влияние и Луна, и Солнце, и другие планеты, все связано воедино, и даже жизнь, возникновение которой составляет одну из кардинальных научных проблем, возможно, занесена к нам из космического пространства. Геологи пока бессильны предсказывать землетрясения, хотя, предугадать извержения вулканов сейчас уже можно с большой долей вероятности. Множество геологических процессов еще плохо поддаются объяснению и тем более прогнозированию. Поэтому интеллектуальная эволюция человечества во многом связана с успехами геологической науки, которая когда-нибудь позволит человеку решить волнующие его вопросы о происхождении Вселенной, происхождении жизни и разума.

6. Список использованной литературы

1. Горелов А. А. Концепции современного естествознания. - М.: Центр, 1997.

2. Лавриненко В. Н., Ратников В. П. – М.: Культура и спорт, 1997.

3. Найдыш В. М. Концепции современного естествознания: Учеб. пособие. – М.: Гардарики, 1999.

4. Левитан Е. П. Астрономия: Учебник для 11 кл. общеобразовательной школы. – М.: Просвещение, 1994.

5. Сурдин В. Г. Динамика звездных систем. – М.: Изд-во Московского центра непрерывного образования, 2001.

6. Новиков И. Д. Эволюция Вселенной. – М., 1990.

7. Карапенков С. Х. Концепции современного естествознания. – М.: Академический проспект, 2003.

1. Понятие статистики

Статистика одна из древнейших отраслей знаний, возникшая на базе хозяйственного учета. Ее возникновение связано с потребностями общества в различного рода сведениях.

Полагают, что термин статистика произошел от латинских слов stato (государство) и status (положение, состояние).

Под статистикой в широком смысле понимается наука, которая изучает с количественной стороны массовые явления и их закономерности.

Общая теория статистики – методологическая наука, наука о методе, который применим для выявления закономерностей в любой области, где выводы строятся на основе массового наблюдения, где имеет место вариация признака у единичных элементов совокупности, где общие закономерности могут проявляться только через взаимопогашение случайностей у отдельных единиц.

2. Статистика как наука

2.1 Пути развития статистики

Развитие статистики как науки шло по двум направлениям:

1-ое направление возникло в Германии и известно как государствоведение или описательная школа. Представители этой школы основной своей задачей считали описание достопримечательностей государства без анализа закономерностей и взаимосвязей между ними. Основателем описательной школы был немецкий ученый Герман Конринг.

2-ое направление развития статистики возникло в Англии, и оно известно под названием политическая арифметика. Представители этой школы своей главной задачей считали выявление на основе большого числа наблюдений различных закономерностей и взаимосвязей изучаемых явлений. Основателем школы был Уильям Петти.

2.2 Предмет статистики и основные понятия

Обобщил теоретические сведения из государствоведения и учет по практическим работам представителей школы политической арифметики бельгийский ученый математик Адольф Кетие. Он же дал определение предмета статистики – это массовые явления, связанные с жизнью общества и человека. Он также увидел в статистике орудие социального познания.

Отличительные черты массовых явлений:

1. Каждый элемент множества обладает как индивидуальными или отличительными признаками, так и общими или сходными.

2. Характеристики одного из элементов массового явления не могут быть получены на основе характеристик других элементов.

Определение: Изучаемые статистикой массовые явления в виде множества однокачественных единиц с отличающимися индивидуальными признаками, называются статистическими совокупностями. Исходя, из этого можно сказать, что предметом статистики являются различные статистические совокупности, исследования которых связано с количественной характеристикой и выявлением присущих им закономерностей. Статистическая совокупность одно из главных понятий статистической науки. С ним связаны и такие понятия как: единица совокупности. Определение: Элементы, множество которых образует изучаемую совокупность, называется единицами. Признаки единиц совокупности:

Каждая единица совокупности может быть охарактеризована разного рода качественными и количественными признаками.

Если определенный признак имеет разные значения у определенных единиц совокупности, то это называется вариацией. Определение: Закономерность, выявленная на основе массового наблюдения, т.е. проявившаяся в большой массе явлений через преодоление свойственной ее единичным элементом случайности, называется статистической закономерностью. Основная задача статистики – это абстрагироваться от случайного и выявить типичное, закономерное.

Существует три способа выявления закономерностей:

1. логический;

2. эмпирический;

3. на основе закона больших чисел.


2.3 Метод статистики

Массовое наблюдение, группировка и сводка его результатов, вычисление и анализ обобщающих показателей. Все это вместе и дает метод статистики.

3.Статистическое наблюдение

3.1 Статистическое наблюдение, как этап статистического исследования. План статистического наблюдения

Статистическое наблюдение является первым этапом статистического исследования.

Определение: Статистическое наблюдение – это научно организованный сбор массовых данных об исследуемых процессах и явлениях, который осуществляется по заранее разработанной программе.

Требования к массовым данным:

Статистические данные должны быть достаточно полными. Всякое явление обладает многообразными взаимосвязанными признаками. Полнота данных обеспечивает охват наиболее существенных признаков, необходимых для получения объективных выводов. Если данные статистического наблюдения относятся к различным отрезкам времени территориям, то необходимо обеспечить их сопоставимость. Под сопоставимостью статистических сведений подразумевается единообразие их единиц измерения, стоимостных оценок, границ административных территорий, временных характеристик и т.д. Прежде чем начать статистическое наблюдение, требуется установить порядок его проведения. Для этого разрабатывается подробный план наблюдения, который содержит:

1. программно-методологическую часть:

2. организационную часть.

1. Программно-методологические вопросы плана наблюдения.

В этой части плана должны быть определены:

а) цель и задачи наблюдения:

б) объект и единицы, подлежащие обследованию;

в) программа наблюдения.

Программа наблюдения представляет собой перечень вопросов, на которые предполагается получить ответы в ходе обследования. Программа должна отличаться полнотой сведений и широтой охвата. Формулировки вопросов должны быть по возможности краткими и ясными, исключать неточность и расплывчатость в ответах, при необходимости для единого толкования и понимания вопросов дается подсказка. В программной методологической части наблюдения указывается конкретный инструментарий статистического исследования, т.е. бланки, в которых должны содержаться ответы на сформулированные вопросы, а так же инструкции по их заполнению.

2. Организационные вопросы плана наблюдения.

Для успешной организации наблюдения и полноты охвата совокупности разрабатывается организационный план наблюдения.

В нем указывается:

а) субъект наблюдения:

б) сроки и место проведения исследования;

в) организация сбора данных и технологии их обработки.


3.2 Формы и виды статистического наблюдения

Формы, виды и способы статистического наблюдения.

Организационные формы статистического наблюдения

Виды статистического наблюдения

Способы статистического наблюдения

по времени регистрации фактов

по охвату единиц совокупности

1. Статистическая отчетность.

2. Специально организованное наблюдение.

3. Регистровое наблюдение.

1. Текущее или непрерывное.

2. Прерывное:

а) периодическое;

б) единовременное.

1. Сплошное.

2. Несплошное:

а) выборочное;

б) основного массива;

в)монографическое.


1. Непосредственное.

2. Документальное.

а) экспедиционный;

б) саморегистрации;

в) корреспондентский;

г) анкетный;

д) явочный.

В отечественной статистике используются три организационные формы (типы) статистического наблюдения:

1. Отчетность – это основная форма статистического наблюдения, с помощью которой статистические органы в определенные сроки получают от предприятий, учреждений и организаций необходимые данные в виде установленных в законном порядке отчетных документов, скрепляемых подписями лиц, ответственных за их предоставление и достоверность собираемых сведений.

Делится: телефонную, телетайпную, почтовую.

2. Специально организованное наблюдение проводится с целью получения сведений, отсутствующих в отчетности, или для проверки ее данных. Практическая статистика проводит переписи населения, материальных ресурсов, многолетних насаждений, неустановленного оборудования, строек незавершенного строительства оборудования и др. Кроме переписей статистика проводит и другие специально организованные наблюдения, в частности бюджетные обследования, которые характеризуют структуру потребительских расходов и доходов семей.

3. Регистровое наблюдение – это форма непрерывного статистического наблюдения за долговременными процессами, имеющими фиксированное начало, стадию развития и фиксированный конец. Оно основано на ведении статистического регистра. Регистр представляет собой систему, постоянно следящую за состоянием единицы наблюдения и оценивающую силу воздействия различных факторов на изучаемые показатели.

В практике статистики различают регистры населения и регистры предприятий.

Виды статистического наблюдения по времени регистрации фактов

Текущее наблюдение ведется систематически, по мере возникновения явлений. При периодическом наблюдении регистрация исследуемых явлений проводится через определенные, обычно одинаковые промежутки времени. Единовременное наблюдение проводится один раз для решения какой-либо задачи или повторяется эпизодически через определенные периоды времени, по мере надобности.

Виды статистического наблюдения по охвату единиц совокупности

При сплошном наблюдении регистрируются все без исключения единицы совокупности. При выборочном наблюдении обследуется отобранная в случайном порядке часть единиц совокупности с целью характеристики всей совокупности.

При несовершенно сплошном наблюдении (основного массива) обследованию подвергается основная часть совокупности и сознательно исключается некоторая часть, о которой заведомо известно, что она не играет большой роли в характеристике всей совокупности. Монографическое наблюдение состоит в подробном описании небольшого числа или отдельных типичных единиц совокупности.

Способы регистрации фактов или способы получения первичного материала

Непосредственное наблюдение осуществляется путем регистрации изучаемых единиц и их признаков специально выделенными лицами на основе непосредственного осмотра, подсчета, взвешивания, показания приборов и т.д. Документальное наблюдение основано на использовании в качестве источника статистических сведений различных документов первичного учета предприятий, учреждений, организаций. При опросе статистические материалы получают путем регистрации ответов, которые дают опрашиваемые лица. Экспедиционный способ заключается в том, что специально подготовленные регистраторы путем опроса заполняют формулы, одновременно контролируя привольность получаемых сведений. При саморегистрации или самоисчислении работники статистических органов раздают опросные бланки опрашиваемым лицам, инструктируют их, а затем собирают заполненные формуляры, контролируя полноту и правильность полученных сведений. Анкетный опрос состоит в том, что разработанная анкета рассылается кругу лиц и после заполнения возвращается органам, проводящим наблюдения. Корреспондентский заключается в организации статистическими органами специальной сети корреспондентов из лиц, проживающих на местах, которые проводят наблюдение согласно разработанному бланку и инструкции и сообщают сведения статистическим органам. Явочный предусматривает представление сведений в органы, ведущие наблюдение в явочном порядке.

4. Сводка и группировка статистических данных

4.1 Задачи и виды статистической сводки


Определение: Сводка представляет собой комплекс последовательных операций по обобщению конкретных единичных фактов, образующих совокупность, для выявления типичных черт и закономерностей, присущих изучаемому явлению в целом.

Таким образом, если при статистическом наблюдении собирают данные о каждой единице объекта, то результатом сводки являются подробные данные, отражающие в целом свою совокупность.

Статистическая сводка должна вестись на основе предварительного теоретического анализа явлений и процессов.

По глубине обработки материала сводка бывает простая и сложная.

Простой сводкой называется операция по подсчету общих итогов по совокупности единиц наблюдения.

Сложная сводка представляет собой комплекс операций, включающих группировку единиц наблюдения, подсчет итогов по каждой группе и по всему объекту и представление результатов группировки и сводки в виде статистических таблиц.

Проведение сводки предшествует разработка ее программы, которая состоит из следующих этапов:

Выбор группировочных признаков;

Определение порядка формирования групп;

Разработка системы статистических показателей для характеристики групп и объекта в целом;

Разработка макетов статистических таблиц, в которых должны быть представлены результаты сводки.

По форме обработки материала сводка бывает децентрализованная и централизованная.

При децентрализованной сводке (именно она используется, как правило, при обработке статистической отчетности) разработка материала проводится последовательными этапами. Так, отчеты предприятий сводятся статистическими органами субъектов Российской Федерации, а уже итоги по региону поступают в Госкомстат России, и там определяются показатели в целом по народному хозяйству страны. При централизованной сводке весь первичный материал поступает в одну организацию, где и подвергается обработке от начала и до конца. Централизованная сводка обычно используется для обработки материалов единовременных статистических обследований. По техники выполнения статистическая сводка подразделяется на механизированную и ручную.

Для проведения сводки составляется план, в котором излагаются организационные вопросы: кем и когда будут осуществляться все операции, порядок ее проведения, состав сведений, подлежащих опубликованию в периодической печати.


4.2 Метод группировки в статистике

Статистическая группировка – это расчленение всей совокупности материалов на группы и подгруппы по существенным признакам для всестороннего изучения явлений и процессов общественной жизни.

Признак, положенный в основу называется группировочный.

Для построения групп в статистике используют в основном два вида признаков:

1. количественные (численные);

2. качественные (атрибутивные).

Группировка по одному признаку называется простой , а группировки по двум и более признакам взятыми в сочетании друг с другом, называются комбинационными (сложными).

После того, как выбран группировочный признак, производится выбор числа групп. Если в основу группировки положен качественный признак, то вопрос о числе групп решается автоматически – их будет столько, сколько качественных состояний принимает изучаемая совокупность (ее единицы).

При группировке по количественным признакам возникает вопрос об определении интервалов группировки. Величиной интервала называется разность между максимальным и минимальным значением признака в каждой группе. В зависимости от характера распределений единиц совокупности по данному признаку интервалы могут быть по величине разными и неравными. Если распределение признака в границах его вариации достаточно равномерно, то диапазон колебаний признака разбивают на равные интервалы, длину которых определяют по формуле:

где X mak и X min соответственно максимальное и минимальное значение признака в данной совокупности,

n – число образуемых групп.

Число групп может быть заданно на основе предыдущих исследований. В том случае, если вопрос о числе групп приходиться решать самостоятельно, то можно использовать формулу Стерджесса для определения оптимального числа групп:



n – число групп

N – число единиц совокупности

Различают закрытые интервалы, в которых дана верхняя и нижняя граница, и открытые, в которых имеется только одна граница: верхняя или нижняя.

Статистические группировки по задачам, решаемым с их помощью, делятся на:

Типологическая группировка – это разделение исследуемой качественно разнородной совокупности на классы, социально-экономические типы, однородные группы единиц в соответствии с правилами научной группировки.

Структурной называется группировка, в которой происходит разделение однородной совокупности на группы, характеризующие ее структуру по какому-либо варьирующему признаку.

Аналитической называется группировка, выявляющая взаимосвязи между изучаемыми явлениями и их признаками.


4.3 Ряды распределения в статистике

Статистический ряд распределения – это упорядоченное распределение единиц совокупности на группы по определенному варьирующему признаку.

В зависимости от признака положенного в основу образования ряда распределения, различают:

1. Атрибутивные – ряды распределения, построенные по качественным признакам.

2. Вариационные – ряды распределения, построенные по количественному признаку. Любой вариационный признак состоит из 2-х элементов: вариантов и частот.

Вариантами считаются отдельные значения признака, которые он принимает в вариационном ряду.

Частоты – это численности отдельных вариантов или каждой группы вариационного ряда.

Частостями называют частоты, выраженные в долях единицы или в процентах к итогу.

В зависимости от характера вариации признака различают:

1. Дискретный вариационный ряд характеризует распределение единиц совокупности по дискретному признаку (величина количественного признака принимает только целые значения).

2. Интервальный вариационный ряд – он целесообразен при непрерывной вариации признака, а также, если дискретная вариация проявляется в широких пределах, т.е. число вариантов дискретного признака достаточно велико.

Удобнее всего ряды распределения анализировать при помощи их угарического изображения.

Полигон используется при изображении дискретных вариационных рядов.

Гистограмма принимается для изображения интервального вариационного ряда.

5. Статистические показатели

Статистический показатель представляет собой количественную характеристику социально-экономических явлений и процессов в условиях качественной определенности. Качественная определенность показателя заключается в том, что он непосредственно связан с внутренним содержанием изучаемого явления или процесса, его сущностью.

Как правило, изучаемые статистикой процессы и явления достаточно сложны, и их сущность не может быть отражена посредством одного отдельно взятого показателя. В таких случаях используется система статистических показателей (совокупность взаимосвязанных показателей, имеющая одноуровневую или многоуровневую структуру и нацеленная на решение конкретной статистической задачи).


5.1 Абсолютные и относительные показатели

Абсолютные статистические показатели.

Статистические показатели в форме абсолютных величин характеризуют абсолютные размеры изучаемых статистикой процессов и явлений: их массу, площадь, объем, протяженность; отражают их временные характеристики, а также могут представлять объем совокупности, т.е. число составляющих ее единиц.

Индивидуальные абсолютные показатели, как правило, получают непосредственно в процессе статистического наблюдения как результат замера, взвешивания, подсчета и оценки интересующего количественного признака.

Сводные объемные показатели получают в результате сводки и группировки индивидуальных значений (характеризуют объем признака или объем совокупности как в целом по изучаемому объекту, так и по какой-либо его части).

Абсолютные статистические показатели выражаются в следующих единицах измерения:

Натуральные (тонны, килограммы, километры, штуки);

Стоимостные (денежная оценка социально-экономическим явлениям и процессам);

Трудовые (человеко-дни, человеко-часы).

Относительные статистические показатели.

Относительный показатель представляет собой результат деления одного абсолютного показателя на другой и выражает соотношение между количественными характеристиками социально-экономических процессов и явлений. В числителе показатель называется текущим или сравниваемым, в знаменателе называется основанием или базой сравнения.

Если база сравнения принимается за 1, то относительный показатель выражается в коэффициентах, если база принимается за 100, то выражается в процентах (%), если за 1000, выражается в промилле (%0), если база принимается за 10.000, то выражается в продецимилле.

Проценты, как правило, используются в тех случаях, когда сравниваемый абсолютный показатель превосходит базисный не более чем в 2-3 раза. Проценты же свыше 200-300 обычно заменяются кратным отношением, коэффициентом.


5.2 Средние показатели (величины)

Средняя величина, представляющая собой обобщенную количественную характеристику признака в статистической совокупности в конкретных условиях места и времени, является наиболее распространенной формой статистических показателей.

Рассмотрим типы средних, которые рассчитываются для случаев, когда каждая из вариант вариационного ряда встречается только один раз (тогда средняя называется простой, или невзвешенной) и когда вариант или интервалы повторяются (средняя взвешенная). Число повторений вариант – частота. При выборе того или иного типа средней следует исходить из принципа осмысленности результата при суммировании или при взвешивании.

Средняя арифметическая.

X – степенная средняя;

Z – показатель степени, определяющий тип средней;

Xi – варианты;

mi – частоты или статистические веса вариантов.

Средняя гармоническая (z=-1).


Репетиторство

Нужна помощь по изучению какой-либы темы?

Наши специалисты проконсультируют или окажут репетиторские услуги по интересующей вас тематике.
Отправь заявку с указанием темы прямо сейчас, чтобы узнать о возможности получения консультации.

Графическое изображение, прежде всего, позволяет осуществить контроль достоверности статистических показателей, так как, представленные на графике, они более ярко показывают имеющиеся неточности, связанные либо с наличием ошибок наблюдения, либо с сущностью изучаемого явления. С помощью графического изображения возможны изучение закономерностей развития явления, установление существующих взаимосвязей. Простое сопоставление данных не всегда дает возможность уловить наличие причинных зависимостей, в то же время их графическое изображение способствует выявлению причинных связей, в особенности в случаях установления первоначальных гипотез, подлежащих затем дальнейшей разработке. Графики также широко используются для изучения структуры влияний, их изменения во времени и размещения в пространстве. В них более выразительно проявляются сравниваемые характеристики и отчетливо видны основные тенденции развития и взаимосвязи, присущие изучаемому явлению или процессу.

В статистике графиком называют наглядное изображение статистических величин и их соотношений при помощи геометрических точек, линий, фигур или географических картосхем.

Графики придают изложению статистических данных большую наглядность, чем таблицы, выразительность, облегчают их восприятие и анализ. Статистический график позволяет зрительно оценить характер изучаемого явления, присущие ему закономерности, тенденции развития, взаимосвязи с другими показателями, географическое разрешение изучаемых явлений. Еще в древности китайцы говорили, что одно изображение заменяет тысячу слов. Графики делают статистический материал более понятным, доступным и неспециалистам, привлекают внимание широкой аудитории к статистическим данным, популяризируют статистику и статистическую информацию.

При любой возможности анализ статистических данных рекомендуется всегда начинать с их графического изображения. График позволяет сразу получить общее представление обо всей совокупности статистических показателей. Графический метод анализа выступает как логическое продолжение табличного метода и служит целям получения обобщающих статистических характеристик процессов, свойственных массовым явлениям.

При помощи графического изображения статистических данных решаются многие задачи статистического исследования:

  • 1) наглядное представление величины показателей (явлений) в сравнении друг с другом;
  • 2) характеристика структуры какого-либо явления;
  • 3) изменение явления во времени;
  • 4) ход выполнения плана;
  • 5) зависимость изменения одного явления от изменения другого;
  • 6) распространенность или размещение каких-либо величин по территории.

Другими словами, в статистических исследованиях применяются самые разнообразные графики.

В каждом графике выделяют следующие основные элементы:

  • 1) пространственные ориентиры (систему координат);
  • 2) графический образ;
  • 3) поле графика;
  • 4) масштабные ориентиры;
  • 5) экспликация графика;
  • 6) наименование графика

Пространственные ориентиры задаются в виде системы координатных сеток. В статистических графиках чаще всего применяется система прямоугольных координат. Иногда используется принцип полярных (угловых) координат (круговые графики). В картограммах средствами пространственной ориентации являются границы государств, границы административных его частей, географические ориентиры (контуры рек, береговых линий морей и океанов).

На осях системы координат или на карте в определенном порядке располагаются характеристики статистических признаков изображаемых явлений или процессов. Признаки, располагаемые на осях координат, могут быть качественными или количественными.

Графический образ статистических данных представляет собой совокупность линий, фигур, точек, образующих геометрические фигуры разной формы (окружность, квадраты, прямоугольники и т.п.) с различной штриховкой, окраской, густотой нанесения точек.

Любое явление, изучаемое статистикой, можно представить в графической форме. Для этого требуется найти правильное графическое решение, определить тот графический образ, который лучше всего соответствует данному явлению, нагляднее изображает статистические данные. Графический образ должен соответствовать цели графика. Поэтому перед построением графика необходимо уяснить сущность явления и цель, которая ставится перед графическим изображением. Выбранная форма графика должна соответствовать внутреннему содержанию и характеру статистического показателя. Например, сравнение на графике производится по таким измерениям, как площадь, длина одной из сторон фигур, местонахождением точек, их густотой и т.д.

Так, для изображения изменений явления во времени наиболее естественным типом графика является линия. Для рядов распределения - полигон или гистограмма.

Поле графика - это пространство, в котором располагаются графические образы (геометрические тела, образующие графики).

Поле графика характеризуется по размерам и пропорциям. Размер поля зависит от назначения графика. Пропорции и размер графика (формат графика) должны соответствовать также сущности изображаемых явлений. Для статистических исследований часто используются графики с неравными сторонами, например, с соотношением сторон поля 1: или 1:1,33 до 1:1,6+5,8. Но иногда удобна квадратная форма графиков.

Масштабные ориентиры, обеспечивающие геометрическому образу количественную определенность, - это использованная в графике система масштабных шкал. Масштабом графика называется условная мера перевода статистической числовой величины в графическую. Масштабная шкала - это линия, отдельные точки которой могут быть в соответствии с принятым масштабом прочитаны как определенное значение статистического показателя. Масштаб выбирается с таким расчетом, чтобы на графике могла поместиться самая большая и самая маленькая из изображаемых величин.

Масштабные шкалы бывают равномерными и неравномерными, прямолинейными (обычно располагаются по осям координат) и криволинейными (круговые в секторных диаграммах).

Экспликация графика - это словесное пояснение его содержания (название графика и соответствующие пояснения отдельных его частей).

Название графика должно точно и кратко раскрывать его содержание. Пояснительные тексты могут располагаться в пределах графического образа, рядом с ним или выноситься за его пределы, вдоль масштабных шкал. Они помогают мысленно перейти от геометрических образов к явлениям и процессам, изображенным на графике.

Особенность графических изображений в их выразительности, доходчивости и обозримости. Однако графические изображения не только иллюстративны, они носят и аналитический характер. Итак, в настоящее время графики широко применяются в учетной и статистической практике предприятий и учреждений, в научно-исследовательской работе, в производственно-хозяйственной деятельности, в учебном процессе, пропаганде и других областях.

Существует множество видов графических изображений. Их классификация основана на ряде признаков:

  • а) способ построения графического образа;
  • б) геометрические знаки, изображающие статистические показатели и отношения;
  • в) задачи, решаемые с помощью графического изображения.

Статистические графики по форме графического образа:

Линейные: статистические кривые.

Плоскостные: столбиковые, полосовые, квадратные, круговые, секторные, фигурные, точечные, фоновые.

Объемные: поверхности распределения.

Статистические графики по способу построения и задачам изображения:

Диаграммы: диаграммы сравнения, диаграммы динамики, структурные диаграммы.

Статистические карты: картограммы, картодиаграммы.

По способу построения статистические графики делятся на диаграммы и статистические карты.

Диаграммы - наиболее распространенный способ графических изображений. Это графики количественных отношений. Виды и способы их построения разнообразны. Диаграммы применяются для наглядного сопоставления в различных аспектах (пространственном, временном и др.) независимых друг от друга величин: территорий, населения и т. д. При этом сравнение исследуемых совокупностей производится по какому-либо существенному варьирующему признаку.

Статистические карты - графики количественного распределения по поверхности. По своей основной цели они близко примыкают к диаграммам и специфичны лишь в том отношении, что представляют собой условные изображения статистических данных на контурной географической карте, т. е. показывают пространственное размещение или пространственную распространенность статистических данных. Геометрические знаки, как было сказано выше, - это либо точки, либо линии или плоскости, либо геометрические тела. В соответствии с этим различают графики точечные, линейные, плоскостные и пространственные (объемные).

При построении точечных диаграмм в качестве графических образов применяются совокупности точек; при построении линейных - линии. Основной принцип построения всех плоскостных диаграмм сводится к тому, что статистические величины изображаются в виде геометрических фигур и, в свою очередь, подразделяются на столбиковые, полосовые, круговые, квадратные и фигурные.

Статистические карты по графическому образу делятся на картограммы и картодиаграммы.

В зависимости от круга решаемых задач выделяются диаграммы сравнения, структурные диаграммы и диаграммы динамики.

Статистические данные должны быть представлены так, чтобы ими можно было пользоваться. Существует 3 основных формы представления статистических данных :

  1. Текстовая – включение данных в текст;
  2. Табличная – представление данных в таблицах;
  3. Графическая – выражение данных в виде графиков.

Текстовая форма применяется при малом количестве цифровых данных.

Табличная форма применяется чаще всего, так как является более эффективной формой представления статистических данных. В отличие от математических таблиц, которые по начальным условиям позволяют получить тот или иной результат, статистические таблицы рассказывают языком цифр об изучаемых объектах.

Статистическая таблица – это система строк и столбцов, в которых в определенной последовательности и связи излагается статистическая информация о социально-экономических явлениях.

Например, в следующей таблице представлена информация о внешней торговле России, выражать которую в текстовой форме было бы неэффективным.

1995 2000 2001 2002 2003 2004 2005 2006 2007
Миллиардов долларов США
Внешнеторговый оборот 145,0 149,9 155,6 168,3 212,0 280,6 369,2 468,6 578,2
Экспорт 82,4 105,0 101,9 107,3 135,9 183,2 243,8 303,9 355,2
Импорт 62,6 44,9 53,8 61,0 76,1 97,4 125,4 164,7 223,1
Сальдо торгового баланса 19,8 60,1 48,1 46,3 59,9 85,8 118,4 139,2 132,1
со странами дальнего зарубежья
экспорт 65,4 90,8 86,6 90,9 114,6 153,0 210,2 260,6 301,5
импорт 44,3 31,4 40,7 48,8 61,0 77,5 103,5 140,1 191,2
сальдо торгового баланса 21,2 59,3 45,9 42,1 53,6 75,5 106,7 120,4 110,3
со странами СНГ
экспорт 17,0 14,3 15,3 16,4 21,4 30,2 33,5 43,4 53,7
импорт 18,3 13,4 13,0 12,2 15,1 19,9 21,9 24,6 31,9
сальдо торгового баланса -1,4 0,8 2,2 4,2 6,3 10,3 11,7 18,8 21,9

Различают подлежащее и сказуемое статистической таблицы. В подлежащем указывается характеризуемый объект – либо единицы совокупности, либо группы единиц, либо совокупность в целом. В сказуемом дается характеристика подлежащего, обычно в числовой форме. Обязателен заголовок таблицы, в котором указывается к какой категории и к какому времени относятся данные таблицы.

По характеру подлежащего статистические таблицы подразделяются на простые, групповые и комбинационные. В подлежащем простой таблицы объект изучения не подразделяется на группы, а дается либо перечень всех единиц совокупности, либо указывается совокупность в целом. В подлежащем групповой таблицы объект изучения подразделяется на группы по одному признаку, а в сказуемом указываются число единиц в группах (абсолютное или в процентах) и сводные показатели по группам. В подлежащем комбинационной таблицы совокупность подразделяется на группы не по одному, а по нескольким признакам.

При построении таблиц необходимо руководствоваться следующими общими правилами.

  1. Подлежащее таблицы располагается в левой (реже – верхней) части, а сказуемое – в правой (реже – нижней).
  2. Заголовки столбцов содержат названия показателей и их единицы измерения.
  3. Итоговая строка завершает таблицу и располагается в ее конце, но иногда бывает первой: в этом случае во второй строке делается запись «в том числе», и последующие строки содержат составляющие итоговой строки.
  4. Цифровые данные записываются с одной и той же степенью точности в пределах каждого столбца, при этом разряды чисел располагаются под разрядами, а целая часть отделяется от дробной запятой.
  5. В таблице не должно быть пустых клеток: если данные равны нулю, то ставится знак «–» (прочерк); если данные не известны, то делается запись «сведений нет» или ставится знак «…» (троеточие). Если значение показателя не равно нулю, но первая значащая цифра появляется после принятой степени точности, то делается запись 0,0 (если, скажем, была принята степень точности 0,1).

Иногда статистические таблицы дополняются графиками, когда ставится цель подчеркнуть какую-то особенность данных, провести их сравнение. Графическая форма является самой эффективной формой представления данных с точки зрения их восприятия. С помощью графиков достигается наглядность характеристики структуры, динамики, взаимосвязи явлений, их сравнения.

Статистические графики – это условные изображения числовых величин и их соотношений посредством линий, геометрических фигур, рисунков или географических карт-схем. Графическая форма облегчает рассмотрение статистических данных, делает их наглядными, выразительными, обозримыми. Однако графики имеют определенные ограничения: прежде всего, график не может включить столько данных, сколько может войти в таблицу; кроме того, на графике показываются всегда округленные данные – не точные, а приблизительные. Таким образом, график используется только для изображения общей ситуации, а не деталей. Последний недостаток – трудоемкость построения графиков. Он может быть преодолен использованием персонального компьютера (например, «Мастером диаграмм» из пакета Microsoft Office Excel).

Статистические данные должны быть представлены так, чтобы ими можно было пользоваться. Существует 3 основных формы представления статистических данных:

1) текстовая – включение данных в текст;

2) табличная – представление данных в таблицах;

3) графическая – выражение данных в виде графиков.

Текстовая форма применяется при малом количестве цифровых данных.

Табличная форма применяется чаще всего, так как является более эффективной формой представления статистических данных. В отличие от математических таблиц, которые по начальным условиям позволяют получить тот или иной результат, статистические таблицы рассказывают языком цифр об изучаемых объектах.

Статистическая таблица – это система строк и столбцов, в которых в определенной последовательности и связи излагается статистическая информация о социально-экономических явлениях.

Таблица 2. Внешняя торговля РФ за 2000 – 2006 годы, млрд.долл.

Показатель 2000 2001 2002 2003 2004 2005 2006
Внешнеторговый оборот 149,9 155,6 168,3 280,6 368,9 468,4
Экспорт 101,9 107,3 135,9 183,2 243,6 304,5
Импорт 44,9 53,8 76,1 97,4 125,3 163,9
Сальдо торгового баланса 60,1 48,1 46,3 59,9 85,8 118,3 140,7
в том числе:
со странами дальнего зарубежья
экспорт 90,8 86,6 90,9 114,6 210,1 261,1
импорт 31,4 40,7 48,8 77,5 103,5 138,6
сальдо торгового баланса 59,3 45,9 42,1 53,6 75,5 106,6 122,5

Например, в табл. 2 представлена информация о внешней торговле России, выражать которую в текстовой форме было бы неэффективным.

Различают подлежащее и сказуемое статистической таблицы. В подлежащем указывается характеризуемый объект – либо единицы совокупности, либо группы единиц, либо совокупность в целом. В сказуемом дается характеристика подлежащего, обычно в числовой форме. Обязателен заголовок таблицы, в котором указывается к какой категории и к какому времени относятся данные таблицы.

По характеру подлежащего статистические таблицы подразделяются на простые , групповые и комбинационные . В подлежащем простой таблицы объект изучения не подразделяется на группы, а дается либо перечень всех единиц совокупности, либо указывается совокупность в целом (например, табл. 11). В подлежащем групповой таблицы объект изучения подразделяется на группы по одному признаку, а в сказуемом указываются число единиц в группах (абсолютное или в процентах) и сводные показатели по группам (например, табл. 4). В подлежащем комбинационной таблицы совокупность подразделяется на группы не по одному, а по нескольким признакам (например, табл. 2).

При построении таблиц необходимо руководствоваться следующими общими правилами .

1. Подлежащее таблицы располагается в левой (реже – верхней) части, а сказуемое – в правой (реже – нижней).

2. Заголовки столбцов содержат названия показателей и их единицы измерения.

3. Итоговая строка завершает таблицу и располагается в ее конце, но иногда бывает первой: в этом случае во второй строке делается запись «в том числе», и последующие строки содержат составляющие итоговой строки.

4. Цифровые данные записываются с одной и той же степенью точности в пределах каждого столбца, при этом разряды чисел располагаются под разрядами, а целая часть отделяется от дробной запятой.

5. В таблице не должно быть пустых клеток: если данные равны нулю, то ставится знак «–» (прочерк); если данные не известны, то делается запись «сведений нет» или ставится знак «…» (троеточие). Если значение показателя не равно нулю, но первая значащая цифра появляется после принятой степени точности, то делается запись 0,0 (если, скажем, была принята степень точности 0,1).

Иногда статистические таблицы дополняются графиками, когда ставится цель подчеркнуть какую-то особенность данных, провести их сравнение. Графическая форма является самой эффективной формой представления данных с точки зрения их восприятия. С помощью графиков достигается наглядность характеристики структуры, динамики, взаимосвязи явлений, их сравнения.

Статистические графики – это условные изображения числовых величин и их соотношений посредством линий, геометрических фигур, рисунков или географических карт-схем. Графическая форма облегчает рассмотрение статистических данных, делает их наглядными, выразительными, обозримыми. Однако графики имеют определенные ограничения: прежде всего, график не может включить столько данных, сколько может войти в таблицу; кроме того, на графике показываются всегда округленные данные – не точные, а приблизительные. Таким образом, график используется только для изображения общей ситуации, а не деталей. Последний недостаток – трудоемкость построения графиков. Он может быть преодолен использованием персонального компьютера (например, «Мастером диаграмм» из пакета Microsoft Office Excel ).

По способу построения графики делятся на диаграммы , картограммы и картодиаграммы .

Наиболее распространенным способом графического изображения данных являются диаграммы, которые бывают следующих видов: линейные, радиальные, точечные, плоскостные, объемные, фигурные. Вид диаграмм зависит от вида представляемых данных и задачи построения. В любом случае график обязательно сопровождается заголовком – над или под полем графика. В заголовке указывается, какой показатель изображен, по какой территории и за какое время.

Линейные графики используются для представления количественных переменных: характеристики вариации их значений, динамики, взаимосвязи между переменными. Вариация данных анализируется с помощью полигона распределения , кумуляты (кривой «меньше, чем») и огивы (кривой «больше, чем»). Полигон распределения рассматривается в теме 4 (напр., рис. 5.). Для построения кумуляты значения варьирующего признака откладываются по оси абсцисс, а на оси ординат помещаются накопленные итоги частот или частостей (от f 1 до ∑f ). Для построения огивы на оси ординат помещаются накопленные итоги частот в обратном порядке (от ∑f до f 1 ). Кумуляту и огиву по данным табл. 4. изобразим на рис. 1.

Рис. 1. Кумулята и огива распределения товаров по величине таможенной стоимости

Применение линейных графиков в анализе динамики рассматривается в теме 5 (напр., рис. 13), а использование их для анализа связей – в теме 6 (напр., рис.21). В теме 6 также рассмотрено использование точечных диаграмм (напр., рис. 20).

Линейные графики подразделяются на одномерные , используемые для представления данных по одной переменной, и двумерные – по двум переменным. Примером одномерного линейного графика является полигон распределения, а двумерного – линия регрессии (напр., рис. 21).

Иногда при больших изменениях показателя прибегают к логарифмической шкале. Например, если значения показателя изменяются от 1 до 1000, то это может вызвать затруднения при построении графика. В таких случаях переходят к логарифмам значений показателя, которые не будут столь сильно различаться: lg 1 = 0, lg 1000 = 3.

Среди плоскостных диаграмм по частоте использования выделяются столбиковые диаграммы (гистограммы), на которых показатель представляется в виде столбика, высота которого соответствует значению показателя (напр., рис. 4).

Пропорциональность площади той или иной геометрической фигуры величине показателя лежит в основе других видов плоскостных диаграмм: треугольных , квадратных , прямоугольных . Можно использовать и сравнение площадей круга – в этом случае задается радиус окружности.

Ленточная диаграмма представляет показатели в виде горизонтально вытянутых прямоугольников, а в остальном не отличается от столбиковой диаграммы.

Из плоскостных диаграмм часто используется секторная диаграмма , которая применяется для иллюстрации структуры изучаемой совокупности. Вся совокупность принимается за 100%, ей соответствует общая площадь круга, площади секторов соответствуют частям совокупности. Построим секторную диаграмму структуры внешней торговли РФ в 2006 году по данным табл. 2 (см. рис. 2). При использовании компьютерных программ секторные диаграммы строятся в объемном виде, то есть не в двух, а в трех плоскостях (см. рис. 3).

Рис. 2. Простая секторная диаграмма Рис. 3. Объемная секторная диаграмма

Фигурные (картинные) диаграммы усиливают наглядность изображения, так как включают рисунок изображаемого показателя, размер которого соответствует размеру показателя.

При построении графика одинаково важно все – правильный выбор графического изображения, пропорций, соблюдение правил оформления графиков. Подробнее эти вопросы освещаются в и .

Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений. Они показывают размещение изучаемого явления, его интенсивность на определенной территории – в республике, области, экономическом или административном округе и т.д.. Построение картограмм и картодиаграмм рассматривается в специальной литературе, например .