В прошлом уроке, и поняли, что она знает многое, кто не понял, забыл или прошел мимо, может перейти по ссылке и освежить свои знания)). Но в теории статистики есть еще одно очень интересное изречение. В мире есть три вида лжи – ложь, наглая ложь и… СТАТИСТИКА!!!

Совершенно противоречивое утверждение другое – статистика знает все . Но отчасти в нем есть доля правды. Все дело в данных, которые были собраны для обработки.

Но об этом поговорим позже…

Однако вернемся к статистическим категориям. Категории или основные статистические термины важная часть науки. И дело здесь в том, что эти термины регулярно употребляются в процессе обработки и анализа данных. Именно в этом кроется их такая важность для статистической науки.

Статистическая совокупность – это группа социально-экономических объектов или явлений общественной жизни объединенных общей связью, но отличающихся друг от друга отдельными признаками. Это наиболее часто встречающее определение совокупности. Включает в себя ее особенности, и что очень важно и другие статистические категории. Попытаемся упростить или понять, что же такое совокупность на примере.
Совокупность это некоторое объединение элементов или явлений или людей и т.п. Мало того что в совокупности как правило много частей или элементом (всегда больше одного), так еще все они в чем-то похожи. Так вот эта похожесть и есть признак, по которому объединили эти элементы. Общее у элементов одно, и масса других характеристик отличающихся.



Вот небольшой такой пример. На картинке у нас изображены условно люди. Это совокупность людей – по этому признаку их и объединили в совокупность. Однако все мы разные и у нас масса признаков, которые отличают нас друг от друга – пол, возраст, образование, семейное положение, уровень доходов, место жительства и так далее.
Вообще в совокупность можно объединить разные элементы, лишь бы было что изучать:
— совокупность школьников – общее учатся в школе, а различия пол, возраст, класс, место учебы и многое другое;
— совокупность деревьев в лесу – общее это деревья, различия возраст, разновидность дерева, высота и т.п.;
— совокупность предприятий – общее предприятия, различия, отрасль, число работников, объем выпуска, объем прибыли и др.
И таких примеров можно привести огромное количество.

Задание. Предположим на картинке представлена совокупность студентов. Опишите ее, почему она является совокупностью, какие есть признаки у студентов. Нет ли на картинке лишних элементов, не относящихся к данной совокупности?

И последний очень важный термин вариация!
Вариация – это колебания признака статистической совокупности. В статистике говорят – признак колеблется или ВАРЬИРУЕТСЯ.
Вариация признака это основа статистической науке. Не было бы вариации, не было бы статистики. Именно потому что признаки изменяются и происходит их изучении. Если не было бы изменений и отличий и все было одинаковым, то изучать было бы нечего и статистики не было.

А дальше мы перейдем к . Но прежде домашние задания.

Контрольное задание. Приведите примеры двух трех совокупностей, выделите в них единицы совокупности и охарактеризуйте их признаками. Приведите пример статистических показателей и вариации признака.

Доклад – Органы государственной статистики в РФ – функции, задачи, структура. – Федеральная служба государственной статистики — http://www.gks.ru/


1. Средние величины: сущность, значение, виды

Важный вклад в обоснование и развитие теории средних величин внес крупный ученый XIX века Адольф Кетле (1796-1874), член Бельгийской академии наук, член-корреспондент Петербургской академии наук.

Средняя величина - обобщающая характеристика изучаемого признака в исследуемой совокупности. Она определяет его типичный уровень в расчёте на единицу совокупности в конкретных условиях места и времени.

Средняя величина всегда именованная, имеет ту же размерность (единицу измерения), что и признак у отдельных единиц совокупности.

Основным условием научного использования средней величины является качественная однородность совокупности, по которой исчислена средняя.

    степенные (средняя арифметическая, средняя гармоническая, средняя геометрическая, средняя квадратическая, средняя кубическая);

    структурные (мода, медиана).

Степенная средняя – корень степени k из средней всех вариантов, взятых в k –й степени, имеет следующий вид:

где – признак, по которому находится средняя, называется осредняемым признаком,

х i или (х 1 , х 2 …х n ) – величина осредняемого признака у каждой единицы совокупности,

f i – повторяемость индивидуального значения признака.

В зависимости от степени k получаются различные виды степенных средних, формулы расчета которых показаны ниже в таблице 1.

Таблица 1 – Виды степенных средних

Значение k

Наименование средней

Формулы средней

взвешенная

Средняя гармоническая

, w i = x i · f i

Средняя геометрическая

Средняя арифметическая

=

=

Средняя квадратическая

=

=

f i частота повторения индивидуального значения признака (его вес)

Весом может быть и частотость, т.е. отношение частоты повторения индивидуального значения признака к сумме частот:

Выбор вида средней величины:

Средняя арифметическая простая применяется в случае, если индивидуальное значение признака у единиц совокупности на повторяется или встречается одни раз или одинаковое число раз, т.е. когда средняя рассчитывается по несгруппированным данным.

Когда отдельное значение изучаемого признака встречается несколько раз у единиц изучаемой совокупности, тогда частота повторения индивидуальных значений признака (вес) присутствует в расчетных формулах степенных средних. В этом случае они называются формулами взвешенных средних .

Если по условию задачи необходимо, чтобы неизменной оставалась при осреднении суммы величин, обратных, индивидуальным значениям признака, то средняя величина является гармонической средней .

Если при замене индивидуальных величин признака на среднюю величину необходимо сохранить неизменным произведение индивидуальных величин, то следует применить среднюю геометрическую . Средняя геометрическая используется для расчета средних темпов роста в анализе рядов динамики.

Если при замене индивидуальных величин признака на среднюю величину необходимо сохранить неизменной сумму квадратов исходных величин, то средняя будет являться квадратической средней величиной . Средняя квадратическая используется для расчета среднего квадратического отклонения при анализе вариации признака в рядах распределения.

Степенные средние разных видов, исчисленные по одной и той же совокупности, имеют различные количественные и чем больше показатель степени k , тем больше и величина соответствующей средней, если все исходные значения признака равны, то и все средние равны этой постоянной:

Гарм. ≤ геом. ≤ арифм. ≤ кв. ≤ куб.

Это свойство степенных средних возрастать с повышением показателя степени определяющей функции называется мажорантностью средних .

Структурные средние применяют в том случае, когда расчет степенных средних невозможен или нецелесообразен.

К структурным средним относят: моду и медиану .

Мода – это наиболее часто встречающееся значение признака у единиц данной совокупности. При наличии вариантов и частот в ряду распределения величина моды соответствует значению признака у наибольшего числа единиц (наибольшей частоте), т.е. для дискретного вариационного ряда мода находится по определению.

Медиана – значение признака у единицы совокупности в середине ранжированного ряда распределения, когда все индивидуальные значения признака изучаемых единиц расположены в порядке их возрастания или убывания.

В случае нечетного числа наблюдений медиана находится по определению, т.е. вариант (где n – число наблюдений). При четном числе наблюдений медиана определяется по формуле:

Для интервального ряда распределения величина моды и медианы рассчитываются по следующим формулам:
;
,

где: - нижняя граница модального или медианного интервала;

Величина интервала;

и
- частоты, предшествующие и следующие за модальным интервалом;

- частота модального или медианного интервала;

- сумма накопленных частот в интервалах, предшествующих медианному.

Расчет медианы по несгруппированным данным производится следующим образом:

1. Индивидуальные значения признака располагаются в возрастающем порядке. 2. Определяется порядковый номер медианы № Ме = (n +1) / 2

    Показатели вариации, сущность, значение, виды. Законы вариации

Для измерения вариации признака применяются различные абсолютные и относительные показатели.

К абсолютным показателям (мера) вариации относятся: размах колебаний, среднее абсолютное отклонение, дисперсия, среднее квадратическое отклонение.

Размах вариации – это разность между максимальным и минимальным значениями признака:
.

Размах вариации показывает, в каких пределах колеблется размер признака, образующего ряд распределения

Среднее абсолютное отклонение (САО) - средняя из абсолютных значений отклонений отдельных вариант от средней.

(простая),
(взвешенная)

Дисперсия- средняя из квадратов отклонений вариантов значений признака от их средней величины:

(простая),
(взвешенная)

Дисперсия может быть разложена на составные элементы, позволяющих оценить влияние различных факторов, обуславливающих вариацию признака

т.е. дисперсия равна разности между средним квадратом значений признака и квадратом средней.

Свойства дисперсии, позволяющие упростить способ ее вычисления:

    Дисперсия постоянной величины равна 0.

    Если все варианты значений признака уменьшить на одно и то же число раз, то дисперсия не уменьшится.

    Если все варианты значений признака уменьшить в одно и то же число раз (k раз), то дисперсия уменьшится в k 2 раз.

Среднее квадратическое отклонение (СКО) представляет собой корень квадратный из дисперсии, показывает насколько в среднем колеблется величина признака у единиц изучаемой совокупности: =

СКО является мерилом надежности. Чем меньше СКО, тем лучше средняя арифметическая отражает собой всю представляемую совокупность.

Размах вариации, САО, СКО являются величинами именованными, т.е. имеют те же единицы измерения, что и индивидуальные значения признака.

Существуют 4 вида дисперсии: общая, межгрупповая, внутригрупповая, групповая.

Дисперсию, вычисляемую для всей совокупности в целом называют общей дисперсией. Она измеряет колеблемость зависимого признака (результатного), вызванную действием на него всех без исключения факторов.

Общая дисперсия равна сумме средней из внутригрупповой и межгрупповой дисперсии:

Если совокупность разбита на группы, то для каждой группы может быть определена своя дисперсия, характеризующая вариацию внутри группы. Групповая дисперсия – средние квадратические отклонения от групповой средней, т.е. от средней величины признака в данной группе.

где j – порядковый номер x и f в пределах группы.

Групповая дисперсия характеризует вариацию признака в пределах группы за счет всех прочих факторов, кроме положенного в основании группировки.

Измерение вариации по совокупности в целом, исчисляем как среднюю из внутригрупповых дисперсии:

где – групповые дисперсии,

n j – число единиц в группах.

Групповые средние отличаются одна от другой и от общей средней, т.е. варьируют. Их вариацию называют межгрупповой вариацией. Для ее характеристики исчисляют средний квадрат отклонений групповых средних от общей средней:

где j групповые средние, – общая средняя, n j – число единиц в группе.

Межгрупповая дисперсия (дисперсия групповых средних) измеряет вариацию результатного признака за счет факторного признака, положенного в основании группировки.

При сравнении колеблемости различных признаков в одной и той же совокупности или же при сравнении колеблемости одного и того же признака в нескольких совокупностях с различной величиной средней арифметической пользуются относительными показателями вариации.

Эти показатели вычисляются как отношение абсолютных показателей вариации к средней арифметической (или медиане)

Коэффициент вариации

Относительное линейное отклонение

Коэффициент осцилляции

Наиболее часто применяемый показатель относительной колеблемости – коэффициент вариации , который показывает среднее отклонение от среднего значения признака в процентах.

Его используют для: сравнительной оценки вариации; характеристики однородности совокупности. Совокупность считается однородной, если коэффициент вариации не превышает 33%, т.е. меньше 33%.

Законы вариации .

Закон вариации индивидуальных значений признака или «правило трех сигм». Бельгийский статистик А.Кетле обнаружил, что вариации некоторых массовых явлений подчиняются закону распределения ошибок, открытому К.Гауссом и П. Лапласом почти одновременно. Кривая, отображающая это распределение, имеет вид колокола (рис.2).

По нормальному закону (термин предложен английским статистиком К.Пирсоном) распределения колеблемость индивидуальных значений признака находится в пределах
(правило трех сигм).

Нормальному закону распределения подчиняются естественные свойства человека (рост, вес, физическая сила), характеристики промышленных изделий (размер, вес, электрическое сопротивление, упругость и т.п.). В сфере быстроизменяющихся общественных явлений действие этого закона проявляется сравнительно редко. Однако, в ряде случаев, использование правила трех сигм практически возможно.

Закон вариации средних величин . Вариация средних величин меньше вариации индивидуальных значений признака. Средние значения признака изменяются в пределах:
, где n – число единиц.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Задача 1

В некотором регионе в текущем году было совершено 12 390 преступлений, а в предыдущем году - 11 800 преступлений. Вычислите (в %) темп роста и темп прироста количества преступлений, зарегистрированных в текущем году по отношению к предыдущему. Рассчитайте также коэффициенты преступности за каждый год, если численность населения региона в конце предыдущего года составляла 1 475 000, а в конце текущего года - 1 770 000 чел. Сделайте выводы о динамике преступности в регионе.

Решение: Для получения точной картины преступности огромное значение имеет такой показатель преступности, как динамика, то есть изменение во времени. Динамика преступности характеризуется понятиями абсолютный рост (или снижение) и темпы роста и прироста преступности, для определения которых производится вычисление этих характеристик согласно определенным формулам.

Темпы роста преступности рассчитываются на основе базисных показателей динамики, что предполагает сопоставление данных за ряд лет (а иногда десятилетий, если нужен широкий охват материала) с постоянным базисом, под которым понимается уровень преступности в начальном для анализа периоде. Такой расчет позволяет криминологам в значительной мере гарантировать сопоставимость относительных показателей, вычисляемых в процентах, которые показывают, каким образом соотносится преступность последующих периодов с предыдущим.

В расчете за 100 % принимаются данные исходного года; показатели, полученные за последующие годы, отражают только процент прироста, что делает расчет точным, а картину более объективной; при оперировании относительными данными удается исключить влияние на снижение или рост преступности увеличения или снижения численности жителей, достигших возраста уголовной ответственности.

Темп прироста преступности вычисляется в процентах. Темп прироста преступности показывает, насколько увеличился или уменьшился последующий уровень преступности по сравнению с предыдущим периодом. Принято условное обозначение вектора темпа прироста: если процентное соотношение возрастает, ставится знак "плюс", если снижается - ставится знак "минус".

Применительно к условиям нашей задаче следует применить соответствующие формулы и вычислить рост и прирост преступности.

1) Темп роста преступности исчисляется по формуле^

Тр=U/U2 * 100 %,

где U - показатель уровня преступности, а U2 - показатель уровня преступности предшествующего периода. Так темп роста преступности по условиям задачи составит - 12390/11800*100 %=1,05 %.

2) Темп прироста преступности рассчитывается по следующей формуле:

Тпр=Тр-100 %.

Так темп прироста по условиям задачи составит 1,05 %-100 %= 98,95 %.

Коэффициент преступности - это конкретный обобщающий показатель общего количества учтенных преступлений, соотнесенного с численностью населения. Он расшифровывается как число преступлений на 100 тыс., 10 тыс. или 1 тыс. населения и является объективным измерителем преступности, позволяющим сопоставлять ее уровни в разных регионах и в разные годы.

Коэффициент преступности помогает более адекватно оценить и динамику уровня преступности, рассчитанного на душу населения.

Коэффициент преступности рассчитывается по формуле:

КП = (П х 100000): Н,

где П - абсолютное число учтенных преступлений; а Н - абсолютная численность всего населения.

Оба показателя берутся в одном и том же территориальном и временном объеме. Число преступлений обычно рассчитывается на 100 тыс. населения. Но при малых числах преступлений и населения (в городе, районе, на предприятии) коэффициент преступности может рассчитываться на 10 тыс. или на 1 тыс. жителей. в любом случае эти числа означают размерность рассматриваемого коэффициента, которая обязательно указывается: число преступлений на 100 тыс. или 10 тыс. населения.

Рассчитаем коэффициент преступности применительно к условиям нашей задачи:

1) КП= (12390*100000): 1 770 000 чел. = 700 (в текущем году).

2) КП= (11800*100000): 1 475 000 = 800 (в предыдущем году).

Преступность в регионе снижается, поскольку, анализируя коэффициент преступности, можно сделать вывод, что при увеличении населения в регионе (на 16,6 %), и незначительном увеличении количества преступлений на 1,05 %, в целом прирост преступности снижается (-98,95 %).

Задача 2

Возраст 11 молодых специалистов учреждения, принятых на службу, в текущем году составил соответственно 19,25,21,23,23,23,25,20,18,20,21 лет. Произведите сводку и группировку данных в виде статистической таблицы частот. Для наглядности постройте полигон частот, а также найдите модальное, медианное и среднее значение возраста принятых сотрудников.

Решение: Группировка - это разбиение совокупности на группы, однородные по какому-либо признаку. С точки зрения отдельных единиц совокупности группировка - это объединение отдельных единиц совокупности в группы, однородные по каким-либо признакам.

Метод группировки основывается на следующих категориях - это группировочный признак, интервал группировки и число групп.

Группировочный признак - это признак, по которому происходит объединение отдельных единиц совокупности в однородные группы.

Интервал очерчивает количественные границы групп. Как правило, он представляет собой промежуток между максимальными и минимальными значениями признака в группе.

Определение числа групп .

Число групп приближенно определяется по формуле Стэрджесса:

n = 1 + 3,2log n = 1 + 3,2log(11) = 4.

Ширина интервала составит:

Xmax - максимальное значение группировочного признака в совокупности. Xmin - минимальное значение группировочного признака. Определим границы группы.

Номер группы

Нижняя граница

Верхняя граница

Одно и тоже значение признака служит верхней и нижней границами двух смежных (предыдущей и последующей) групп.

Для каждого значения ряда подсчитаем, какое количество раз оно попадает в тот или иной интервал. Для этого сортируем ряд по возрастанию.

№ совокупности

Частота fi

Полигон частоты - это график плотности и вероятности случайной величины, представляет собой ломанную соединяющую точки, соответствующие срединным значениям интервалов группировки частотам этих интервалов.

Среднее значение :

Мода льное значение. Мода - наиболее часто встречающееся значение признака у единиц данной совокупности.

где x 0 - начало модального интервала; h - величина интервала; f 2 - частота, соответствующая модальному интервалу; f 1 - предмодальная частота; f 3 - послемодальная частота.

Выбираем в качестве начала интервала 19.75, так как именно на этот интервал приходится наибольшее количество.

Наиболее часто встречающееся значение ряда - 20.92.

Медиана . Медиана делит выборку на две части: половина вариант меньше медианы, половина - больше.

В интервальном ряду распределения сразу можно указать только интервал, в котором будут находиться мода или медиана. Медиана соответствует варианту, стоящему в середине ранжированного ряда. Медианным является интервал 19.75-21.5, т.к. в этом интервале накопленная частота S, больше медианного номера (медианным называется первый интервал, накопленная частота S которого превышает половину общей суммы частот).

Таким образом, 50 % единиц совокупности будут меньше по величине 21.28.

Задача 3

Определите требуемый объем выборки для исследования среднего возраста аттестованных сотрудников ФСИН России при условии, что среднее квадратическое отклонение составляет 10 лет, а максимально допустимая ошибка выборки не должна превышать 5 %.

Решение ищем по формуле определения численности выборки для повторного отбора.

Ф(t) = г/2 = 0.95/2 = 0.475 и этому значению по таблице Лапласа соответствует t=1.96.

Оценка среднеквадратического отклонения s = 10; ошибка выборки е = 5.

Задача 4

В следующей таблице даны официальные ведомственные статистические сведения о распределении осужденных по срокам заключения (наказания) за 2002-2011 годы, размещенные на официальном сайте ФСИН России: www.fsin.su. Найдите размах и коэффициент вариации количества осужденных за каждый календарный год и сделайте выводы об однородности структуры данного статистического признака.

Основным показателем, характеризующим однородность данных, является коэффициент вариации. В статистике принято считать, что, если значение коэффициента менее 33 %, то совокупность данных является однородной, если более 33 %, то - неоднородной.

Коэффициент вариации

Поскольку v ? 30 %, то совокупность однородна, а вариация слабая. Полученным результатам можно доверять.

Срок наказания

От 1 до 3 лет

От 3 до 5 лет

От 5 до 10 лет

От 10 до 15 лет

Свыше 15 лет

Максимальное значение (функция МАКС)

Минимальное значение (функция МИН)

Размах вариации

Среднее значение (функция СРЗНАЧ)

Среднее квадратическое отклонение (функция СТАНДАР ЛОНА)

Коэффициент вариации

Простая средняя :

Мода льное значение

Медиана

Находим середину ранжированного ряда: h = (n+1) / 2 = (7+1) / 2 = 4. Этому номеру соответствует значение ряда 70580. Следовательно, медиана Me = 70580.

Показатели вариации . .

R = X max - X min .

R = 295916-2250 = 293666.

Среднее линейное отклонение

Каждое значение ряда отличается от другого в среднем на 90895.71.

Дисперсия

(средняя ошибка выборки).

Каждое значение ряда отличается от среднего значения 103008 в среднем на 107169.83.

Коэффициент вариации - мера относительного разброса значений совокупности: показывает, какую долю среднего значения этой величины составляет ее средний разброс.

Поскольку v>

или

Коэффициент осцилляции

Простая средняя :

Мода

Мода отсутствует (все значения ряда индивидуальные).

Медиана . Медиана - значение признака, которое делит единицы ранжированного ряда на две части. Медиана соответствует варианту, стоящему в середине ранжированного ряда.

Находим середину ранжированного ряда: h = (n+1) / 2 = (7+1) / 2 = 4. Этому номеру соответствует значение ряда 76186. Следовательно, медиана Me = 76186.

Показатели вариации . Абсолютные показатели вариации .

Размах вариации - разность между максимальным и минимальным значениями признака первичного ряда.

R = X max - X min

R = 291112-3101 = 288011.

Среднее линейное отклонение - вычисляют для того, чтобы учесть различия всех единиц исследуемой совокупности.

Каждое значение ряда отличается от другого в среднем на 83422.69.

Дисперсия - характеризует меру разброса около ее среднего значения (мера рассеивания, т.е. отклонения от среднего).

Среднее квадратическое отклонение (средняя ошибка выборки).

Каждое значение ряда отличается от среднего значения 97334.29 в среднем на 100750.25.

Относительные показатели вариации . К относительным показателям вариации относят: коэффициент осцилляции, линейный коэффициент вариации, относительное линейное отклонение.

Коэффициент вариации - мера относительного разброса значений совокупности: показывает, какую долю среднего значения этой величины составляет ее средний разброс.

Поскольку v>70 %, то совокупность приближается к грани неоднородности, а вариация сильная.

В таком случае при практических исследованиях различными статистическими приемами приводят совокупность к однородному виду.

Линейный коэффициент вариации или Относительное линейное отклонение - характеризует долю усредненного значения признака абсолютных отклонений от средней величины.

Коэффициент осцилляции - отражает относительную колеблемость крайних значений признака вокруг средней.

Простая средняя :

Мода льное значение. Мода - наиболее часто встречающееся значение признака у единиц данной совокупности.

Мода отсутствует (все значения ряда индивидуальные).

Медиана . Медиана - значение признака, которое делит единицы ранжированного ряда на две части. Медиана соответствует варианту, стоящему в середине ранжированного ряда.

Находим середину ранжированного ряда: h = (n+1) / 2 = (7+1) / 2 = 4. Этому номеру соответствует значение ряда 71093. Следовательно, медиана Me = 71093.

Показатели вариации . Абсолютные показатели вариации .

Размах вариации - разность между максимальным и минимальным значениями признака первичного ряда.

R = X max - X min

R = 243852-3856 = 239996.

Среднее линейное отклонение - вычисляют для того, чтобы учесть различия всех единиц исследуемой совокупности.

Каждое значение ряда отличается от другого в среднем на 68998.08.

Дисперсия - характеризует меру разброса около ее среднего значения (мера рассеивания, т.е. отклонения от среднего).

Среднее квадратическое отклонение (средняя ошибка выборки).

Каждое значение ряда отличается от среднего значения 85765.57 в среднем на 82541.55.

Относительные показатели вариации . К относительным показателям вариации относят: коэффициент осцилляции, линейный коэффициент вариации, относительное линейное отклонение.

Коэффициент вариации - мера относительного разброса значений совокупности: показывает, какую долю среднего значения этой величины составляет ее средний разброс.

Поскольку v>70 %, то совокупность приближается к грани неоднородности, а вариация сильная.

Коэффициент вариации значительно больше 33 %. Следовательно, рассмотренная совокупность неоднородна и средняя для нее недостаточна типична. В таком случае при практических исследованиях различными статистическими приемами приводят совокупность к однородному виду.

Линейный коэффициент вариации или Относительное линейное отклонение - характеризует долю усредненного значения признака абсолютных отклонений от средней величины.

Коэффициент осцилляции - отражает относительную колеблемость крайних значений признака вокруг средней.

:

Мода . Мода - наиболее часто встречающееся значение признака у единиц данной совокупности.

Мода отсутствует (все значения ряда индивидуальные).

Медиана . Медиана - значение признака, которое делит единицы ранжированного ряда на две части. Медиана соответствует варианту, стоящему в середине ранжированного ряда.

Находим середину ранжированного ряда: h = (n+1) / 2 = (7+1) / 2 = 4. Этому номеру соответствует значение ряда 74588. Следовательно, медиана Me = 74588.

Показатели вариации . Абсолютные показатели вариации .

Размах вариации - разность между максимальным и минимальным значениями признака первичного ряда.

R = X max - X min ,

R = 242984-5304 = 237680.

Среднее линейное отклонение - вычисляют для того, чтобы учесть различия всех единиц исследуемой совокупности.

Каждое значение ряда отличается от другого в среднем на 73148.73.

Дисперсия - характеризует меру разброса около ее среднего значения (мера рассеивания, т.е. отклонения от среднего).

Среднее квадратическое отклонение (средняя ошибка выборки).

Каждое значение ряда отличается от среднего значения 92104.14 в среднем на 82873.1.

Относительные показатели вариации . К относительным показателям вариации относят: коэффициент осцилляции, линейный коэффициент вариации, относительное линейное отклонение.

Коэффициент вариации - мера относительного разброса значений совокупности: показывает, какую долю среднего значения этой величины составляет ее средний разброс.

Поскольку v>70 %, то совокупность приближается к грани неоднородности, а вариация сильная.

Коэффициент вариации значительно больше 33 %. Следовательно, рассмотренная совокупность неоднородна и средняя для нее недостаточна типична. В таком случае при практических исследованиях различными статистическими приемами приводят совокупность к однородному виду.

Линейный коэффициент вариации или Относительное линейное отклонение - характеризует долю усредненного значения признака абсолютных отклонений от средней величины.

Коэффициент осцилляции - отражает относительную колеблемость крайних значений признака вокруг средней.

Простая средняя арифметическая :

Мода . Мода - наиболее часто встречающееся значение признака у единиц данной совокупности.

Мода отсутствует (все значения ряда индивидуальные).

Медиана . Медиана - значение признака, которое делит единицы ранжированного ряда на две части. Медиана соответствует варианту, стоящему в середине ранжированного ряда.

Находим середину ранжированного ряда: h = (n+1) / 2 = (7+1) / 2 = 4. Этому номеру соответствует значение ряда 76678. Следовательно, медиана Me = 76678

Показатели вариации . Абсолютные показатели вариации .

Размах вариации - разность между максимальным и минимальным значениями признака первичного ряда.

R = X max - X min .

R = 249346-6536 = 242810.

Среднее линейное отклонение - вычисляют для того, чтобы учесть различия всех единиц исследуемой совокупности.

Каждое значение ряда отличается от другого в среднем на 79680.53.

Дисперсия - характеризует меру разброса около ее среднего значения (мера рассеивания, т.е. отклонения от среднего).

Среднее квадратическое отклонение (средняя ошибка выборки).

Каждое значение ряда отличается от среднего значения 99551.71 в среднем на 87389.04.

Относительные показатели вариации . К относительным показателям вариации относят: коэффициент осцилляции, линейный коэффициент вариации, относительное линейное отклонение.

Коэффициент вариации - мера относительного разброса значений совокупности: показывает, какую долю среднего значения этой величины составляет ее средний разброс.

Поскольку v>70 %, то совокупность приближается к грани неоднородности, а вариация сильная.

Коэффициент вариации значительно больше 33 %. Следовательно, рассмотренная совокупность неоднородна и средняя для нее недостаточна типична. В таком случае при практических исследованиях различными статистическими приемами приводят совокупность к однородному виду.

Линейный коэффициент вариации или Относительное линейное отклонение - характеризует долю усредненного значения признака абсолютных отклонений от средней величины.

Коэффициент осцилляции - отражает относительную колеблемость крайних значений признака вокруг средней.

Простая средняя арифметическая :

Мода . Мода - наиболее часто встречающееся значение признака у единиц данной совокупности.

Мода отсутствует (все значения ряда индивидуальные).

Медиана . Медиана - значение признака, которое делит единицы ранжированного ряда на две части. Медиана соответствует варианту, стоящему в середине ранжированного ряда.

Находим середину ранжированного ряда: h = (n+1) / 2 = (7+1) / 2 = 4. Этому номеру соответствует значение ряда 76461. Следовательно, медиана Me = 76461.

Показатели вариации . Абсолютные показатели вариации .

Размах вариации - разность между максимальным и минимальным значениями признака первичного ряда.

R = X max - X min .

R = 254722-6704 = 248018.

Среднее линейное отклонение - вычисляют для того, чтобы учесть различия всех единиц исследуемой совокупности.

Каждое значение ряда отличается от другого в среднем на 82302.82.

Дисперсия - характеризует меру разброса около ее среднего значения (мера рассеивания, т.е. отклонения от среднего).

Среднее квадратическое отклонение (средняя ошибка выборки).

Каждое значение ряда отличается от среднего значения 102346.71 в среднем на 89787.88.

Относительные показатели вариации . К относительным показателям вариации относят: коэффициент осцилляции, линейный коэффициент вариации, относительное линейное отклонение.

Коэффициент вариации - мера относительного разброса значений совокупности: показывает, какую долю среднего значения этой величины составляет ее средний разброс.

Поскольку v>70 %, то совокупность приближается к грани неоднородности, а вариация сильная.

Коэффициент вариации значительно больше 33 %. Следовательно, рассмотренная совокупность неоднородна и средняя для нее недостаточна типична. В таком случае при практических исследованиях различными статистическими приемами приводят совокупность к однородному виду.

Линейный коэффициент вариации или Относительное линейное отклонение - характеризует долю усредненного значения признака абсолютных отклонений от средней величины.

Коэффициент осцилляции - отражает относительную колеблемость крайних значений признака вокруг средней.

Простая средняя арифметическая :

Мода . Мода - наиболее часто встречающееся значение признака у единиц данной совокупности.

Мода отсутствует (все значения ряда индивидуальные).

Медиана . Медиана - значение признака, которое делит единицы ранжированного ряда на две части. Медиана соответствует варианту, стоящему в середине ранжированного ряда.

Находим середину ранжированного ряда: h = (n+1) / 2 = (7+1) / 2 = 4. Этому номеру соответствует значение ряда 78959. Следовательно, медиана Me = 78959.

Показатели вариации . Абсолютные показатели вариации .

Размах вариации - разность между максимальным и минимальным значениями признака первичного ряда.

R = X max - X min .

R = 261334-7635 = 253699.

Среднее линейное отклонение - вычисляют для того, чтобы учесть различия всех единиц исследуемой совокупности.

Каждое значение ряда отличается от другого в среднем на 83791.55.

Дисперсия - характеризует меру разброса около ее среднего значения (мера рассеивания, т.е. отклонения от среднего).

Среднее квадратическое отклонение (средняя ошибка выборки).

Каждое значение ряда отличается от среднего значения 104898.86 в среднем на 91616.15.

Относительные показатели вариации . К относительным показателям вариации относят: коэффициент осцилляции, линейный коэффициент вариации, относительное линейное отклонение.

Коэффициент вариации - мера относительного разброса значений совокупности: показывает, какую долю среднего значения этой величины составляет ее средний разброс.

Поскольку v>70 %, то совокупность приближается к грани неоднородности, а вариация сильная.

Коэффициент вариации значительно больше 33 %. Следовательно, рассмотренная совокупность неоднородна и средняя для нее недостаточна типична. В таком случае при практических исследованиях различными статистическими приемами приводят совокупность к однородному виду.

Линейный коэффициент вариации или Относительное линейное отклонение - характеризует долю усредненного значения признака абсолютных отклонений от средней величины.

Коэффициент осцилляции - отражает относительную колеблемость крайних значений признака вокруг средней.

Простая средняя арифметическая :

Мода . Мода - наиболее часто встречающееся значение признака у единиц данной совокупности.

Мода отсутствует (все значения ряда индивидуальные).

Медиана . Медиана - значение признака, которое делит единицы ранжированного ряда на две части. Медиана соответствует варианту, стоящему в середине ранжированного ряда.

Находим середину ранжированного ряда: h = (n+1) / 2 = (7+1) / 2 = 4. Этому номеру соответствует значение ряда 75916. Следовательно, медиана Me = 75916.

Показатели вариации . Абсолютные показатели вариации .

Размах вариации - разность между максимальным и минимальным значениями признака первичного ряда.

R = X max - X min .

R = 263863-8145 = 255718.

Среднее линейное отклонение - вычисляют для того, чтобы учесть различия всех единиц исследуемой совокупности.

Каждое значение ряда отличается от другого в среднем на 82767.96.

Дисперсия - характеризует меру разброса около ее среднего значения (мера рассеивания, т.е. отклонения от среднего).

Среднее квадратическое отклонение (средняя ошибка выборки).

Каждое значение ряда отличается от среднего значения 103440.71 в среднем на 91207.92.

Относительные показатели вариации . К относительным показателям вариации относят: коэффициент осцилляции, линейный коэффициент вариации, относительное линейное отклонение.

Коэффициент вариации - мера относительного разброса значений совокупности: показывает, какую долю среднего значения этой величины составляет ее средний разброс.

Поскольку v>70 %, то совокупность приближается к грани неоднородности, а вариация сильная.

Коэффициент вариации значительно больше 33 %. Следовательно, рассмотренная совокупность неоднородна и средняя для нее недостаточна типична. В таком случае при практических исследованиях различными статистическими приемами приводят совокупность к однородному виду.

Линейный коэффициент вариации или Относительное линейное отклонение - характеризует долю усредненного значения признака абсолютных отклонений от средней величины.

Коэффициент осцилляции - отражает относительную колеблемость крайних значений признака вокруг средней.

Простая средняя арифметическая :

Мода . Мода - наиболее часто встречающееся значение признака у единиц данной совокупности.

Мода отсутствует (все значения ряда индивидуальные).

Медиана . Медиана - значение признака, которое делит единицы ранжированного ряда на две части. Медиана соответствует варианту, стоящему в середине ранжированного ряда.

Находим середину ранжированного ряда: h = (n+1) / 2 = (7+1) / 2 = 4. Этому номеру соответствует значение ряда 78019. Следовательно, медиана Me = 78019.

Показатели вариации . Абсолютные показатели вариации .

Размах вариации - разность между максимальным и минимальным значениями признака первичного ряда.

R = X max - X min

R = 260094-7798 = 252296.

Среднее линейное отклонение - вычисляют для того, чтобы учесть различия всех единиц исследуемой совокупности.

Каждое значение ряда отличается от другого в среднем на 77827.76.

Дисперсия - характеризует меру разброса около ее среднего значения (мера рассеивания, т.е. отклонения от среднего).

Среднее квадратическое отклонение (средняя ошибка выборки).

Каждое значение ряда отличается от среднего значения 99212.29 в среднем на 88081.39.

Относительные показатели вариации . К относительным показателям вариации относят: коэффициент осцилляции, линейный коэффициент вариации, относительное линейное отклонение.

Коэффициент вариации - мера относительного разброса значений совокупности: показывает, какую долю среднего значения этой величины составляет ее средний разброс.

Поскольку v>70 %, то совокупность приближается к грани неоднородности, а вариация сильная.

Коэффициент вариации значительно больше 33 %. Следовательно, рассмотренная совокупность неоднородна и средняя для нее недостаточна типична. В таком случае при практических исследованиях различными статистическими приемами приводят совокупность к однородному виду.

Линейный коэффициент вариации или Относительное линейное отклонение - характеризует долю усредненного значения признака абсолютных отклонений от средней величины.

Коэффициент осцилляции - отражает относительную колеблемость крайних значений признака вокруг средней.

Простая средняя арифметическая :

Мода . Мода - наиболее часто встречающееся значение признака у единиц данной совокупности.

Мода отсутствует (все значения ряда индивидуальные).

Медиана . Медиана - значение признака, которое делит единицы ранжированного ряда на две части. Медиана соответствует варианту, стоящему в середине ранжированного ряда.

Находим середину ранжированного ряда: h = (n+1) / 2 = (7+1) / 2 = 4. Этому номеру соответствует значение ряда 72248. Следовательно, медиана Me = 72248.

Показатели вариации . Абсолютные показатели вариации .

Размах вариации - разность между максимальным и минимальным значениями признака первичного ряда.

R = X max - X min .

R = 242137-7173 = 234964.

Среднее линейное отклонение - вычисляют для того, чтобы учесть различия всех единиц исследуемой совокупности.

Каждое значение ряда отличается от другого в среднем на 70459.02.

Дисперсия - характеризует меру разброса около ее среднего значения (мера рассеивания, т.е. отклонения от среднего).

Среднее квадратическое отклонение (средняя ошибка выборки).

Каждое значение ряда отличается от среднего значения 91375.14 в среднем на 80674.43.

Относительные показатели вариации . К относительным показателям вариации относят: коэффициент осцилляции, линейный коэффициент вариации, относительное линейное отклонение.

Коэффициент вариации - мера относительного разброса значений совокупности: показывает, какую долю среднего значения этой величины составляет ее средний разброс.

Поскольку v>70 %, то совокупность приближается к грани неоднородности, а вариация сильная.

Коэффициент вариации значительно больше 33 %. Следовательно, рассмотренная совокупность неоднородна и средняя для нее недостаточна типична. В таком случае при практических исследованиях различными статистическими приемами приводят совокупность к однородному виду.

Линейный коэффициент вариации или Относительное линейное отклонение - характеризует долю усредненного значения признака абсолютных отклонений от средней величины.

Коэффициент осцилляции - отражает относительную колеблемость крайних значений признака вокруг средней.

Задача 5

В условиях предыдущей задачи произведите перегруппировку заданных интервалов сроков наказания с целью улучшения относительных показателей вариации признака в 2010 году. Постройте гистограммы распределения осужденных по срокам заключения (наказания) за 2010 год до и после произведенной группировки данных и сделайте выводы об однородности структуры исследуемого статистического признака.

Решение:

Поскольку v>30 %, но v<70 %, то вариация умеренная.

Коэффициент вариации значительно больше 33 %. Следовательно, рассмотренная совокупность неоднородна и средняя для нее недостаточна типична.

Совершим перегруппировку данных следующим образом:

В группу 1) входит группы: до года, год, от 1-3 лет соответственно 156978.

В группу 2) входит от группы свыше 3 до 5 лет полностью и 1\5 от группы свыше 5 до 10 лет получаем 1\5*260094+168651=220669,8.

В группу 3) входит 3\5 группы от 5 до 10 т.е. 3\5*260094=156056,4.

Группа 4) (1\5*260094)+(1\5*78019)=67622,6.

Группа 5) 3\5*78019=46811,4.

Группа 6 30744+(1\5*78019)=46347,8.

Гистограмма. Для получения вывода о однородности исследуемого статистического признака Вычислим коэффициент вариации:

Поскольку v>30 %, но v<70 %, то вариация умеренная.

Коэффициент вариации значительно больше 33 %. Следовательно, рассмотренная совокупность неоднородна и средняя для нее недостаточна типична.

Задача 6

Изложить в краткой форме (тезисно, на 1-2 страницах) содержание и результаты недавнего официального статистического исследования в социально-правовой сфере (тематика - на Ваш выбор, ссылки на Интернет-ресурсы - обязательны), сделать выводы и выдвинуть соответствующие статистические гипотезы на краткосрочную перспективу.

В качестве официального статистического исследования было взято исследование о просроченной задолженности по заработной плате на 1 декабря 2015 года.

На 1 декабря 2015 г., по сведениям организаций (не относящихся к субъектам малого предпринимательства), суммарная задолженность по заработной плате по кругу наблюдаемых видов экономической деятельности составила3900 млн. рубл ей и по сравнению с 1 ноября 2015 г. увеличилась на 395 млн. рублей (на 11,3 %).

Просроченная задолженность по заработной плате из-за отсутствия у организаций собственных средств на 1 декабря 2015г. составила3818 млн. рубл ей , или 97,9 % общей суммы просроченной задолженности. По сравнению с 1 ноября 2015г. она увеличилась на 389 млн. рублей (на 11,3 %). Задолженность из-за несвоевременного получения денежных средств из бюджетов всех уровней составила82 млн. рубл ей и увеличилась по сравнению с 1 ноября 2015г. на 6 млн. рублей (на 7,7 %), в том числе задолженность из федерального бюджета составила 62 млн. рублей и снизилась по сравнению с 1 ноября 2015г. на 6 млн. рублей (на 8,6 %),бюджетов субъектов Российской Федерации составила 1,1 млн. рублей (увеличение на 0,2 млн. рублей или на 20,7 %), местных бюджетов - 19 млн. рублей (увеличение на 12 млн. рублей, или в 2,5 раза).

В добыче полезных ископаемых, обрабатывающих производствах, здравоохранении и предоставлении социальных услуг, рыболовстве и рыбоводстве 100 % просроченной задолженности по заработной плате образовано из-за нехватки у организаций собственных средств.

В общем объеме просроченной задолженности по заработной плате 37 % приходится на обрабатывающие производства, 29 % - на строительство, 9 % - на производство и распределение электроэнергии, газа и воды, 7 % - на транспорт, 6 % - на добычу полезных ископаемых, 5 % - на сельское хозяйство, охоту и предоставление услуг в этих областях, лесозаготовки.

Объем просроченной задолженности по заработной плате на 1 декабря 2015г. составил менее 1 % месячного фонда заработной платы работников наблюдаемых видов экономической деятельности.

Задолженность по заработной плате за последний месяц , за который производились начисления, в общем объеме просроченной задолженности составила в среднем 29 %: производстве и распределении электроэнергии, газа и воды - 75 %, деятельности в области образования - 37 %, здравоохранения и предоставления социальных услуг - 35 %, научных исследований и разработок - 32 %, строительства - 29 %, транспорта - 23 %, обрабатывающих производствах - 22 %.

Из общей суммы невыплаченной заработной платы на долги, образовавшиеся в 2014г.,приходится 457 млн. рублей (11,7 %), в 2013г. и ранее - 657 млн. рублей (16,8 %).

В целом наблюдая картину задолженности по заработной плате в динамике (http://www.gks.ru/bgd/free/B04_03/IssWWW.exe/Stg/d06/Image 5258.gif), можно сделать вывод что значительный спад придется на январь, февраль 2016 года.

Основной процент задолженности приходится на обрабатывающие производства - 37 %, 29 % - на строительство скорее всего это происходит в связи со снижением потребительского спроса на продукцию, соответственно уменьшается прибыль.

Выдвинем гипотезу. С января 2016 года процент задолженности будет сокращаться, в связи с распределением годового бюджета на будущий год с учетом частичного погашения задолженности по заработной плате, и составит 2700 млн. динамика преступность вариация медианное

Для проверки гипотезы (За основу берем данный таблицы http://www.gks.ru/bgd/free/B04_03/IssWWW.exe/Stg/d06/Image5258.gif).

Построим дискретный вариационный ряд. Для этого отсортируем ряд по возрастанию и подсчитаем количество повторения для каждого элемента ряда.

Вычислим среднюю:

Вычислим дисперсию. Дисперсия - характеризует меру разброса около ее среднего значения (мера рассеивания, т.е. отклонения от среднего).

Используя односторонний критерий с б = 0,05, проверить эту гипотезу, если в выборке из n =24 месяца средний показатель оказался равным 2741,25, а дисперсия известна и равна у =193469,27

Решение . Среднеквадратическое отклонение:

Выдвигается нулевая гипотеза H 0 о том, что значение математического ожидания генеральной совокупности равно числу м 0: = 2700.

Альтернативная гипотеза:

H 1: м? 2700, критическая область - двусторонняя.

Для проверки нулевой гипотезы используется случайная величина:

где x - выборочное среднее; S - среднеквадратическое отклонение генеральной совокупности.

Если нулевая гипотеза верна, то случайная величина T имеет стандартное нормальное распределение. Критическое значение статистики T определяется исходя из вида альтернативной гипотезы:

P(|T|

Найдем экспериментальное значение статистики T:

Поскольку объем выборки достаточно большой (n>30), то вместо истинного значения среднеквадратического отклонения можно использовать его оценку S=439.851.

Ф(t кр)=(1-б)/2 = (1-0.05)/2 = 0.475.

По таблице функции Лапласа найдем, при каком t kp значение Ф(t kp) = 0.475.

Экспериментальное значение критерия T не попало в критическую область T ? t kp , поэтому нулевую гипотезу следует принять. Значение математического ожидания генеральной совокупности можно принять равным 2700

Список используемой литературы

1. Казанцев С.Я. Правовая статистика: Учебник / Под ред. С.Я. Казанцева, С.Я. Лебедева - М.: ЮНИТИ-ДАНА: Закон и право, 2009 г.

2. Курыс?в К.Н. Основы правовой статистики: учеб. пособие / К.Н. Курыс?в; ВЮИ ФСИН России. - Владимир, 2005. - 44 с.

3. Макарова Н.В. Статистика в Exсel: учеб. пособие / Н.В. Макарова, В.Я. Трофимец. - М.: Финансы и статистика.

4. Кондратюк Л.В., Овчинский В.С. Криминологическое измерение /под ред. К.К. Горяинова. - М.: Норма, 2008.

5. Яковлев В.Б. Статистика. Расчеты в Microsoft Excel: учеб. Пособие для вузов / В.Б. Яковлев. - М.: Колосc, 2005. - 352 c.

Размещено на Allbest.ru

...

Подобные документы

    Исследование преступности несовершеннолетних с позиций объекта криминологического исследования. Взаимосвязь подросткового алкоголизма, токсикомании, наркомании и преступности. Причины и условия и пути профилактики преступности несовершеннолетних.

    курсовая работа , добавлен 08.04.2011

    Методика конкретного криминологического исследования. Криминологическая характеристика насильственной преступности и ее предупреждение. Общественная опасность и тяжесть причиняемых последствий насильственных преступлений. Статистика преступности.

    контрольная работа , добавлен 15.01.2011

    Формула расчета коэффициента преступности. Расчет среднегодовой нагрузки на одного судью, среднего срока расследования уголовных дел, среднегодовых темпов роста преступности. Расчет показателей моды, медианы, вариации и среднеквадратического отклонения.

    контрольная работа , добавлен 20.04.2011

    Изучение основ корыстной преступности: понятие, элементы, объекты и субъективные стороны. Описание социального и специально-криминологического предупреждения преступности из корыстных побуждений. Разработка комплекса мер по предупреждению преступлений.

    дипломная работа , добавлен 09.11.2012

    Понятие и предмет криминологического прогнозирования. Установление возможных изменений в состоянии, уровне, структуре и динамике преступности в будущем. Оценка развития преступности в перспективе. Планирование борьбы с преступностью, ее предупреждение.

    курсовая работа , добавлен 29.05.2015

    Исследование видов криминологического прогнозирования и проектирования в сфере преступности. Особенности прогнозирования преступности несовершеннолетних в Республике Казахстан. Разработка программ борьбы с преступностью на общегосударственном уровне.

    дипломная работа , добавлен 25.10.2015

    Преступность несовершеннолетних как объект криминологического исследования. Основные, криминологические характеристики преступности несовершеннолетних. Состояние преступности. Особенности личностной характеристики несовершеннолетних.

    реферат , добавлен 01.04.2003

    Тенденции криминального поведения современных женщин: рост и устойчивый удельный вес тяжких и рецидивных преступлений, омоложение преступниц и увеличение количества женщин пожилого возраста среди осужденных. Общие меры предупреждения женской преступности.

    реферат , добавлен 01.03.2014

    Расчет относительных показателей структуры и координации категорий осужденных по степени тяжести совершенных преступлений. Коэффициенты преступности и судимости по федеральным округам и в целом по России. Расчет показателей динамики с помощью MS Excel.

    контрольная работа , добавлен 31.07.2011

    Понятие, виды, значения, детерминанты латентной преступности, причины ее возникновения, предупреждение и способы сокращения. Определение уровня и анализ структуры преступности. Системный подход в изучении латентной преступности как социального явления.

Реферат

Средние величины и показатели вариации

1.Сущность средних в статистике

2.Виды средних величин и способы их расчёта

3.Основные показатели вариации и их значение в статистике

1. Сущность средних ве личин в статистике

В процессе изучения массовых социально-экономических явлений возникает необходимость выявления их общих свойств, типичных размеров и характерных признаков. Необходимость в обобщающем среднем показателе возникает в том случае, когда признаки, характеризующие единицы изучаемой совокупности, количественно варьируют. Например, размер дневной выработки ткачей на текстильной фабрике зависит от общих условий производства, ткачи используют одинаковое сырьё, работают на одинаковых станках и т.д. В то же время часовая выработка отдельных ткачей колеблется, т.е. варьирует, так как зависит от индивидуальных особенностей каждого ткача (его квалификации, профессионального опыта и т.д.). Чтобы характеризовать дневную выработку всех ткачей предприятия, необходимо исчислить среднюю величину дневной выработки, так, как, только, в, этом, показателе найдут отражение общие для ткачей условия производства.

Таким образом, исчисление средних обобщающих показателей означает отвлечение (абстрагирование) от особенностей, отражающихся в величине признака у отдельных единиц, и выявление общих для данной совокупности типичных черт и свойств.

Таким образом, средней величиной в статистике является обобщённая, количественна характеристика признака и статистической совокупности. Она выражает характерную, типичную величину признака у единиц совокупности, образующихся в данных условиях места и времени под влиянием всей совокупности факторов. Действие разнообразных факторов порождает колебание, вариацию усредняемого признака. Средняя величина является общей мерой их действия, равнодействующей всех этих факторов. Средняя величина характеризует совокупность по усредняемому признаку, но относится к единице совокупности. Например, средняя выработка продукции на одного рабочего данного предприятия представляет собой отношение всей выработки (за любой период времени) к общей (средней за тот же период) численности его рабочих. Она характеризует производительность труда данной совокупности, но относится к одному рабочему. В средней величине массового явления погашаются индивидуальные различия единиц статистической совокупности в значениях усредняемого признака, обусловленные случайными обстоятельствами. Вследствие этого взаимопогашения в средней проявлявляется общее, закономерное свойство данной статистической совокупности явлений. Между средней и индивидуальными значениями осреднённого признака существует диалектическая связь как между общим и отдельным. Средняя является важнейшей категорией статистической науки и важнейшей формой обобщающих показателей. Многие явления общественной жизни становятся ясными, определёнными, лишь, будучи обобщенными, в форме средних величин. Таковы, например, упомянутая выше производительность труда, совокупность рабочих, урожайность сельскохозяйственных культур и т.д. Средняя выступает в статистике важнейшим методом научного обобщения. В этом смысле говорят о методе средних величин, который широко применяется в экономической науке. Многие категории экономической науки определяются с использованием понятия средней.

Основным условием правильного применения средней величины является однородность статистической совокупности по усредняемому признаку. Однородной статистической совокупностью называется такая совокупность, в которой её составные элементы (единицы) сходны между собой по существенным для данного исследования признакам и относятся к одному и тому же типу явлений. Однородная совокупность, будучи однородна по одним признакам, может быть разнородной по другим. Только в средних для таких совокупностей проявляются специфические особенности, закономерности развития анализируемого явления. Средняя вычисленная для неоднородной статистической совокупности, т.е. такой в которой объединены качественно различные явления, теряет своё научное значений. Такие средние являются фиктивными, не только не дающими представления о действительности, но и искажающими её. Для формирования однородных статистических совокупностей производится соответствующая группировка. С помощью группировок и в качественно однородной совокупности могут быть выделены характерные в количественном отношении группы. Для каждой из них может быть вычислена своя средняя, называемая средней групповой (частной) в отличие от общей средней (для совокупности в целом).

2. Виды средних величин

Большое значение в методологии средних величин имеют вопросы выбора формы средней, т.е. формулы по которой можно правильно вычислить среднюю величину, и выбора весов средней. Наиболее часто в статистике применяются средняя агрегатная, средняя арифметическая, средняя гармоническая, средняя геометрическая, средняя квадратичная, мода и медиана. Применение той или иной формулы зависит от содержания усредняемого признака и конкретных данных, по которым её необходимо рассчитать. Для выбора формы средней можно воспользоваться так называемым средним исходным соотношением.

2.1 Средняя арифметическая

Средняя арифметическая - одна из наиболее распространенных форм средней величины. Средняя арифметическая рассчитывается как частное от деления суммы индивидуальных значений (вариантов) варьирующего признака на их число. Средняя арифметическая применяется в тех случаях, когда объём варьирующего признака явлений однородной статистической совокупности, образуется путём суммирования значений признака всех единиц явлений статистической совокупности. Различают следующие средне арифметические величины:

1) Простая средняя арифметическая , которая определяется путём простого суммирования количественных значений варьирующего признака и деления этой сумы на их варианты и рассчитывается по следующей формуле:

Х - средняя величина статистической совокупности,

x i - сумма отдельных варьирующих вариантов явлений статистической совокупности,

n i - количество варьирующих вариантов явлений статистической совокупности.

2) Среднеарифметическая взвешенная - средняя величина признака явления, вычисленная с учётом весов. Веса средних величин - частоты, с которыми отдельные значения признака осредняемого принимаются в расчёт при исчислении его средней величины. Выбор весов средней величины зависит от сущности усредняемого признака и характера данных, которыми располагают для вычисления средних величин. В качестве весов средних величин могут быть показатели численности единиц или размеры частей статистической совокупности (в форме абсолютных или относительных величин), обладающих данным вариантом (значением) усредняемого признака явления статистической совокупности, а также величины показателя связанного с усредняемым признаком. Среднеарифметическая взвешенная рассчитывается по следующей формуле:

X- средняя арифметическая взвешенная,

х - величина отдельных варьирующих вариантов явлений статистической совокупности,

Назначение простой, и взвешенной средней арифметической является определение среднего значения варьирующего признака. Если в изучаемой статистической совокупности варианты значений признака встречаются по одному разу или имеют одинаковый вес, то применяется простая средняя арифметическая, если же варианты значений данного признака встречаются в изучаемой совокупности по несколько раз или имеют различные веса, для определения среднего значения варьирующего признака применяется средняя арифметическая взвешенная.

2.2 Средняя гармоническая

Средняя гармоническая применяется для расчёта средней величины тогда, когда непосредственные данные о весах отсутствуют, а известны варианты усредняемого признака (х) и произведения значений вариантов на количество единиц, обладающих данным его значением w (w = xf).

Данная средняя рассчитывается по следующим формулам:

1.) Среднегармоническая простая:

Х - средняя гармоническая простая,

n - количество варьирующих вариантов явлений статистической совокупности.

2) Среднегармоническая взвешенная:

Х - средняя гармоническая взвешенная,

х - сумма отдельных варьирующих вариантов явлений статистической совокупности,

При использовании гармонической взвешенной выявляют веса и таким образом получают тот же результат, который дал бы расчёт по средней арифметической взвешенной, если бы были известны все необходимые для этого данные.

2.3 Средняя агрегатная

Средняя агрегатная рассчитывается по формуле:

X - средняя агрегатная,

х - сумма отдельных варьирующих вариантов явлений статистической совокупности,

Средняя агрегатная вычисляется в тех случаях, когда известны (имеются) значения числителя и значения знаменателя исходного соотношения средней.

2.4 Средняя геометрическая

Средняя геометрическая является одной из форм средней величины и вычисляется как корень n-й степени из произведения отдельных значений - вариантов признака (х) и определяется по следующей формуле:

Средняя геометрическая применяется в основном при расчётах средних темпов роста.

2.5 Мода и медиана

Наряду с рассмотренными выше средними в качестве статистических характеристик вариационных рядов рассчитываются так называемые структурные средние - мода и медиана.

Модой (Мо) называется наиболее часто встречающееся значение признака у единиц совокупности . Для дискретных рядов - этот вариант, имеющий наибольшую частоту.

В интервальных вариационных рядах можно определить, прежде всего, интервал, в котором находится мода, т.е. так называемый модальный интервал. В вариационном ряду с равными интервалами модальный интервал определяется по наибольшей частоте, в рядах с неравными интервалами по наибольшей плотности распределения.

Для определения моды в рядах с равными интервалами пользуются формулой следующего вида:

Хн - нижняя граница модального интервала,

h - величина интервала,

f 1 , f 2 , f 3 - частоты (или частности) соответственно предмодального, модального и послемодального интервалов.

В интервальном ряду моду можно найти графически. Для этого в самом высоком столбце гистограммы от границ двух смежных столбцов проводят две линии. Затем из точки их пересечения опускают перпендикуляр на ось абсцисс. Значение признака на оси абсцисс, соответствующее перпендикуляру, и будет модой.

Во многих случаях при характеристике совокупности в качестве обобщённого показателя отдаётся предпочтение моде, а не средней арифметической.

Так, при изучении цен на рынке фиксируется и изучается в динамике не средняя цена на определённую продукцию, а модальная; при изучении спроса населения на определённый размер обуви или одежды представляет интерес определение модального размера обуви, а средний размер как таковой здесь вообще не имеет значения. Мода представляет не только самостоятельный интерес, но и исполняет роль вспомогательного показателя при средней, характеризуя её типичность. Если средняя арифметическая близка по значению к моде, значит она типична.

Медианой (Ме) называется значение признака у средней единицы ранжированного ряда. (Ранжированным называют ряд, у которого значения признака записаны в порядке возрастания или убывания.)

Чтобы найти медиану, сначала определяется её порядковый номер. Для этого при нечётном числе единиц к сумме всех частот прибавляется единица, и всё делится на два. При чётном числе единиц в ряду будет две средних единицы, и по всем правилам медиана должна определяться как средняя из значений этих двух единиц. При этом практически при чётном числе единиц медиана отыскивается как значение признака у единицы, порядковый номер которой определяется по общей сумме частот, делённой на два. Зная порядковый номер медианы, легко по накопленным частотам найти её значение.

В интервальных рядах после определения порядкового номера медианы по накопительным частотам (частностям) отыскивается медиальный интервал, а затем при помощи простейшего интерполяционного приёма определяется значение самой медианы. Этот расчёт выражает следующая формула:

X n - нижняя граница медианного интервала,

h - величина медианного интервала,

Порядковый номер медианы,

S Me - 1 частота (частотность), накопленная до медианного интервала,

F Me - частота (частность) медианного интервала.

Согласно записанной формуле к нижней границе медианного интервала прибавляется такая часть величины интервала, которая приходится на долю единиц этой группы, недостающих до порядкового номера медианы. Другими словами, расчёт медианы построен на предположении, что нарастание признака среди единиц каждой группы происходит равномерно. На основе сказанного можно рассчитать медиану и по иному. Определив медианный интервал, можно из верхней границы медианного интервала (Хв) вычесть ту часть интервала, которая приходится на долю единиц, превышающих порядковый номер медианы, т.е. по следующей формуле:

Медиану можно также определить и графически. Для этого строиться кумулята и из точки на шкале накопленных частот (частностей), соответствующей порядковому номеру медианы, проводится прямая, параллельная оси х до пересечения с кумулятой. Затем из точки пересечения указанной прямой с куммулятой опускается перпендикуляр на ось абсцисс. Значение признака на оси абсцисс, соответствующее проведённой ординате (перпендикуляру), и будет медианой.

По такому же принципу легко найти значение признака у любой единицы ранжированного ряда.

Таким образом, для расчёта средней величины вариационного ряда можно использовать целую совокупность показателей.

3. Основные показатели вари ации и их значение в статистике

При изучении варьирующего признака у единиц совокупности нельзя ограничиваться лишь расчётом средней величины из отдельных вариантов, так как одна и та же средняя может относиться далеко не к одинаковым по составу совокупностям. Это можно проиллюстрировать следующим условным примером, отражающим данные о числе дворов в агрохозяйствах двух районов:

Среднее число дворов в агрохозяйствах двух районов одинаково - 160. При этом состав этих агрохозяйств в двух районах далеко не одинаков. Поэтому возникает необходимость измерить вариацию признака в совокупности.

Для этой цели в статистике рассчитывают ряд характеристик, т.е. показателей. Самым элементарным показателем вариации признака является размах вариации R , представляющий собой разность между максимальными и минимальными значениями признака в данном вариационном ряду, т.е. R = Xmax - Xmin. В нашем примере в 1 районе R = 300 - 80 - 220, а во втором районе R = 180 - 145 = 35.

Показатель размаха вариации не всегда применим, так как он учитывает только крайние значения признака, которые могут сильно отличаться от всех других единиц. Иногда находят отношение размаха вариации к средней арифметической и пользуются этой величиной, именуя её показателем осцилляции.

Более точно можно определить вариацию в ряду при помощи показателей, учитывающих отклонения всех вариантов от средней арифметической. Таких показателей в статистике два - среднее линейное и среднее квадратическое отклонение.

Среднее линейное отклонение представляет собой среднюю арифметическую из абсолютных величин отклонений вариантов от средней. Знаки отклонений в данном случае игнорируются, в противном случае сумма всех отклонений будет равна нулю. Данный показатель рассчитывается по формуле:

б) для вариационного ряда:

Следует иметь в виду, что среднее линейное отклонение будет минимальным, если отклонения рассчитаны от медианы, т.е. по формуле:

Среднее квадратическое отклонение () исчисляется следующим образом - каждое отклонение от средней возводится в квадрат, все квадраты суммируются (с учётом весов), после чего сумма квадратов делиться на число членов ряда и из частного извлекается корень квадратный.

Все данные действия выражаются следующими формулами:

а) для несгрупированных данных:

б) для вариационного ряда:

f, т.е. среднее квадратическое отклонение предятавляет собой корень квадратный из средней арифметической квадратов отклонений средней. Выражение под корнем носит название дисперсии. Дисперсия имеет самостоятельное выражение в статистике и относится к числу важнейших показателей вариации.

Понятие вариационного ряда. Первым шагом систематизации материалов статистического наблюдения является подсчет числа единиц, обладающих тем или иным признаком. Расположив единицы в порядке возрастания или убывания их количественного признака и подсчитав число единиц с конкретным значением признака, получаем вариационный ряд. Вариационный ряд характеризует распределение единиц определенной статистической совокупности по какому–либо количественному признаку.

Вариационный ряд представляет собой две колонки, в левой колонке приводятся значения варьирующего признака, именуемые вариантами и обозначаемые (x), а в правой – абсолютные числа, показывающие, сколько раз встречается каждый вариант. Показатели этой колонки называются частотами и обозначаются (f).

Схематично вариационный ряд можно представить в виде табл.5.1:

Таблица 5.1

Вид вариационного ряда

Варианты (x)

Частоты (f)

В правой колонке могут использоваться и относительные показатели, характеризующие долю частоты отдельных вариантов в общей сумме частот. Эти относительные показатели именуют частостями и условно обозначают через , т.е. . Сумма всех частостей равна единице. Частости могут быть выражены и в процентах, и тогда их сумма будет равна 100%.

Варьирующие признаки могут носить разный характер. Варианты одних признаков выражаются в целых числах, например, число комнат в квартире, число изданных книг и т.д. Эти признаки именуют прерывными, или дискретными. Варианты других признаков могут принимать любые значения в определенных пределах, как, например, выполнение плановых заданий, заработная плата и др. Эти признаки называют непрерывными.

Дискретный вариационный ряд. Если варианты вариационного ряда выражены в виде дискретных величин, то такой вариационный ряд называют дискретным, его внешний вид представлен в табл. 5.2:

Таблица 5.2

Распределение студентов по оценкам, полученным на экзамене

Оценки (х)

Количество студентов (f)

В % к итогу ()

Характер распределения в дискретных рядах изображается графически в виде полигона распределения, рис.5.1.

Рис. 5.1. Распределение студентов по оценкам, полученным на экзамене.

Интервальный вариационный ряд. Для непрерывных признаков вариационные ряды строятся интервальные, т.е. значения признака в них выражаются в виде интервалов «от и до». При этом минимальное значение признака в таком интервале именуют нижней границей интервала, а максимальное – верхней границей интервала.

Интервальные вариационные ряды строят как для прерывных признаков (дискретных), так и для варьирующих в большом диапазоне. Интервальные ряды могут быть с равными и неравными интервалами. В экономической практике в большинстве своем применяются неравные интервалы, прогрессивно возрастающие или убывающие. Такая необходимость возникает особенно в тех случаях, когда колеблемость признака осуществляется неравномерно и в больших пределах.

Рассмотрим вид интервального ряда с равными интервалами, табл. 5.3:

Таблица 5.3

Распределение рабочих по выработке

Выработка, т.р. (х)

Число рабочих (f)

Кумулятивная частота (f´)

Интервальный ряд распределения графически изображается в виде гистограммы, рис.5.2.

Рис.5.2. Распределение рабочих по выработке

Накопленная (кумулятивная) частота. В практике возникает потребность в преобразовании рядов распределения в кумулятивные ряды, строящиеся по накопленным частотам. С их помощью можно определить структурные средние, которые облегчают анализ данных ряда распределения.

Накопленные частоты определяются путем последовательного прибавления к частотам (или частостям) первой группы этих показателей последующих групп ряда распределения. Для иллюстрации рядов распределения используются кумуляты и огивы. Для их построения на оси абсцисс отмечаются значения дискретного признака (или концы интервалов), а на оси ординат – нарастающие итоги частот (кумулята), рис.5.3.

Рис. 5.3. Кумулята распределения рабочих по выработке

Если шкалы частот и вариантов поменять местами, т.е. на оси абсцисс отражать накопленные частоты, а на оси ординат – значения вариантов, то кривая, характеризующая изменение частот от группы к группе, будет носит название огивы распределения, рис.5.4.

Рис. 5.4. Огива распределения рабочих по выработке

Вариационные ряды с равными интервалами обеспечивают одно из важнейших требований, предъявляемых к статистическим рядам распределения, обеспечение сравнимости их во времени и пространстве.

Плотность распределения. Однако частоты отдельных неравных интервалов в названных рядах непосредственно не сопоставимы. В подобных случаях для обеспечения необходимой сравнимости исчисляют плотность распределения, т.е. определяют, сколько единиц в каждой группе приходится на единицу величины интервала.

При построении графика распределения вариационного ряда с неравными интервалами высоту прямоугольников определяют пропорционально не частотам, а показателям плотности распределения значений изучаемого признака в соответствующих интервалах.

Составление вариационного ряда и его графическое изображение является первым шагом обработки исходных данных и первой ступенью анализа изучаемой совокупности. Следующим шагом в анализе вариационных рядов является определение основных обобщающих показателей, именуемых характеристиками ряда. Эти характеристики должны дать представление о среднем значении признака у единиц совокупности.

Средняя величина . Средняя величина представляет собой обобщенную характеристику изучаемого признака в исследуемой совокупности, отражающая ее типический уровень в расчете на единицу совокупности в конкретных условиях места и времени.

Средняя величина всегда именованная, имеет ту же размерность, что и признак у отдельных единиц совокупности.

Перед вычислением средних величин необходимо произвести группировку единиц исследуемой совокупности, выделив качественно однородные группы.

Средняя, рассчитанная по совокупности в целом называется общей средней, а для каждой группы – групповыми средними.

Существуют две разновидности средних величин: степенные (средняя арифметическая, средняя гармоническая, средняя геометрическая, средняя квадратическая); структурные (мода, медиана, квартили, децили).

Выбор средней для расчета зависит от цели.

Виды степенных средних и методы их расчета. В практике статистической обработки собранного материала возникают различные задачи, для решения которых требуются различные средние.

Математическая статистика выводит различные средние из формул степенной средней:

где средняя величина; x – отдельные варианты (значения признаков); z – показатель степени (при z = 1 – средняя арифметическая, z = 0 средняя геометрическая, z = - 1 – средняя гармоническая, z = 2 – средняя квадратическая).

Однако вопрос о том, какой вид средней необходимо применить в каждом отдельном случае, разрешается путем конкретного анализа изучаемой совокупности.

Наиболее часто встречающимся в статистике видом средних величин является средняя арифметическая . Она исчисляется в тех случаях, когда объем осредняемого признака образуется как сумма его значений у отдельных единиц изучаемой статистической совокупности.

В зависимости от характера исходных данных средняя арифметическая определяется различными способами:

Если данные несгруппированные, то расчет ведется по формуле простой средней величины

Расчет средней арифметической в дискретном ряду происходит по формуле 3.4.

Расчет средней арифметической в интервальном ряду. В интервальном вариационном ряду, где за величину признака в каждой группе условно принимается середина интервала, средняя арифметическая может отличаться от средней, рассчитанной по несгруппированным данным. Причем, чем больше величина интервала в группах, тем больше возможные отклонения средней, вычисленной по сгруппированным данным, от средней, рассчитанной по несгруппированным данным.

При расчете средней по интервальному вариационному ряду для выполнения необходимых вычислений от интервалов переходят к их серединам. А затем рассчитывают среднюю величину по формуле средней арифметической взвешенной.

Свойства средней арифметической. Средняя арифметическая обладает некоторыми свойствами, которые позволяют упрощать вычисления, рассмотрим их.

1. Средняя арифметическая из постоянных чисел равна этому постоянному числу.

Если х = а. Тогда .

2. Если веса всех вариантов пропорционально изменить, т.е. увеличить или уменьшить в одно и то же число раз, то средняя арифметическая нового ряда от этого не изменится.

Если все веса f уменьшить в k раз, то .

3. Сумма положительных и отрицательных отклонений отдельных вариантов от средней, умноженных на веса, равна нулю, т.е.

Если , то . Отсюда .

Если все варианты уменьшить или увеличить на какое- либо число, то средняя арифметическая нового ряда уменьшится или увеличится на столько же.

Уменьшим все варианты x на a , т.е. x ´ = x a.

Тогда

Среднюю арифметическую первоначального ряда можно получить, прибавляя к уменьшенной средней ранее вычтенное из вариантов числа a , т.е. .

5. Если все варианты уменьшить или увеличить в k раз, то средняя арифметическая нового ряда уменьшится или увеличится во столько же, т.е. в k раз.

Пусть , тогда .

Отсюда , т.е. для получения средней первоначального ряда среднюю арифметическую нового ряда (с уменьшенными вариантами) надо увеличить в k раз.

Средняя гармоническая. Средняя гармоническая это величина обратная средней арифметической. Ее используют, когда статистическая информация не содержит частот по отдельным вариантам совокупности, а представлена как их произведение (М= xf). Средняя гармоническая будет рассчитываться по формуле 3.5

Практическое применение средней гармонической – для расчета некоторых индексов, в частности, индекса цен.

Средняя геометрическая. При применении средней геометрической индивидуальные значения признака представляют собой, как правило, относительные величины динамики, построенные в виде цепных величин, как отношение к предыдущему уровню каждого уровня в ряду динамики. Средняя характеризует, таким образом, средний коэффициент роста.

Средняя геометрическая величина используется также для определения равноудаленной величины от максимального и минимального значений признака. Например, страховая компания заключает договоры на оказание услуг автострахования. В зависимости конкретного страхового случая страховая выплата может колебаться от 10000 до 100000 долл. в год. Средняя сумма выплат по страховке составит долл.

Средняя геометрическая это величина, используемая как средняя из отношений или в рядах распределения, представленных в виде геометрической прогрессии, когда z = 0. Этой средней удобно пользоваться, когда уделяется внимание не абсолютным разностям, а отношениям двух чисел.

Формулы для расчета следующие

где – варианты осредняемого признака; – произведение вариантов; f – частота вариантов.

Средняя геометрическая используется в расчетах среднегодовых темпов роста.

Средняя квадратическая. Формула средней квадратической используется для измерения степени колеблемости индивидуальных значений признака вокруг средней арифметической в рядах распределения. Так, при расчете показателей вариации среднюю вычисляют из квадратов отклонений индивидуальных значений признака от средней арифметической величины.

Средняя квадратическая величина рассчитывается по формуле

В экономических исследованиях средняя квадратическая в измененном виде широко используется при расчете показателей вариации признака, таких как дисперсия, среднее квадратическое отклонение.

Правило мажорантности. Между степенными средними существует следующая зависимость – чем больше показатель степени, тем больше значение средней, табл.5.4:

Таблица 5.4

Соотношение между средними величинами

Значение z

Соотношение между средними

Это соотношение называется правилом мажорантности.

Структурные средние величины. Для характеристики структуры совокупности применяются особые показатели, которые можно назвать структурными средними. К таким показателям относятся мода, медиана, квартили и децили.

Мода. Модой (Мо) называется наиболее часто встречающееся значение признака у единиц совокупности. Модой называется то значение признака, которое соответствует максимальной точке теоретической кривой распределения.

Мода широко используется в коммерческой практике при изучении покупательского спроса (при определении размеров одежды и обуви, которые пользуются широким спросом), регистрации цен. Мод в совокупности может быть несколько.

Расчет моды в дискретном ряду. В дискретном ряду мода – это варианта с наибольшей частотой. Рассмотрим нахождение моды в дискретном ряду.

Расчет моды в интервальном ряду. В интервальном вариационном ряду модой приближенно считают центральный вариант модального интервала, т.е. того интервала, который имеет наибольшую частоту (частость). В пределах интервала надо найти то значение признака, которое является модой. Для интервального ряда мода будет определяться формулой

где – нижняя граница модального интервала; – величина модального интервала; – частота, соответствующая модальному интервалу; – частота, предшествующая модальному интервалу; – частота интервала, следующего за модальным.

Медиана. Медианой () называется значение признака у средней единицы ранжированного ряда. Ранжированный ряд – это ряд, у которого значения признака записаны в порядке возрастания или убывания. Или медиана это величина, которая делит численность упорядоченного вариационного ряда на две равные части: одна часть имеет значение варьирующего признака меньшие, чем средний вариант, а другая – большие.

Чтобы найти медиану, сначала определяется ее порядковый номер. Для этого при нечетном числе единиц к сумме всех частот прибавляется единица и все делится на два. При четном числе единиц медиана отыскивается как значение признака у единицы, порядковый номер который определяется по общей сумме частот, деленной на два. Зная порядковый номер медианы, легко по накопленным частотам найти ее значение.

Расчет медианы в дискретном ряду. По данным выборочного обследования получены данные о распределении семей по числу детей, табл. 5.5. Для определения медианы сначала определим ее порядковый номер

В этих семьях количество детей равно 2, следовательно, = 2. Таким образом, в 50% семей число детей не превышает 2.

–частота накопленная, предшествующая медианному интервалу;

С одной стороны, это весьма положительное свойство т.к. в этом случае учитывается действие всех причин, воздействующих на все единицы изучаемой совокупности. С другой стороны, даже одно наблюдение, попавшее в исходные данные случайно, может существенным образом исказить представление об уровне развития изучаемого признака в рассматриваемой совокупности (особенно в коротких рядах).

Квартили и децили. По аналогии с нахождением медианы в вариационных рядах можно отыскать значение признака у любой по порядку единицы ранжированного ряда. Так, в частности, можно найти значение признака у единиц, делящих ряд на 4 равные части, на 10 и т.п.

Квартили. Варианты, которые делят ранжированный ряд на четыре равные части, называют квартилями.

При этом различают: нижний (или первый) квартиль (Q1) – значение признака у единицы ранжированного ряда, делящей совокупность в соотношении ¼ к ¾ и верхний (или третий) квартиль(Q3) – значение признака у единицы ранжированного ряда, делящий совокупность в соотношении ¾ к ¼.

– частоты квартильных интервалов (нижнего и верхнего)

Интервалы, в которых содержатся Q1 и Q3 определяют по накопленным частотам (или частостям).

Децили. Кроме квартилей рассчитывают децили – варианты, делящие ранжированный ряд на 10 равных частей.

Обозначаются они через D, первый дециль D1 делит ряд в соотношении 1/10 и 9/10, второй D2 – 2/10 и 8/10 и т.д. Вычисляются они по той же схеме, что и медиана и квартили.

И медиана, и квартили, и децили принадлежат к так называемым порядковым статистикам, под которым понимают вариант, занимающий определенное порядковое место в ранжированном ряду.