/ этап - постановка задачи исследования, решение которой должно быть получено посредством математического моделирова­ния. На этом этапе определяют объект изучения. Однако этого не­достаточно, ибо любой объект изучения, любой процесс неисчер­паемы в своих свойствах и отношениях (связях). Поэтому следует в соответствии с задачами исследования и конкретными условия­ми выделить из них наиболее существенные, исследование кото­рых должно привести к достижению поставленных целей.

II этап - разработка математической модели. Специалисты в области разработки математических моделей утверждают, что со­ставление математической модели - творческий процесс, кото­рый нельзя уложить в рамки конкретных рекомендаций. По их мнению, интуиция, знание дела и другие интеллектуальные каче­ства, которые, в сущности, не поддаются регулированию, играют важнейшую роль в процессе построения математической модели, и поэтому невозможно написать инструкцию или учебник по по­строению математических моделей. Более того, они считают, что если бы такой учебник был написан, то его появление скорее все­го приведет к ограничению творческих возможностей и не будет способствовать их развитию. Тем не менее анализ накопленного опыта позволил выявить определенные принципы построения ма­тематических моделей поршневых компрессоров*, которые изла­гаются в главе 9 настоящего пособия.

Определенный интерес представляют работы по автоматизации некоторых операций, связанных с разработкой математических моделей. Отметим, что успешные разработки автоматизированно­го составления математических моделей поршневых компрессо­ров возможны только после разработки структуры и основных принципов построения системы математических моделей из мо­дулей с последующим составлением и накоплением модульных математических моделей на всех уровнях иерархии.

III этап - выбор или разработка числового метода, реализующе­го разработанную математическую модель.

IVэтап - проверка математической модели на адекватность.

Уэтап - исследование на математической модели. Все вычисли­тельные эксперименты по заранее намеченному плану проводятся на разработанной математической модели.

VI этап -рассмотрение вопроса о переносе полученных на мате­матической модели данных на реальный объект изучения и об ис­пользовании полученной информации в практической деятельно­сти.

Пример последовательности математического моделирования. Процессы математического моделирования компрессора сложны и разнообразны и вряд ли могут быть представлены какой-то кон­кретной универсальной последовательностью действий, справед­ливой для всех случаев. Поэтому рассмотрим одну из возможных последовательностей работ по математическому моделированию рабочих процессов, протекающих в поршневом компрессоре, ко­торая используется в МГТУ им. Н. Э. Баумана (рис. 8.2).

Представленная на рис. 8.2 последовательность работ при мате­матическом моделировании, предусматривающая 12 стадий, явля­ется одновременно и типичной, и условной. Типичной она является, поскольку в ней представлены основные действия, выполня­емые при математическом моделировании рабочих процессов в поршневых компрессорах. Условность ее заключается в том, что в ряде случаев эта последовательность может быть сокращена или дополнена в зависимости от постановки задачи исследования и наличия информации на начальной стадии исследования.

Следует учитывать, что на практике часто вопросы, входящие в состав различных стадий, решаются одновременно и стадии быва­ет трудно разделить. Кроме того, при разработке и реализации ма­тематической модели, как правило, приходится возвращаться на­зад к уже пройденным стадиям и снова решать вопросы, относя­щиеся к ним. Причем такие циклы могут повторяться многократ­но. Например, в случаях, когда на стадии «Проверка адекватности» выявляется неадекватность математической модели поставленным при исследовании задачам, приходится возвра­щаться к стадии «Схематизация процесса» и по-новому произво­дить упрощение действительного процесса или возвращаться к стадии «Подбор и получение экспериментальных данных» и уточ­нять экспериментальную информацию.


Стадии 1, 2 и 3 соответствуют I этапу математического модели­рования, стадии 4, 5, 6 и 7 - II этапу, стадия 8 - III этапу, стадия 9 - IV этапу, стадия 10 - V этапу и стадии 11 и 12 - VI этапу.

Все стадии математического моделирования (см. рис. 8.2) име­ют большое значение для успешного моделирования. Однако при разработке математической модели наибольшее значение имеют мысленное представление физической сущности процесса, его схематизация, содержательное описание схематизированного про­цесса и возможность подбора необходимых экспериментальных данных из накопленного опыта.

Содержание основных стадий моделирования. Мысленное пред­ставление (стадия 2) физической сущности процесса включает в себя выделение контрольного объема (подробнее см. в главе 9), предусматривает четкое знание количественных и качественных характеристик процесса, ясное понимание составляющих процесс явлений, их взаимосвязей и взаимодействий, правильное опреде­ление главных, наиболее существенных факторов, оказывающих влияние на изучаемый процесс.

Цель исследования должна быть конкретной и четко сформу­лирована в письменном виде (стадия 3). Последнее позволяет из­бежать недоразумений и связанных с ними трудностей при обра­щении к цели исследования на любой последующей стадии моде­лирования.

При схематизации процесса (стадия 4) вводятся и обосновыва­ются допустимые с точки зрения исследователя упрощения, кото­рые позволяют описать основные явления формально, т. е. мате­матически.

Содержательное описание математической модели (Иногда содержательное описание математической модели называют концеп­туальной моделью) (стадия 5) представляет собой текстовое описание основных подходов, фи­зических принципов, допущений и предположений, которые образуют основу для создания модели. Предположения и обоснова­ния возможных аппроксимаций и усреднений данных, вводимых в математическую модель, также входят в содержательное описа­ние. На этой стадии определяют вид и форму представления на­чальных и граничных условий, перечень необходимых экспери­ментальных данных и вид их представления в математической мо­дели. На этой стадии экспериментальные данные могут быть представлены в виде таблиц или графиков. Читатель уже встречал­ся с содержательным описанием мысленной модели идеального компрессора в § 2.1.

Составление содержательного описания математической моде­ли очень полезно при исследованиях сложных объектов и процес­сов, так как позволяет более полно осмыслить математическую модель, на понятном языке согласовать модель с заказчиком и провести консультации со специалистами.

На стадии 6 необходимо закончить запись всех математических соотношений, представить все логические отношения в виде не­равенств, а также облечь в математическую форму остальные све­дения о процессе, включая экспериментальные данные, при этом такие данные аппроксимируются соответствующими функциями или полиномами, удобными для вычисления на ЭВМ.

Взаимодействие уравнений и экспериментальных данных. На од­ной из стадий моделирования (чаще всего это бывает на стадии не­посредственного написания математической модели) целесообраз­но рассмотреть схему взаимодействия отдельных частей математи­ческой модели, взаимосвязи между уравнениями, а также между уравнениями и экспериментальными данными (рис. 8.3 и 8.4).


1-й этап. Постановка цели моделирования. Модель должна замещать реальный объект с такой степенью абстракции, которая более всего выгодна для достижения заданной цели.

2-й этап. Создание концептуальной модели , т. е. содержательного описания моделируемого объекта. Концептуальная модель включает в себя следующие сведения:

− состав и структура объекта;

− причинно-следственные связи между параметрами объекта;

− количество параметров, достаточное для адекватного описания объекта;

− класс исследуемого объекта и создаваемой модели;

− условия функционирования объекта.

На этом этапе разработчику математической модели приходится решать три проблемы.

Проблема 1. Поиск компромисса между простотой модели и ее адекватностью реальному объекту.

Любой реальный объект в процессе функционирования подвергается влиянию множества факторов (внешних и внутренних). Чем большее количество факторов учитывается в модели, тем более адекватной становится модель. Однако при этом она может стать настолько сложной и громоздкой, что возникнут следующие проблемы:

− отсутствие эффективных методов исследования такой модели;

− рост затрат на моделирование превысит рост эффекта от внедрения модели.

Нельзя входить и в другую крайность – чрезмерно упрощать модель за счет пренебрежения влиянием существенных факторов. Это приведет к неадекватности модели и, соответственно, к искажению результатов моделирования. Поэтому необходим жесткий отбор влияющих факторов, их четкое разграничение наосновные (О) и второстепенные (В). Основные факторы должны быть учтены в модели, второстепенные отброшены (рис. 1.9). При этом не наносится существенного ущерба качеству модели.

Проблема 2. Определение границ применимости создаваемой модели.

Результаты, полученные с помощью конкретной модели, считаются справедливыми только в рамках оговоренных условий (в пределах области адекватности).

ПРИМЕР 1.13. Сформировать математическую модель, описывающую процесс падения тела на Землю.

В основе этого явления лежит закон всемирного тяготения, сформулированный Ньютоном: любые два тела притягиваются с силой, прямо пропорциональной произведению их масс, обратно пропорциональной квадрату расстояния между ними.

Если в качестве этих двух тел рассматривать металлический шарик и Землю, то на языке математики падение шарика можно описать соотношением:

, (1.6)

где – постоянная;

m и М З – масса шарика и Земли,

R – расстояние между центрами притягивающихся тел.

Согласно второму закону Ньютона, если на тело действует сила F, то его движение описывается соотношением:

(1.7)

Так как рассматривается процесс падения тела, то следует a заменить на ускорение свободного падения . Тогда модель падения шара примет вид:

или
– (1.8)

это модель в общем виде. Теперь необходимо ее конкретизировать для данных условий проведения эксперимента. Опыт с шаром проводится в лаборатории (т. е. вблизи поверхности Земли). Следовательно, можно принять, что расстояние между центрами Земли и шарика равно радиусу Земли: R= R З. Тогда математическая модель примет вид:

(1.9)

Эта модель позволяет дать исчерпывающее описание процесса падения шара в любой момент времени t: определить высоту h, на которой находится шар, а также его скорость v:

(1.10)

(1.11)

Границы применимости этой модели:

– тело падает с небольшой высоты, пренебрежимо малой по сравнению с радиусом Земли;

– тело имеет компактную форму и обладает достаточной массой;

– можно пренебречь фактором сопротивления воздуха.

При нарушении хотя бы одного из этих условий данная модель не будет адекватной. Например, эту модель нельзя применить для описания следующих процессов: приземления парашютиста, падения листьев с дерева, падения осколка метеорита на Землю и т. д.

В каждом из перечисленных случаев в различной степени сказывается влияние таких ранее не учтенных факторов, как сила сопротивления воздуха, притяжение Луны, Солнца, убывание плотности атмосферы с высотой, вращение Земли, ветер, по-разному дующий на разных высотах, фактическое отличие формы Земли от шара (она является телом более сложной геометрической формы).

Проблема 3. Определение уровня детализации исследуемого объекта.

Любая физическая система представляет собой совокупность элементов. Каждый элемент в свою очередь можно расчленить на подэлементы. Процесс расчленения теоретически может быть бесконечным. Задача исследователя – выбрать оптимальный уровень детализации моделируемого объекта. Уровень детализации определяется целью моделирования и степенью знаний о свойствах элементов объекта.

Детализацию целесообразно производить до такого уровня, на котором для каждого элемента можно определить зависимость параметров выходных сигналов от параметров входных сигналов. Стремление повысить уровень детализации приводит к чрезмерной громоздкости модели и резкому увеличению ее размерности.

3-й этап. Формирование математической модели, т. е. запись модели в формализованном виде:

– все соотношения записывают в аналитической форме;

– логические условия выражают в виде систем неравенств;

– случайные процессы заменяют их типовыми моделями.

4-й этап. Исследование математической модели. Инструментами исследования являются численные и аналитические методы.

5-й этап. Анализ результатов моделирования с последующим выводом об адекватности модели либо о необходимости ее доработки, либо о ее непригодности.

Лекция 1.

МЕТОДОЛОГИЧЕСКИЕ ОСНОВЫ МОДЕЛИРОВАНИЯ

    Современное состояние проблемы моделирования систем

Понятия модели и моделирования

Моделирование можно рассматривать как замещение исследуемогообъекта (оригинала) его условным образом, описанием или другим объектом,именуемым моделью и обеспечивающим близкое к оригиналу поведениев рамках некоторых допущений и приемлемых погрешностей. Моделированиеобычно выполняется с целью познания свойств оригинала путем исследованияего модели, а не самого объекта. Разумеется, моделирование оправдано в томслучае когда оно проще создания самого оригинала или когда последний покаким-то причинам лучше вообще не создавать.

Под моделью понимается физический или абстрактный объект, свойствакоторого в определенном смысле сходны со свойствами исследуемого объекта.При этом требования к модели определяются решаемой задачей и имеющимисясредствами. Существует ряд общих требований к моделям:

2) полнота – предоставление получателю всей необходимой информации

об объекте;

3) гибкость – возможность воспроизведения различных ситуаций во всем

диапазоне изменения условий и параметров;

4) трудоемкость разработки должна быть приемлемой для имеющегося

времени и программных средств.

Моделирование – это процесс построения модели объекта и исследованияего свойств путем исследования модели.

Таким образом, моделирование предполагает 2 основных этапа:

1) разработка модели;

2) исследование модели и получение выводов.

При этом на каждом из этапов решаются разные задачи и используются

отличающиеся по сути методы и средства.

На практике применяют различные методы моделирования. В зависимостиот способа реализации, все модели можно разделить на два больших класса:физические и математические.

Математическое моделирование принято рассматривать как средствоисследования процессов или явлений с помощью их математических моделей.

Под физическим моделированием понимается исследование объектов иявлений на физических моделях, когда изучаемый процесс воспроизводятс сохранением его физической природы или используют другое физическоеявление, аналогичное изучаемому. При этом физические модели предполагают, как правило, реальное воплощение тех физических свойстворигинала, которые являются существенными в конкретной ситуации.Например, при проектировании нового самолета создается его макет,обладающий теми же аэродинамическими свойствами; при планированиизастройки архитекторы изготавливают макет, отражающий пространственноерасположение ее элементов. В связи с этим физическое моделированиеназывают также макетированием .

Полунатурное моделирование представляет собой исследованиеуправляемых систем на моделирующих комплексах с включением в составмодели реальной аппаратуры. Наряду с реальной аппаратурой в замкнутуюмодель входят имитаторы воздействий и помех, математические моделивнешней среды и процессов, для которых неизвестно достаточно точноематематическое описание. Включение реальной аппаратуры или реальныхсистем в контур моделирования сложных процессов позволяет уменьшитьаприорную неопределенность и исследовать процессы, для которых нет точногоматематического описания. С помощью полунатурного моделированияисследования выполняются с учетом малых постоянных времени инелинейностей, присущих реальной аппаратуре. При исследовании моделей свключением реальной аппаратуры используется понятие динамическогомоделирования , при исследовании сложных систем и явлений -эволюционного , имитационного и кибернетического моделирования .

Очевидно, действительная польза от моделирования может быть полученатолько при соблюдении двух условий:

1) модель обеспечивает корректное (адекватное) отображение свойств

оригинала, существенных с точки зрения исследуемой операции;

2) модель позволяет устранить перечисленные выше проблемы, присущие

проведению исследований на реальных объектах.

2. Основные понятия математического моделирования

Решение практических задач математическими методами последовательноосуществляется путем формулировки задачи (разработки математическоймодели), выбора метода исследования полученной математической модели,анализа полученного математического результата. Математическаяформулировка задачи обычно представляется в виде геометрических образов,функций, систем уравнений и т.п. Описание объекта (явления) может бытьпредставлено с помощью непрерывной или дискретной, детерминированнойили стохастической и другими математическими формами.

Теория математического моделирования обеспечивает выявлениезакономерностей протекания различных явлений окружающего мира илиработы систем и устройств путем их математического описания имоделирования без проведения натурных испытаний. При этом используютсяположения и законы математики, описывающие моделируемые явления,системы или устройства на некотором уровне их идеализации.

Математическая модель (ММ) представляет собой формализованноеописание системы (или операции) на некотором абстрактном языке, например,в виде совокупности математических соотношений или схемы алгоритма,т. е. такое математическое описание, которое обеспечивает имитацию работысистем или устройств на уровне, достаточно близком к их реальномуповедению, получаемому при натурных испытаниях систем или устройств.

Любая ММ описывает реальный объект, явление или процесс с некоторойстепенью приближения к действительности. Вид ММ зависит как от природыреального объекта, так и от задач исследования.

Математическое моделирование общественных, экономических,биологических и физических явлений, объектов, систем и различных устройствявляется одним из важнейших средств познания природы и проектированиясамых разнообразных систем и устройств. Известны примеры эффективногоиспользования моделирования в создании ядерных технологий, авиационных иаэрокосмических систем, в прогнозе атмосферных и океанических явлений,погоды и т.д.

Однако для таких серьезных сфер моделирования нередко нужнысуперкомпьютеры и годы работы крупных коллективов ученых по подготовкеданных для моделирования и его отладки. Тем не менее, и в этом случаематематическое моделирование сложных систем и устройств не толькоэкономит средства на проведение исследований и испытаний, но и можетустранить экологические катастрофы – например, позволяет отказаться отиспытаний ядерного и термоядерного оружия в пользу его математическогомоделирования или испытаний аэрокосмических систем перед их реальнымиполетами.Между тем математическое моделирование на уровне решения болеепростых задач, например, из области механики, электротехники, электроники,радиотехники и многих других областей науки и техники в настоящее времястало доступным выполнять на современных ПК. А при использованииобобщенных моделей становится возможным моделирование и достаточносложных систем, например, телекоммуникационных систем и сетей,радиолокационных или радионавигационных комплексов.

Целью математического моделирования является анализ реальныхпроцессов (в природе или технике) математическими методами. В своюочередь, это требует формализации ММ процесса, подлежащего исследованию.Модель может представлять собой математическое выражение, содержащеепеременные, поведение которых аналогично поведению реальной системы.Модель может включать элементы случайности, учитывающие вероятностивозможных действий двух или большего числа «игроков», как, например, втеории игр; либо она может представлять реальные переменные параметрывзаимосвязанных частей действующей системы.

Математическое моделирование для исследования характеристик системможно разделить на аналитическое, имитационное и комбинированное. В своюочередь, ММ делятся на имитационные и аналитические.

Аналитическое моделирование

Для аналитического моделирования характерно, что процессыфункционирования системы записываются в виде некоторых функциональныхсоотношений (алгебраических, дифференциальных, интегральных уравнений). Аналитическая модель может быть исследована следующими методами:

1) аналитическим, когда стремятся получить в общем виде явныезависимости для характеристик систем;

2) численным, когда не удается найти решение уравнений в общем виде иих решают для конкретных начальных данных;

3) качественным, когда при отсутствии решения находят некоторые егосвойства.

Аналитические модели удается получить только для сравнительно простыхсистем. Для сложных систем часто возникают большие математическиепроблемы. Для применения аналитического метода идут на существенноеупрощение первоначальной модели. Однако исследование на упрощенноймодели помогает получить лишь ориентировочные результаты. Аналитическиемодели математически верно отражают связь между входными и выходнымипеременными и параметрами. Но их структура не отражает внутреннююструктуру объекта.

При аналитическом моделировании его результаты представляются в видеаналитических выражений. Например, подключив RC -цепь к источникупостоянного напряжения E (R , C и E - компоненты данной модели), мыможем составить аналитическое выражение для временной зависимостинапряжения u (t ) на конденсаторе C :

Это линейное дифференциальное уравнение (ДУ) и являетсяаналитической моделью данной простой линейной цепи. Его аналитическоерешение, при начальном условии u (0) = 0 , означающем разряженныйконденсатор C в момент начала моделирования, позволяет найти искомуюзависимость – в виде формулы:

u (t ) = E (1− p (- t / RC )). (2)

Однако даже в этом простейшем примере требуются определенные усилиядля решения ДУ (1) или для применения систем компьютерной математики (СКМ) с символьными вычислениями – систем компьютернойалгебры. Для данного вполне тривиального случая решение задачимоделирования линейной RC -цепи дает аналитическое выражение (2)достаточно общего вида – оно пригодно для описания работы цепи при любыхноминалах компонентов R , C и E , и описывает экспоненциальный зарядконденсатора C через резистор R от источника постоянного напряжения E .

Безусловно, нахождение аналитических решений при аналитическоммоделировании оказывается исключительно ценным для выявления общихтеоретических закономерностей простых линейных цепей, систем и устройств.Однако его сложность резко возрастает по мере усложнения воздействий намодель и увеличения порядка и числа уравнений состояния, описывающихмоделируемый объект. Можно получить более или менее обозримыерезультаты при моделировании объектов второго или третьего порядка, но ужепри большем порядке аналитические выражения становятся чрезмерногромоздкими, сложными и трудно осмысляемыми. Например, даже простойэлектронный усилитель зачастую содержит десятки компонентов. Тем неменее, многие современные СКМ, например, системы символьной математикиMaple, Mathematica или среда MATLAB , способны в значительноймере автоматизировать решение сложных задач аналитическогомоделирования.

Одной из разновидностей моделирования является численное моделирование, которое заключается в получении необходимыхколичественных данных о поведении систем или устройств каким-либоподходящим численным методом, таким как методы Эйлера илиРунге-Кутта. На практике моделирование нелинейных систем и устройствс использованием численных методов оказывается намного болееэффективным, чем аналитическое моделирование отдельных частных линейныхцепей, систем или устройств. Например, для решения ДУ (1) или систем ДУв более сложных случаях решение в аналитическом виде не получается, но поданным численного моделирования можно получить достаточно полныеданные о поведении моделируемых систем и устройств, а также построитьграфики описывающих это поведение зависимостей.

Имитационное моделирование

Приимитационном 10имоделировании реализующий модель алгоритмвоспроизводит процесс функционирования системы во времени. Имитируютсяэлементарные явления, составляющие процесс, с сохранением их логическойструктуры и последовательности протекания во времени.

Основным преимуществом имитационных моделей по сравнениюсаналитическими является возможность решения более сложных задач.

Имитационные модели позволяют легко учитывать наличие дискретных илинепрерывных элементов, нелинейные характеристики, случайные воздействияи др. Поэтому этот метод широко применяется на этапе проектированиясложных систем. Основным средством реализации имитационногомоделирования служит ЭВМ, позволяющая осуществлять цифровоемоделирование систем и сигналов.

В связи с этим определим словосочетание «компьютерноемоделирование », которое все чаще используется в литературе. Будем полагать,что компьютерное моделирование - это математическое моделированиес использованием средств вычислительной техники. Соответственно,технология компьютерного моделирования предполагает выполнениеследующих действий:

1) определение цели моделирования;

2) разработка концептуальной модели;

3) формализация модели;

4) программная реализация модели;

5) планирование модельных экспериментов;

6) реализация плана эксперимента;

7) анализ и интерпретация результатов моделирования.

При имитационном моделировании используемая ММ воспроизводиталгоритм («логику») функционирования исследуемой системы во времени приразличных сочетаниях значений параметров системы и внешней среды.

Примером простейшей аналитической модели может служить уравнениепрямолинейного равномерного движения. При исследовании такого процессас помощью имитационной модели должно быть реализовано наблюдениеза изменением пройденного пути с течением времени.Очевидно, в одних случаях более предпочтительным являетсяаналитическое моделирование, в других - имитационное (или сочетание того идругого). Чтобы выбор был удачным, необходимо ответить на два вопроса.

С какой целью проводится моделирование?

К какому классу может быть отнесено моделируемое явление?

Ответы на оба эти вопроса могут быть получены в ходе выполнения двухпервых этапов моделирования.

Имитационные модели не только по свойствам, но и по структуресоответствуют моделируемому объекту. При этом имеется однозначное и явноесоответствие между процессами, получаемыми на модели, и процессами,протекающими на объекте. Недостатком имитационного моделированияявляется большое время решения задачи для получения хорошей точности.

Результаты имитационного моделирования работы стохастическойсистемы являются реализациями случайных величин или процессов. Поэтомудля нахождения характеристик системы требуется многократное повторение ипоследующая обработка данных. Чаще всего в этом случае применяетсяразновидность имитационного моделирования - статистическое

моделирование (или метод Монте-Карло), т.е. воспроизведение в моделяхслучайных факторов, событий, величин, процессов, полей.

По результатам статистического моделирования определяют оценкивероятностных критериев качества, общих и частных, характеризующихфункционирование и эффективность управляемой системы. Статистическоемоделирование широко применяется для решения научных и прикладных задачв различных областях науки и техники. Методы статистическогомоделирования широко применяются при исследовании сложныхдинамических систем, оценке их функционирования и эффективности.

Заключительный этап статистического моделирования основан наматематической обработке полученных результатов. Здесь используют методыматематической статистики (параметрическое и непараметрическое оценивание,проверку гипотез). Примером параметрической оценки являетсявыборочное среднее показателя эффективности. Среди непараметрическихметодов большое распространение получил метод гистограмм .

Рассмотренная схема основана на многократных статистическихиспытаниях системы и методах статистики независимых случайных величин.Эта схема является далеко не всегда естественной на практике и оптимальнойпо затратам. Сокращение времени испытания систем может быть достигнуто засчет использования более точных методов оценивания. Как известно изматематической статистики, наибольшую точность при заданном объемевыборки имеют эффективные оценки. Оптимальная фильтрация и методмаксимального правдоподобия дают общий метод получения таких оценок.В задачах статистического моделирования обработка реализацийслучайных процессов необходима не только для анализа выходных процессов.

Весьма важен также и контроль характеристик входных случайныхвоздействий. Контроль заключается в проверке соответствия распределенийгенерируемых процессов заданным распределениям. Эта задача частоформулируется как задача проверки гипотез .

Общей тенденцией моделирования с использованием ЭВМ у сложныхуправляемых систем является стремление к уменьшению временимоделирования, а также проведение исследований в реальном масштабевремени. Вычислительные алгоритмы удобно представлять в рекуррентнойформе, допускающей их реализацию в темпе поступления текущей информации.

ПРИНЦИПЫ СИСТЕМНОГО ПОДХОДА В МОДЕЛИРОВАНИИ

    Основные положения теории систем

Основные положения теории систем возникли в ходе исследованиядинамических систем и их функциональных элементов. Под системой понимают группу взаимосвязанных элементов, действующих совместнос целью выполнения заранее поставленной задачи. Анализ систем позволяетопределить наиболее реальные способы выполнения поставленной задачи,обеспечивающие максимальное удовлетворение поставленных требований.

Элементы, составляющие основу теории систем, не создаются с помощьюгипотез, а обнаруживаются экспериментальным путем. Для того чтобы начатьпостроение системы, необходимо иметь общие характеристикитехнологических процессов. Это же справедливо и в отношении принциповсоздания математически сформулированных критериев, которым долженудовлетворять процесс или его теоретическое описание. Моделированиеявляется одним из наиболее важных методов научного исследования иэкспериментирования.

При построении моделей объектов используется системный подход,представляющий собой методологию решения сложных задач, в основекоторой лежит рассмотрение объекта как системы, функционирующейв некоторой среде. Системный подход предполагает раскрытие целостностиобъекта, выявление и изучение его внутренней структуры, а также связейс внешней средой. При этом объект представляется как часть реального мира,которая выделяется и исследуется в связи с решаемой задачей построениямодели. Кроме этого, системный подход предполагает последовательныйпереход от общего к частному, когда в основе рассмотрения лежит цельпроектирования, а объект рассматривается во взаимосвязи с окружающейсредой.

Сложный объект может быть разделен на подсистемы, представляющие собой части объекта, удовлетворяющие следующим требованиям:

1) подсистема является функционально независимой частью объекта. Онасвязана с другими подсистемами, обменивается с ними информацией иэнергией;

2) для каждой подсистемы могут быть определены функции или свойства,не совпадающие со свойствами всей системы;

3) каждая из подсистем может быть подвергнута дальнейшему делению доуровня элементов.

В данном случае под элементом понимается подсистема нижнего уровня,дальнейшее деление которой нецелесообразно с позиций решаемой задачи.

Таким образом, систему можно определить как представление объектав виде набора подсистем, элементов и связей с целью его создания,исследования или усовершенствования. При этом укрупненное представлениесистемы, включающее в себя основные подсистемы и связи между ними,называется макроструктурой, а детальное раскрытие внутреннего строениясистемы до уровня элементов – микроструктурой.

Наряду с системой обычно существует надсистема – система болеевысокого уровня, в состав которой входит рассматриваемый объект, причёмфункция любой системы может быть определена только через надсистему.

Следует выделить понятие среды как совокупности объектов внешнего мира,существенно влияющих на эффективность функционирования системы, но невходящих в состав системы и ее надсистемы.

В связи с системным подходом к построению моделей используетсяпонятие инфраструктуры, описывающей взаимосвязи системы с ееокружением (средой).При этом выделение, описание и исследование свойств объекта,существенных в рамках конкретной задачи называется стратификациейобъекта, а всякая модель объекта является его стратифицированнымописанием.

Для системного подхода важным является определение структуры системы, т.е. совокупности связей между элементами системы, отражающих ихвзаимодействие. Для этого вначале рассмотрим структурный ифункциональный подходы к моделированию.

При структурном подходе выявляются состав выделенных элементов системы и связи между ними. Совокупность элементов и связей позволяет судить о структуре системы. Наиболее общим описанием структуры является топологическое описание. Оно позволяет определить составные части системыи их связи с помощью графов. Менее общим является функциональное описание, когда рассматриваютсяо тдельные функции, т. е. алгоритмы поведения системы. При этом реализуетсяфункциональный подход, определяющий функции, которые выполняетсистема.

На базе системного подхода может быть предложена последовательностьразработки моделей, когда выделяют две основные стадии проектирования:макропроектирование и микропроектирование.

На стадии макропроектирования строится модель внешней среды,выявляются ресурсы и ограничения, выбирается модель системы и критериидля оценки адекватности.

Стадия микропроектирования в значительной степени зависит отконкретного типа выбранной модели. В общем случае предполагает созданиеинформационного, математического, технического и программногообеспечения системы моделирования. На этой стадии устанавливаютсяосновные технические характеристики созданной модели, оцениваются времяработы с ней и затраты ресурсов для получения заданного качества модели.

Независимо от типа модели при ее построении необходиморуководствоваться рядом принципов системного подхода:

1) последовательное продвижение по этапам создания модели;

2) согласование информационных, ресурсных, надежностных и другиххарактеристик;

3) правильное соотношение различных уровней построения модели;

4) целостность отдельных стадий проектирования модели.

Для обсуждения и обоснования основных подходов к разработке проблем математического моделирования технических систем и процессов в них представляется целесообразным предварительно рассмотреть условную схему (рис. 1.1), определяющую последовательность проведения отдельных этапов общей процедуры вычислительного эксперимента . Исходной позицией этой схемы служит технический объект (ТО), под которым будем понимать конкретное техническое устройство, его агрегат или узел, систему устройств, процесс, явление или отдельную ситуацию в какой-либо системе или устройстве.

Рис. 1.1 Получение математической модели

На первом этапе осуществляют неформальный переход от рассматриваемого (разрабатываемого или существующего) ТО к его расчетной схеме (PC). При этом в зависимости от направленности вычислительного эксперимента и его конечной цели акцентируют те свойства, условия работы и особенности ТО, которые вместе с характеризующими их параметрами должны найти отражение в PC, и, наоборот, аргументируют допущения и упрощения, позволяющие не учитывать в PC те качества ТО, влияние которых предполагают в рассматриваемом случае несущественным. Иногда вместо PC используют термин «содержательная модель » ТО, а в некоторых случаях – «концептуальная модель ».

При разработке новых ТО успешное проведение первого этапа в значительной мере зависит от профессионального уровня инженера, его творческого потенциала и интуиции. Полнота и правильность учета в PC свойств ТО, существенных с точки зрения поставленной цели исследования, являются основной предпосылкой получения в дальнейшем достоверных результатов математического моделирования. И наоборот, сильная идеализация ТО ради получения простой PC может обесценить все последующие этапы исследования.

Надо сказать, что для некоторых типовых PC существуют банки ММ, что упрощает проведение второго этапа. Более того, одна и та же ММ может соответствовать PC из различных предметных областей. Однако при разработке новых ТО часто не удается ограничиться применением типовых PC и отвечающих им уже построенных ММ. Создание новых ММ или модификация существующих должны опираться на достаточно глубокую математическую подготовку и владение математикой как универсальным языком науки.

На третьем этапе проводят качественный и оценочный количественный анализ построенной ММ. При этом могут быть выявлены противоречия, ликвидация которых потребует уточнения или пересмотра PC (см. рис. 1.1, штриховая линия). Количественные оценки могут дать основания упростить модель, исключив из рассмотрения некоторые параметры, соотношения или их отдельные составляющие, несмотря на то, что влияние описываемых ими факторов учтено в PC. В большинстве случаев, принимая дополнительные по отношению к PC допущения, полезно построить такой упрощенный вариант ММ, который позволял бы получить или привлечь известное точное решение.


Это решение затем можно использовать для сравнения при тестировании результатов на последующих этапах. В некоторых случаях удается построить несколько ММ для одного и того же ТО, отличающихся различным уровнем упрощения.

Итог анализа на рассматриваемом этапе – это обоснованный выбор рабочей ММ ТО, которая подлежит в дальнейшем детальному количественному анализу. Успех в проведении третьего этапа зависит, как правило, от глубины понимания связи отдельных составляющих ММ со свойствами ТО, нашедшими отражение в его PC, что

предполагает органическое сочетание владения математикой и инженерными знаниями в конкретной предметной области.

Четвертый этап состоит в обоснованном выборе метода количественного анализа ММ, в разработке эффективного алгоритма вычислительного эксперимента, а пятый этап – в создании работоспособной программы, реализующей этот алгоритм средствами вычислительной техники. Для успешного проведения четвертого этапа необходимо владеть современными методами вычислительной математики, а при математическом моделировании довольно сложных ТО выполнение пятого этапа требует профессиональной подготовки в области программирования на ЭВМ.

Получаемые на шестом этапе (в итоге работы программы) результаты вычислений должны, прежде всего, пройти тестирование путем сопоставления с данными количественного анализа упрощенного варианта ММ рассматриваемого ТО. Тестирование может выявить недочеты как в программе, так и в алгоритме и потребовать доработки программы или же модификации и алгоритма, и программы. Анализ результатов вычислений и их инженерная интерпретация могут вызвать необходимость в корректировке PC и соответствующей ММ. После устранения всех выявленных недочетов триаду «модель – алгоритм – программа» можно использовать в качестве рабочего инструмента для проведения вычислительного эксперимента и выработки на основе получаемой количественной информации практических рекомендаций, направленных на совершенствование ТО, что составляет содержание седьмого, завершающего «технологический цикл» этапа математического моделирования.

Представленная последовательность этапов носит общий и универсальный характер, хотя в некоторых конкретных случаях она может и несколько видоизменяться. Если при разработке ТО можно использовать типовые PC и ММ, то отпадает необходимость в выполнении некоторых этапов, а при наличии соответствующего программного комплекса процесс вычислительного эксперимента становится в значительной степени автоматизированным. Однако математическое моделирование ТО, не имеющих близких прототипов, как правило, связано с проведением всех этапов описанного «технологического цикла».

Таким образом, этапы математического моделирования можно записать в виде последовательности действий:

1) выбор расчетной схемы и определение необходимой детализации;

2) математическое описание (составление системы уравнений);

3) выбор метода решения;

4) приведение модели (включающей уравнения, метод, исходные данные и начальные условия) к виду, удобному для решения на ЭВМ;

5) составление программы для ЭВМ;

6) проведение расчетов (моделирование);

7) при необходимости повторить шаги 3 – 6;

8) анализ результатов;

9) при необходимости повторить шаги 1 – 8;

10) оформление отчета (описания, схем, рисунков, графиков, формул);

11) при необходимости повторить шаги 1 – 10, 3 – 10, 8 – 10.

Процесс математического моделирования, то есть изучения явления с помощью М. м., можно подразделить на 4 этапа.

Первый этап - формулирование законов, связывающих основные объекты модели. Этот этап требует широкого знания фактов, относящихся к изучаемым явлениям, и глубокого проникновения в их взаимосвязи. Эта стадия завершается записью в математических терминах сформулированных качеств, представлений о связях между объектами модели.

Второй этап - исследование математических задач, к которым приводят М. м. Основным вопросом здесь является решение прямой задачи, то есть получение в результате анализа модели выходных данных (теоретических следствий) для дальнейшего их сопоставления с результатами наблюдений изучаемых явлений. На этом этапе важную роль приобретают математический аппарат, необходимый для анализа М. м., и вычислительная техника - мощное средство для получения количеств, выходной информации как результата решения сложных математических задач. Часто математические задачи, возникающие на основе М. м. различных явлений, бывают одинаковыми (например, основная задача линейного программированияотражает ситуации различной природы). Это даёт основание рассматривать такие типичные математические задачи как самостоятельный объект, абстрагируясь от изучаемых явлений.

Третий этап - выяснение того, удовлетворяет ли принятая гипотетическая модель критерию практики, то есть выяснение вопроса о том, согласуются ли результаты наблюдений с теоретическими следствиями модели в пределах точности наблюдений. Если модель была вполне определена - все параметры её были заданы, - то определение уклонений теоретических следствий от наблюдений даёт решения прямой задачи с последующей оценкой уклонений. Если уклонения выходят за пределы точности наблюдений, то модель не может быть принята. Часто при построении модели некоторые её характеристики остаются не определёнными. Задачи, в которых определяются характеристики модели (параметрические, функциональные) таким образом, чтобы выходная информация была сопоставима в пределах точности наблюдений с результатами наблюдений изучаемых явлений, называются обратными задачами. Если М. м. такова, что ни при каком выборе характеристик этим условиям нельзя удовлетворить, то модель непригодна для исследования рассматриваемых явлений. Применение критерия практики к оценке М. м. позволяет делать вывод о правильности положений, лежащих в основе подлежащей изучению (гипотетической) модели. Этот метод является единственным методом изучения недоступных нам непосредственно явлений макро- и микромира.

Четвёртый этап - последующий анализ модели в связи с накоплением данных об изучаемых явлениях и модернизация модели. В процессе развития науки и техники данные об изучаемых явлениях всё более и более уточняются и наступает момент, когда выводы, получаемые на основании существующей М. м., не соответствуют нашим знаниям о явлении. Т. о., возникает необходимость построения новой, более совершенной М. м.

21. Функциональная схема управления на примере САР.

22. Понятие сигнал. Классификация сигналов по физическому носителю информации.

Понятие сигнала

Сигнал - символ (знак, код), созданный и переданный в пространство (по каналу связи) одной системой, либо возникший в процессе взаимодействия нескольких систем. Смысл и значение сигнала проявляются в процессе дешифровки его второй (принимающей) системой.

Сигнал - материальный носитель информации, используемый для передачи сообщений в системе связи. Сигнал может генерироваться, но его приём не обязателен, в отличие от сообщения, которое рассчитано на принятие принимающей стороной, иначе оно не является сообщением. Сигналом может быть любой физический процесс, параметры которого изменяются (или находятся) в соответствии с передаваемым сообщением.

Сигнал, детерминированный или случайный, описывают математической моделью, функцией, характеризующей изменение параметров сигнала.

Понятие сигнал позволяет абстрагироваться от конкретной физической величины, например тока, напряжения, акустической волны и рассматривать вне физического контекста явления связанные кодированием информации и извлечением её из сигналов, которые обычно искажены шумами. В исследованиях сигнал часто представляется функцией времени, параметры которой могут нести нужную информацию. Способ записи этой функции, а также способ записи мешающих шумов называют математической моделью сигнала .

Обобщенная структура системы цифровой обработки сигналов

Цифровая обработка связана с представлением любого сигнала в виде последовательности чисел. Это означает, что исходный аналоговый сигнал должен быть преобразован в исходную последовательность чисел, которая вычислителем по заданному алгоритму преобразуется в новую последовательность, однозначно соответствующей исходной. Из полученной новой последовательности формируется результирующий аналоговый сигнал.Обобщенная структура системы цифровой обработки сигналов приведена на рисунке ниже.

На ее вход поступает аналоговый сигнал от разнообразных датчиков, которые преобразуют физическую величину в электрическое напряжение. Его временная дискретизация и квантование по уровню производятся в аналого-цифровом преобразователе (АЦП). Выходным сигналом АЦП является последовательность чисел, поступающая в цифровой процессор ЦП, выполняющий требуемую обработку. Процессор осуществляет различные математические операции над входными отсчетами. Как правило, цифровой процессор включает в себя добавочную аппаратуру:

· матричный умножитель;

· дополнительное АЛУ для аппаратной поддержки формирования адресов операндов;

· дополнительные внутренние шины для параллельного доступа к памяти;

· аппаратный сдвигатель для масштабирования, умножения или деления на 2n.

Результатом работы процессора является новая последовательность чисел, представляющих собой отсчеты выходного сигнала. Аналоговый выходной сигнал восстанавливается по последовательности чисел с помощью цифро-аналогового преобразователя ЦАП. Напряжение на выходе ЦАП имеет ступенчатую форму. При необходимости можно использовать сглаживающий фильтр на выходе.

Классификация сигналов

По физической природе носителя информации :

· электрические;

· электромагнитные;

· оптические;

· акустические

23. САР. Классификация САР

Система автоматического регулирования (САР) осуществляет автоматическое поддержание заданного значения контролируемого параметра технологического процесса или его изменение по заданному закону. Эту систему можно рассматривать как совокупность микросистемы контроля и микросистемы управления, работающих только с одним параметром. Часто такое совмещение может быть достаточно просто реализовано технически, что и привело к широкому распространению САР.

Пример системы автоматического регулирования температуры - электрический утюг. Повернув ручку установки температуры в положение, соответствующее типу ткани, вы задаете температуру, которую система регулирования автоматически поддерживает в течение всего времени глажения. Аналогичная система может использоваться для поддержания заданной температуры жидкости в резервуарах и трубопроводе, хотя практическая реализация ее в производственных условиях немного иная.

Пример системы автоматического регулирования уровня жидкости - устройство наполнения смывного бачка в туалете. Как только уровень воды в бачке понижается, открывается клапан, и бачок заполняется водой; после достижения требуемого уровня клапан закрывается. Аналогичная система может использоваться и для регулирования уровня жидкости в резервуарах в производственных условиях.

Особенностью САР является ее полная автономность: как бы ни развивались события в технологическом процессе, контролируемый системой параметр будет всегда иметь заданное значение или изменяться по заданному закону (в последнем случае система будет более сложной). Практически при автоматизации технологических процессов используются комбинированные автоматические системы, включающие в себя системы всех трех рассмотренных типов. Основными параметрами технологических процессов являются температура, давление, уровень, масса, объем, расход, качество, состав и другие электрические и неэлектрические величины. Для контроля величин этих параметров необходимо вести измерения непрерывно. Результаты измерений сравниваются с требуемыми значениями контролируемого параметра, а если имеются отклонения, то подается сигнал об отклонении. Отклонения могут быть положительными или отрицательными, уменьшения или повышения и так далее. По отклонениям принимается решение и подается сигнал на объект управления. В процессе принятия решения могут участвовать человек-оператор или управляющее

устройство.

Под управлением понимают такую организацию процесса, которая обеспечивает

заданный характер протекания процесса. При этом сам процесс (совокупность

технических средств - машин, орудий труда, т.е. исполнителей конкретного процесса) с

точки зрения управления является объектом управления (ОУ), а переменные,

характеризующие состояние процесса, называются управляемыми переменными или

управляемыми величинами.

Автоматическое управление (регулирование) - это осуществление какого-либо

процесса без непосредственного участия человека, с помощью соответствующих систем

автоматики. Если автоматическое управление призвано обеспечить изменение

(поддержание) управляемой величины по заданному закону, то такое автоматическое

управление называют автоматическим регулированием. Технические устройства,

выполняющие операции управления (регулирования), называются автоматическими

устройствами. Совокупность средств управления объектов образует систему управления.

Систему, в которой все рабочие и управляющие операции выполняют автоматические

устройства, называют автоматической системой.

Условно систему автоматического управления (САУ) можно разделить на две части:

регулятор и объект управления (ОУ) (рисунок 4.1).

Рисунок 4.1 - Функциональная схема САУ

Объектами управления могут быть технологические установки, отдельные

параметры технологического процесса, различные двигатели и т.д. Воздействия,

прикладываемые к регулятору для обеспечения требуемых значений управляемых

величин, являются управляющими воздействиями. Управляющие воздействия называют

также входными величинами, а управляемые - выходными величинами. Таким образом,

всякий технологический процесс характеризуется совокупностью физических величин,

называемых показателями или параметрами процесса. Величины, характеризующие

состояния объекта управления, схематически можно показать следующим образом

(рисунок 4.2).

Рассмотрим приведенные определения и понятия на конкретном примере, в качестве

которого возьмем систему регулирования частоты вращения электродвигателя

постоянного тока (рисунок 4.3). Здесь ОУ является электродвигатель M ,

характеризуемый частотой вращения w . Изменение величины w достигается изменением

напряжения Я U , подводимого к якорю электродвигателя. Очевидно, что величина Я U и

величина w будут максимальными, если ползунок m потенциометрического реостата П

окажется в крайнем нижнем положении. При перемещении ползунка m в крайнее верхнее

положение = 0 и соответственно w = 0 . Таким образам, перемещая ползунок m от

крайнего нижнего положения в крайнее верхнее, можно изменять частоту вращения w от

максимального значения до нуля. Для удобства контроля частоты вращения с валом

электродвигателя связан вал тахогенератора BR- электрического генератора,

преобразующего величину w в напряжение BR BR U = K w . Вольтметр PV, включенный на

напряжение тахогенератора BR U , градуируется в единицах измерения частоты вращения

(рад/с) или скорости вращения вала электродвигателя (мин-1).

Представленная на рисунке 4.3а система регулирования является разомкнутой, а

регулирование в ней осуществляется по разомкнутому циклу. Разомкнутая система ха-

рактеризуется тем, что изменения регулируемой величины не передаются на вход системы

и не изменяют значения регулирующей (управляющей) величины. Регулирование в

разомкнутой системе осуществляется с участием человека-оператора (Оп), который,

наблюдая за значением регулируемой величины по регистрирующему прибору,

устанавливает такое значение регулирующей величины, которое необходимо для

обеспечения заданного режима работы системы. Таким образом, в рассмотренной разом-

кнутой системе осуществляется ручное, неавтоматическое регулирование.

Виды и классификация САР

1) по виду регулируемого параметра:
САР уровня, САР давления, САР температуры
2) по вид регулируемой величины у и во времени:
а) система стабилизации – у всегда постоянно и равно заданному значению.
б) система программы – у регулируется в соответствии с заданием программы, которая изменяется в зависимости от независимой переменной (время, пространство) и граничные аварийные условия
3) по поведению регулирующей величины х во времени:
А) дискретные системы – прерывисто изменяются во времени
Б) аналоговые системы – плавно изменяются во времени


4) По взаимосвязи и их количеству:
- Одномерная система

- Многомерная система
1. а) симметричное – количество входов равно количеству выходов
б) подчиненное (критическое)
2. связанное и несвязанное – внутри объекта параметры воздействуют и невоздействуют друг на дуга.
3. связанное и автономное – по зависимости управления параметрами (двух параметров с помощью одного)
4. стационарное и нестационарное y=g(x), y=ax
5) По поведению величины и по давлению:
1) система стабилизации – когда параметр поддерживается на данном значении втечении всего времени.
2) система регулирования – обеспечивает поддержание параметра в соответствии с заданием, которое изменяется в зависимости от независимой переменной.
Существуют 3 независимые переменные:
а) время – можно только измерить
б) пространство
в) независимые аварийные или неординарные условия .
3) следящая – предполагает поддержание первого параметра в измененном режиме в зависимости от изменения другого параметра.
Расходы песка регулируются в зависимости от расхода цемента и наоборот.
Виды: 1) симметричные – оба параметра главные.
2) корректирующие – когда первый параметр регулируется, а второй только контролируется.
6) По характерам устойчивости системы:
Различают 3 типа состояния системы по устойчивости:


7) По степени организации:
а) локальная система – стабилизирует один параметр
б) программная система – регулирует изменяющийся параметр
в) следящая система – стабилизирует несколько параметров для стабилизации одного.
В зависимости от соотношения параметров следящая система может быть:
а) симметричная – оба параметра главные
б) подчиненная – один параметр главный, дугой зависимости от него (связь второго отсутствует)
в) оптимальная система – стабилизирует не параметр, а критерий по экономической эффективности или количеству.
г) самоорганизующая система – позволяет в процессе управления подключать или отключать автоматические блоки.
д) самонастраивающаяся система – при включении сами ищут оптимальный режим и запоминают его.
е) самообучающаяся система – система, в процессе управления анализируя состояние, находит оптимальные условия.
ж) интелектная система – производит поиск режимов управления не предусмотренных программой настройки.
з) корректирующая – регулирует один параметр в зависимости от первого (связь третьего отсутствует)
и) адаптивная – регулирует параметры объекта правления по заданном критерию экономичности или качества, регулирует среднее значение по нескольким параметрам

24.Объект как система. Четыре системообразующих свойства объекта как системы.


Похожая информация.