Электростатическое поле удобно изображать графически с помощью силовых линий и эквипотенциальных поверхностей.

Силовая линия – это линия, в каждой точке которой касательная совпадает с направлением вектора напряженности (см. рис.). Силовым линиям придают направление стрелкой. Свойства силовых линий:

1 ) Силовые линии непрерывны. Они имеют начало и конец – начинаются на положительных и заканчиваются на отрицательных зарядах.

2 ) Силовые линии не могут пересекаться друг с другом, т.к. напряженность – это сила, а две силы в данной точке от одного заряда не могут быть.

3 ) Силовые линии проводят так, чтобы их количество через единичную перпендикулярную площадку было пропорционально величине напряженности.

4 ) Силовые линии «выходят» и «входят» всегда перпендикулярно поверхности тела.

5 ) Силовую линию не следует путать с траекторией движущегося заряда. Касательная к траектории совпадает с направлением скорости, а касательная к силовой линии – с силой и, следовательно, с ускорением.

Эквипотенциальной поверхностью называют поверхность, в каждой точке которой потенциал имеет одинаковое значение j = const.

Силовые линии всегда перпендикулярны эквипотенциальным поверхностям. Докажем это. Пусть вдоль эквипотенциальной поверхности перемещается точечный заряд q . Элементарная работа, совершаемая при этом равна dA=qE×cosa×dl = q×dj = 0, т.к. dj = 0. Поскольку q ,E и ×dl ¹ 0, следовательно

cosa = 0 и a = 90 о.

На рисунке изображено электростатическое поле двух одинаковых точечных зарядов. Линии со стрелками – это силовые линии, замкнутые кривые – эквипотенциальные поверхности. В центре осевой линии, соединяющей заряды напряженность равна 0. На очень большом расстоянии от зарядов эквипотенциальные поверхности становятся сферическими. .
На этом рисунке показано однородноеполе – это поле, в каждой точке которого вектор напряженности остается постоянным по величине и направлению Эквипотенциальные поверхности – это плоскости, перпендикулярные силовым линиям. Вектор напряженности всегда направлен в сторону убывания потенциала.

Принцип суперпозиции.

На основе опытных данных был получен принципа суперпозиции (наложения) полей: «Если электрическое поле создается несколькими зарядами, то напряженность и потенциал результирующего поля складываются независимо, т.е. не влияя друг на друга». При дискретном распределении зарядов напряженность результирующего поля равна векторной сумме, а потенциал алгебраической (с учетом знака) сумме полей, создаваемых каждым зарядом в отдельности. При непрерывном распределении заряда в теле векторные суммы заменяется на интегралы, где dE и dj – напряженность и потенциал поля элементарного (точечного) заряда, выделенного в теле. Математически принцип суперпозиции можно записать так.

В качестве примера получения выражения для напряженности поля с помощью принципа суперпозиции найдем напряженность поля тонкого стержня конечной длины , равномерно заряженного с линейной плотностью заряда t

Выберем бесконечно малый элемент dl стержня с зарядом dq . Поскольку напряженности от различных элементов направлены по-разному, введем оси проекций х и у . Итегрируя, найдем результирующие напряженности Е х и Е у .

dE - напряженность от элемента стержня dl с зарядом dq = t×dl , dE х и dE y – проекции dE на направления х и у .
Чтобы проинтегрировать, сведем к одной переменной a
длина дуги АС при малых углах, она же из треугольника (А, С, dl )
модуль напряженности

Этот пример показывает, что вычисление напряженности полей представляет собой достаточно сложную задачу даже в нашем случае, когда мы не учитывали поле вблизи концов стержня.

Основной задачей электростатики является вычисление полей заряженных тел. Найти напряженность поля заряженного тела можно с помощью:

1) принципа суперпозиции - это сложная математическая задача, решаемая только в некоторых простых случаях или

2) теоремы Гаусса, которая упрощает расчеты, но только в случае бесконечной плоскости, бесконечной нити (цилиндра) или сфер и шаров (см. ниже).

Теорема Гаусса.

Сначала введем понятие «поток вектора » - это скалярная величина

(Н×м 2 /Кл = В×м) элементарный поток вектора напряженности Е , n – нормаль к площадке, dS – элементарная площадка – это такая малая площадка, в пределах которой Е = const; Е n – проекция вектора Е на направление нормали n
поток вектора напряженности через конечную площадку S
-²- -²- -²-через замкнутую поверхность S

Зная вектор напряженности электростатического поля в каждой его точке, можно представить это поле наглядно с помощью силовых линий напряженности (линий вектора E →). Силовые линии напряженности проводят так, чтобы касательная к ним в каждой точке совпадала с направлением вектора напряженности E → (рис. 4, а).

Число линий, пронизывающих единичную площадку dS, перпендикулярную к ним, проводят пропорционально модулю вектора E → (рис. 4, б). Силовым линиям приписывают направление, совпадающее с направлением вектора E → . Полученная картина распределения линий напряженности позволяет судить о конфигурации данного электрического поля в разных его точках. Силовые линии начинаются на положительных зарядах и оканчиваются на отрицательных зарядах. На рис. 5 приведены линии напряженности точечных зарядов (рис. 5, а, б); системы двух разноименных зарядов (рис. 5, а б Рис. 4 Рис. 5 в) − пример неоднородного электростатического поля и двух параллельных разноименно заряженных плоскостей (рис. 5, г) − пример однородного электрического поля.

Теорема Остроградского–Гаусса и её применение.

Введем новую физическую величину, характеризующую электрическое поле – поток вектора напряженности электрического поля. Пусть в пространстве, где создано электрическое поле, расположена некоторая достаточно малая площадка , в пределах которой напряженность , т. е. электростатическое поле однородно. Произведение модуля вектора на площадь и на косинус угла между вектором и нормалью к площадке называется элементарным потоком вектора напряженности через площадку (рис. 10.7):

где - проекция поля на направление нормали .

Рассмотрим теперь некоторую произвольную замкнутую поверхность . В случае замкнутой поверхности всегда выбирается внешняя нормаль к поверхности, т. е. нормаль, направленная наружу области.

Если разбить эту поверхность на малые площадки, определить элементарные потоки поля через эти площадки, а затем их просуммировать, то в результате мы получим поток вектора напряженности через замкнутую поверхность (рис. 10.8):

. (10.9)

Рис. 10.7
Рис. 10.8

Теорема Остроградского-Гаусса утверждает: поток вектора напряженности электростатического поля через произвольную замкнутую поверхность прямо пропорционален алгебраической сумме свободных зарядов, расположенных внутри этой поверхности:

, (10.10)

где - алгебраическая сумма свободных зарядов, находящихся внутри поверхности , - объемная плотность свободных зарядов, занимающих объем .

Из теоремы Остроградского-Гаусса (10.10), (10.12) следует, что поток не зависит от формы замкнутой поверхности (сфера, цилиндр, куб и т.п.), а определяется только суммарным зарядом внутри этой поверхности.

Используя теорему Остроградского-Гаусса, можно в ряде случаев легко вычислить напряженность электрического поля заряженного тела, если заданное распределение зарядов обладает какой-либо симметрией.

Пример использования теоремы Остроградского-Гаусса . Рассмотрим задачу о вычислении поля тонкостенного пологооднородно заряженного длинного цилиндра радиуса (тонкой бесконечной заряженной нити). Эта задача имеет осевую симметрию. Из соображений симметрии электрическое поле должно быть направлено по радиусу. Выберем замкнутую поверхность в виде цилиндра произвольного радиуса и длины , закрытого с обоих торцов (рис. 10.9)

Графическое изображение поля

Электрическое поле изображают с помощью электрических линий и следов эквипотенциальных поверхностей.

Поверхность, проведённая в пространстве так, что все её точки имеют одинаковый потенциал, называется эквипотенциальной .

Рисунок 1.7 – Неоднородное симметричное поле

Рисунок 1.8 – Неоднородное несимметричное поле

Рисунок 1.9 – Однородное несимметричное поле

Если вектор напряженности в каждой точке поля одинаков по величине и направлению то поле считается однородным .

Силовые линии магнитного поля (линии напряженности) проводятся так что:

2. Густота силовых линий отражает величину напряженности;

3. Проводятся так, чтобы вектор напряженности в каждой точке линии был направлен по касательной к ней.

Силовые линии это мысленные траектории движения пробного положительного заряда, внесенного в данную точку поля.

Следы эквипотенциальных поверхностей проводятся так, чтобы они пересекались с силовыми линиями под прямым углом, между каждыми двумя соседними эквипотенциальными поверхностями разность потенциалов одинакова.

1.3 Электропроводность веществ: проводники, диэлектрики, полупроводники

Почти в любом объёме любого вещества содержится некоторое количество свободных зарядов, их число в единице объёма называется концентрацией .

При отсутствии внешнего электрического поля свободные заряды совершают хаотическое тепловое движение, попадая в электрическое поле они приобретают скорость упорядоченного, направленного движения.

Упорядоченное направленное движение зарядов под действием сил внешнего электрического поля называется электрическим током .

Способность веществ, проводить электрический ток называется электропроводностью .

В зависимости от электропроводности все вещества делят на три группы:

1) Проводники – вещества, обладающие хорошей электропроводимостью, следовательно, хорошо проводящие электрический ток. Делятся на две подгруппы:

а) Первого рода – металлы и их сплавы. В них большое количество свободных электронов, которые под действием сил внешнего электрического поля приобретают скорость направленного движения, следовательно ток в проводника первого рода – это упорядоченное направленное движение электронов, а значит не сопровождается переносом вещества и химическими реакциями.

Проводник первого рода помещён в электростатическое поле, происходит явление электромагнитной индукции –мгновенное перемещение свободных зарядов к одной поверхности проводника. На этой поверхности возникает избыточный отрицательный заряд, недостаток электронов у противоположной поверхности создаёт избыточный положительный заряд, следовательно заряженные поверхности проводника создают собственное поле, направленное против внешнего и всегда его уравновешивающего. На этом основано экранирование – защита части пространства от внешних электрических полей.

б) Второго рода – это электролиты – водные растворы солей, кислот, щелочи, в них под действием растворителя (воды) происходит расход молекул на положительно и отрицательно заряженные ионы (электролитическая диссонация). Во внешнем электрическом поле ионы приобретают скорость направленного движения, значит ток в проводниках второго рода – это направленное движение ионов, а значит, сопровождается переносом вещества и химическими реакциями.

2) Диэлектрики – вещества, не имеющие свободных зарядов, а потому не способные проводить постоянный электрический ток. Делятся на две группы: неполярные и полярные диэлектрики .

У неполярных диэлектриков электронные орбиты расположены так, что при отсутствии внешнего поля электрические центры «+» и « - » в одной точке атом не создаёт диполя. Во внешнем поле орбиты смещаются так, что электрические центры «+» и « - » в разных точках, образовалась диполь – два одинаковых по величине, но противоположных по знаку связанных заряда. Произошла поляризация диэлектрика – деформационная .

У полярных диэлектриков диполи существуют от природы без всякого внешнего поля, но ариентированны хаотически. Во внешнем поле диполи поворачиваются и выстраиваются вдоль линий внешнего поля, происходит поляризация, которая называется ориентационной .

Внутри любого поляризованного диэлектрика поле существует, но по сравнению со внешним оно ослаблено в E раз.

Постоянный электрический ток диэлектрики не проводят, а переменный ток проводят – направленное колебательное движение диполей под действием сил внешнего переменного электрического поля.

О том, что колебательные движения диполей можно назвать электрическим током говорит опыт Эйхенвольда.

При протягивании диэлектрика в месте AB происходит … временный поворот на 180° и это сопровождается возникновением магнитного поля , которое всегда сопутствует электрическому току.

Существуют:

Ток проводимости – упорядоченное направленное движение свободных зарядов под действием сил внешнего электрического поля (постоянный и переменный).

Ток смещения связанных зарядов (в диэлектрике) – колебательное движение диполей под действием сил внешнего переменного электрического поля

3) Полупроводники – вещества, занимающие промежуточное положение по электропроводимости между проводниками и диэлектриками. Ток в них это направленное движение свободных электронов и дырок, зависит от некоторых факторов (температура, освещённость, наличие примесей).

1. Линии вектора . Для графического изображения электростатических полей используют линии вектора - они проводятся так, чтобы в каждой точке линии вектор был направлен по касательной к ней (рис.3.6). Линии нигде не пересекаются, они начинаются на положительных зарядах, заканчиваются на отрицательных или уходят в бесконечность. Примеры графического изображения полей точечных зарядов приведены на рис.3.6,б,в,г. Видно, что

для одного точечного заряда линии представляют собой прямые линии, выходящие или входящие в заряд. В случае однородного электрического поля (рис.3.6,д), в каждой точке которого вектор одинаков и по модулю, и по направлению, линии представляют собой прямые линии, параллельные друг другу и отстоящие друг от друга на одинаковом расстоянии.

Графическое изображение полей с помощью линий позволяет наглядно видеть направление кулоновской силы, действующей на точечный заряд, помещенный в данную точку поля, что является удобным для качественного анализа поведения заряда.

Обычно линии проводят так, чтобы их густота (количество линий, пронизывающих перпендикулярную к ним плоскую поверхность фиксированной площади) в каждой точке поля определяла числовое значение вектора . Поэтому по степени близости линий друг другу можно судить об изменении модуля и соответственно об изменении модуля кулоновской силы, действующей на заряженную частицу в электрическом поле.

2. Эквипотенциальные поверхности . Эквипотенциальная поверхность – это поверхность равного потенциала, в каждой точке поверхности потенциал φ остается постоянным. Поэтому элементарная работа по перемещению заряда q по такой поверхности будет равна нулю: . Из этого следует, что вектор в каждой точке поверхности будет перпендикулярен к ней, т.е. будет направлен по вектору нормали (рис.3.6,г). Действительно, если бы это было не так, то тогда существовала бы составляющая вектора (), направленная по касательной к поверхности, и, следовательно, потенциал в разных точках поверхности был бы разным ( ¹const), что противоречит определению эквипотенциальной поверхности.



На рис.3.6 приведено графическое изображение электрических полей с помощью эквипотенциальных поверхностей (пунктирные линии) для точечного заряда (рис.3.6,б,в, это сферы, в центре которых находится точечный заряд), для поля, созданного одновременно отрицательным и положительным зарядами (рис.3.6,г), для однородного электрического поля (рис.3.6,д, это плоскости, перпендикулярные к линиям ).

Условились проводить эквипотенциальные поверхности так, чтобы разность потенциалов между соседними поверхностями была одинаковой. Это позволяет наглядно видеть изменение потенциальной энергии заряда при его движении в электрическом поле.

Тот факт, что вектор перпендикулярен к эквипотенциальной поверхности в каждой ее точке, позволяет достаточно просто переходить от графического изображения электрического поля с помощью линий к эквипотенциальным поверхностям и наоборот. Так, проведя на рис.3.6,б,в,г,д пунктирные линии, перпендикулярные к линиям , можно получить графическое изображение поля с помощью эквипотенциальных поверхностей в плоскости рисунка.

Силовые линии напряженности электрического поля - линии, касательные к которым в каждой точке совпадают с вектором Е По их направлению можно судить, где расположены положительные (+) и отрицательные (–) заряды, создающие электрическое поле. Густота линий (количество линий, пронизывающих единичную площадку поверхности, перпендикулярную к ним) численно равно модулю вектора Е.




Силовые линии напряженности электрического поля Силовые линии напряженности электрического поля не замкнуты, имеют начало и конец. Можно говорить, что электрическое поле имеет «источники» и «стоки» силовых линий. Силовые линии начинаются на положительных (+) зарядах (Рис. а), заканчиваются на отрицательных (–) зарядах (Рис. б). Силовые линии не пересекаются.






Поток вектора напряженности электрического поля Произвольная площадка dS. Поток вектора напряженности электрического поля через площадку dS: - псевдовектор, модуль которого равен dS, а направление совпадает с направление вектора n к площадке dS. Е = constdФ Е = N - числу линий вектора напряженности электрического поля Е, пронизывающих площадку dS.




Поток вектора напряженности электрического поля Если поверхность не плоская, а поле неоднородное, то выделяют малый элемент dS, который считать плоским, а поле – однородным. Поток вектора напряженности электрического поля: Знак потока совпадает со знаком заряда.


Закон (теорема) Гаусса в интегральной форме. Телесный угол – часть пространства, ограниченная конической поверхностью. Мера телесного угла – отношение площади S сферы, вырезаемой на поверхности сферы конической поверхностью к квадрату радиуса R сферы. 1 стерадиан – телесный угол с вершиной в центре сферы, вырезающий на поверхности сферы площадь, равную площади квадрата со стороной, по длине равной радиусу этой сферы.


Теорема Гаусса в интегральной форме Электрическое поле создается точечным зарядом +q в вакууме. Поток d Ф Е, создаваемого этим зарядом, через бесконечно малую площадку dS, радиус вектор которой r. dS n – проекция площадки dS на плоскость перпендикулярную в ектору r. n – единичный вектор положительной нормали к площадке dS.










Если произвольная поверхность окружает k– зарядов, то согласно принципу суперпозиции: Теорема Гаусса: для электрического поля в вакууме поток вектора напряженности электрического поля сквозь произвольную замкнутую поверхность равен алгебраической сумме заключенных внутри этой поверхности зарядов, деленных на ε 0.






Методика применения теоремы Гаусса для расчета электрических полей – второй способ определения напряженности электрического поля Е Теорема Гаусса применяется для нахождения полей, созданных телами, обладающими геометрической симметрией. Тогда векторное уравнение сводится к скалярному.


Методика применения теоремы Гаусса для расчета электрических полей – второй способ определения напряженности электрического поля Е 1) Находится поток Ф Е вектора Е по определению потока. 2) Находится поток Ф Е по теореме Гаусса. 3) Из условия равенства потоков находится вектор Е.


Примеры применения теоремы Гаусса 1. Поле бесконечной однородно заряженной нити (цилиндра) с линейной плотностью τ (τ = dq/dl, Кл/м). Поле симметричное, направлено перпендикулярно нити и из соображений симметрии на одинаковом расстоянии от оси симметрии цилиндра (нити) имеет одинаковое значение.






2.Поле равномерно заряженной сферы радиуса R. Поле симметричное, линии напряженности Е электрического поля направлены в радиальном направлении, и на одинаковом расстоянии от точки О поле имеет одно и то же значение. Вектор единичной нормали n к сфере радиуса r совпадает с вектором напряженности Е. Охватим заряженную (+q) сферу вспомогательной сферической поверхностью радиуса r.




2.Поле равномерно заряженной сферы При поле сферы находится как поле точечного заряда. При r


(σ = dq/dS, Кл/м 2). Поле симметричное, вектор Е перпендикулярен плоскости с поверхностной плотностью заряда +σ и на одинаковом расстоянии от плоскости имеет одинаковое значение. 3. Поле равномерно заряженной бесконечной плоскости с поверхностной плотностью заряда + σ В качестве замкнутой поверхности возьмем цилиндр, основания которого параллельны плоскости, и который делится заряженной плоскостью на две равные половины.


Теорема Ирншоу Система неподвижных электрических зарядов не может находиться в устойчивом равновесии. Заряд + q будет находиться в равновесии, если при его перемещении на расстояние dr со стороны всех остальных зарядов системы, расположенных вне поверхности S, будет действовать сила F, возвращающая его в исходное положение. Имеется система зарядов q 1, q 2, … q n. Один из зарядов q системы охватим замкнутой поверхностью S. n – единичный вектор нормали к поверхности S.


Теорема Ирншоу Сила F обусловлена полем Е, созданным всеми остальными зарядами. Поле всех внешних зарядов Е должно быть направлено противоположно направлению вектора перемещения dr, то есть от поверхности S к центру. Согласно теореме Гаусса, если заряды не охватываются замкнутой поверхностью, то Ф Е = 0. Противоречие доказывает теорему Ирншоу.




0 вытекает больше, чем втекает. Ф 0 вытекает больше, чем втекает. Ф 33 Закон Гаусса в дифференциальной форме Дивергенция вектора – число силовых линий, приходящихся на единицу объема, или плотность потока силовых линий. Пример: из объема вытекает и втекает вода. Ф > 0 вытекает больше, чем втекает. Ф 0 вытекает больше, чем втекает. Ф 0 вытекает больше, чем втекает. Ф 0 вытекает больше, чем втекает. Ф 0 вытекает больше, чем втекает. Ф title="Закон Гаусса в дифференциальной форме Дивергенция вектора – число силовых линий, приходящихся на единицу объема, или плотность потока силовых линий. Пример: из объема вытекает и втекает вода. Ф > 0 вытекает больше, чем втекает. Ф