Стандартная модель фундаментальных взаимодействий

в физике элементарных частиц.

Фундаментальные взаимодействия.

По современным представлениям, все известные в настоящее время процессы сво­дят­ся к 4 типам взаимодействий, которые называются фундаментальными (таблица 1).

Таблица 1. Фундаментальные взаимодействия.

взаимодейст­вия (поле)

Константа

взаимодей­ст­вия

взаимодей­ст­вия

Характер­ные

Частицы - переносчики

(кванты полей)

Название

Гравитацион­ное

Гравитон (?)

10 -17 ... 10 -18 м

W + , W - - бозоны

Z 0 - бозон

Электромаг­нит­ное

10 -14 ... 10 -15 м

В квантовой физике каждая элементарная частица является квантом некоторого поля, и наоборот, каждому полю соответствует своя частица-квант. Энергия и импульс каждого поля слагаются из множества отдельных порций - квантов. Самый простой и лучше всего изученный пример: электромагнитное поле и его квант - фотон. Квантами поля сильных взаимодействий являются глюоны. Кванты поля слабых взаимодействий - ка­ли­б­ро­­во­ч­ны­е бозоны W ± иZ 0 . Все эти частицы обнаружены экспериментально, и их свой­ства хорошо изучены. Переносчиком гравитационного взаимодействия является грави­тон: гипо­те­тическая частица, которая экспериментально пока не обнаружена. Кванты-переносчики полей имеют целый спин, т.е. являются бозе-частицами (бозонами), что и отражено в названии некоторых из них.

Современные ускорители. Все современные ускорители - коллайдеры (т.е. исполь­зу­ют встречные пучки) .

Таблица 2. Крупнейшие ускорители.

Название ускорителя

Ускоряемые частицы

Максимальные энергии

Год начала работы

Длина ускорительной камеры

протон-антипротон

(линейный)

электрон-позитрон

электрон-позитрон

100 + 100 Гэв

Швейцария

электрон-протон

30 Гэв + 920 Гэв

Германия

электрон-позитрон

протон - протон

Швейцария

(линейный)

электрон-позитрон

500 + 500 Гэв

строится

Германия

протон - протон

строится

Из-за того, что кварки и глюоны взаимодействуют между собой сильнее, чем электроны и позитроны, а также из-за того, что энергии протон-протонных ускорителей больше, в столкновениях протонов с протонами происходит гораздо больше событий, чем в столкновениях электронов. В этом есть и плюсы, и минусы; минусы в том, что труднее выделить нужные реакции. Поэтому протон-протонные коллайдеры называют машинами открытий, а электрон-позитронные - машинами точных измерений .

Стандартная модель.

К настоящему времени раз­работано квантовое описание трех из четырех фун­да­мен­таль­ных вза­и­мо­дей­ст­вий: сильного, электромагнитного и слабого, а также пока­за­но, что сла­бое и электромаг­нит­ное взаимодействия фактически имеют общее происхождение (электро­сла­бое взаимодей­ст­вие). Совпадение с экспериментом наблюдается до расстояний 10 -18 м, что является преде­лом для современной экспериментальной техники. Поэтому теория трех не­гравитационных вза­имодействий, включающая 12 фундаментальных частиц, которые в них участвуют (таблица 2), называетсястан­дарт­ной моделью физики элементарных час­тиц.

Таблица 3. Фундаментальные частицы.

Масса, Мэв

Масса, Мэв

Масса, Мэв

Электрон

Электронное нейтрино

Мюонное нейтрино

Таонное нейтрино

Симметрия и инвариантность.

В том случае, когда состояние системы в результате какого-либо преобразования не ме­няется, говорят, что система обладает симметрией относительно данного преобразования. По­нятие симметрии является очень важным в физике элементарных частиц, т.к. каждому ви­ду симметрии соответствует свой закон сохранения и наоборот: каждому закону сохранения какой-либо физической величины соответствует своя симметрия . Общеизвестной яв­ля­ется связь симметрии времени и пространства относительно сдвигов (однородность) и по­во­ротов (изотропность) с законами сохранения энергии, импульса и момента импульса. Эти законы являются универсальными, т.е. выполняются во всех видах взаимодействий .

Кроме этих общеизвестных видов симметрии существуют так называемые "внут­рен­ние симметрии", которые в физике элементарных частиц называются "калибровочными сим­мет­риями (или инвариантностями)" . В квантовой физике существует калибровочная ин­вариантность к изменению фазы волновой функции, т.к. не существует способа оп­ре­де­лить абсолютную величину фазы этой функции. Другими словами, квантовая механика ин­ва­ри­антна относительно произвольного изменения фазы волновой функции на постоянную ве­ли­чину, т.е. замены ψ наψ· exp (i ) при условии = const . Это так называемая "глобальная ка­либ­ровочная сим­мет­рия" относительно изменения фазы волновой функции на одну и ту же ве­ли­чи­ну сразу во всем пространстве и во все моменты времени . Эта инвариант­ность оче­вид­на, т.к. множитель exp (i ) при подстановке измененной волновой функции в урав­не­ние Шре­дин­ге­ра

можно сократить.

Если фаза не равна константе, а является произвольной функцией ко­ор­динат и вре­мени, то такое преобразование называется локальным. При заменеψ наψ· exp (i (r , t )) урав­не­ние Шредингера, конечно, изменится, од­на­ко его можно сохранить неизменным, если ввести в него компенсиру­ю­щее поле: четырехмерный вектор (φ (r , t ), A (r , t )), который является со­во­куп­нос­тью скалярного и векторного потенциалов электромагнитного поля, квантами которо­го являются фотоны. В этом и заключается основная идея квантового описания электро­маг­нит­ного взаимодействия (КЭД).

Бозон Хиггса.

Подобная идея используется для построения теории всех взаимодействий, а соответ­ст­вую­щий вид симметрии называется "локальной калибровочной ин­ва­ри­антностью". Однако при этом возникает проблема. Обязательным требованием к уравнениям для любого фи­зи­чес­кого поля является инвариантность по отношению к преобразованиям Ло­рен­ца. А это вы­пол­няется только в том случае, если масса кванта поля рав­на нулю. Из таб­лицы 1 видно, что кван­ты электромагнитного, сильного и грави­та­ци­он­ного полей яв­ля­ют­ся безмассовыми (т.е. име­ют нулевую массу покоя), но кванты-перенос­чи­ки слабых вза­и­мо­дей­ствий имеют до­воль­но большие массы. Такая же проблема возникает и при объяснении значений масс у дру­гих элементарных частиц. Можно сказать, что внутренние сим­метрии запрещают эле­мен­тар­ным частицам иметь ненулевые массы покоя, что, конечно, про­тиворечит экс­пе­ри­мен­таль­ным данным. Этот вопрос - об объяснении различных зна­че­ний масс у элементарных частиц - оставался до последнего времени нерешенным в стан­дарт­ной модели.

Для объяснения этого противоречия в 1964 году Ф.Энглер (F.Englert) и Р.Браут (R.Bro­ut) и независимо от них П.Хиггс (P.Higgs) почти одновременно предположили, что су­щест­вует еще одно поле, взаимодействие с которым придает частицам массу. П.Хиггс, кроме это­го, предсказал существование у этого поля кванта - бозона со спином, равным нулю, поэ­то­му гипотетический квант этого поля получил название "бозон Хиггса". Масса этой час­ти­цы, согласно сделанным тогда оценкам, должна находиться в диапазоне от 60 до 1000 Гэв. Ус­корителей, на которых можно было бы обнаружить частицу с такой массой, до последнего вре­мени не существовало, поэтому бозон Хиггса оставался единственной еще не обнару­жен­ной экспериментально части­цей стандартной модели .

На семинаре в ЦЕРНЕ 4 июля 2012 года было объявлено об открытии новой частицы, свойства которой, как осторожно заявляют авторы открытия, соответствуют ожидаемым свойствам теоретически предсказанного бозона Хиггса - элементарного бозона Стандартной модели физики элементарных частиц. Эта новая частица (для нее принято обозначение H) не имеет электрического заряда. Масса бозона по данным одной группы экспериментов равна (125.3 ± 0.9) Гэв, по данным другой группы (126.0 ± 0.8) Гэв. БозонHнестабилен, его время жизни примерно 10 -24 с, и он может распадаться по-разному. НаLHCнаблюдались распады на два фотона, и на две пары: электрон-позитрон и (или) мюон-антимюон:

H →γ+γ,

H e - + e + + e - + e + ,

H e - + e + + μ - + μ + ,

H μ - + μ + + μ - + μ + .

Последние три распада коротко можно записать так

H → 4l ,

где l - один из лептонов (электрон, позитрон, мюон). Все эти распады соответствуют пред­сказанным свойствам бозона Хиггса.

Все это позволяет с большой вероятностью утверждать, что бозон Хиггса открыт, и Стандартная модель получила принципиально важное экспериментальное подтверждение.

Литература.

    Физическая энциклопедия, т.5 /Гл. ред. А.М.Прохоров. - М.: Большая Российская энциклопедия, 1998. - с. 596-608.

    Капитонов И.М. Введение в физику ядра и частиц. - М.: УРСС, 2002.

    Рубаков В.А. К открытию на Большом адронном коллайдере новой частицы со свойствами бозона Хиггса. - УФН, 2012, т.182, №10. - с.1017-1025.

    Рубаков В.А. Долгожданное открытие бозона Хиггса. - Наука и жизнь, 2012, №10. - с.2-17.

    Физическая энциклопедия, т.4 /Гл. ред. А.М.Прохоров. - М.: Большая Российская энциклопедия, 1994. - с. 505-520.

    Физика микромира: Маленькая энциклопедия /Гл. ред. Д.В.Ширков. - М.: "Советская энциклопедия", 1980.

    Грин Б. Элегантная Вселенная. /Пер. с англ. под ред. В.О.Малышенко. - Изд. 2-е. - М.: Едиториал УРСС, 2005. - 288 с.

    Аринштейн Э.А. Элементы теоретической физики: Учебное пособие. - Тюмень, Изд-во Тюменского госуниверситета, 2011. - с.103-105.

Уравнение Дирака для электрона стало для физики поворотным пунктом во многих отношениях. В 1928 году, когда Дирак предложил свое уравнение, из всех элементарных частиц науке были известны лишь электроны, протоны и фотоны. Свободные уравнения Максвелла описывают фотоны, предсказанные Эйнштейном в 1905 году. Эта ранняя работа была постепенно развита Эйнштейном, Бозе и другими, и 1927 году Иордан и Паули создали полную математическую схему для описания свободных фотонов путем введения квантования в максвелловскую теорию свободного поля. Казалось также, что протон, как и электрон, достаточно хорошо описывается уравнением Дирака. В теорию Дирака отлично укладывалось электромагнитное взаимодействие, описывающее, как воздействуют фотоны на электроны и протоны, благодаря идее калибровки (введенной Вейлем в 1918 году). Начало формулировке полной теории электронов (или протонов), взаимодействующих с фотонами (т.е. квантовой электродинамике), было положено самим Дираком в 1927 году. Таким образом, казалось, что имеются под руками все более или менее основные средства для описания всех частиц, существующих в Природе, а также наиболее очевидных взаимодействий между ними.

Истоки современной физики элементарных частиц

И все же физики того времени в большинстве своем были не настолько глупы, чтобы предполагать, что все это вот-вот приведет их к «теории всего». Они сознавали, что ни силы, удерживающие ядро от распада (ныне это называется сильным взаимодействием), ни механизм, ответственный за радиоактивный распад (теперь это называется слабым взаимодействием), не могут быть объяснены без дальнейшего продвижения вперед. Если бы единственными составными частями атомов, включая атомные ядра, были дираковские протоны и электроны, взаимодействующие лишь через электромагнитное поле, тогда все обычные ядра (за исключением одиночного протона, составляющего ядро атома водорода) должны были мгновенно распадаться из-за электростатического отталкивания вследствие преобладания положительных зарядов. Должно было существовать нечто дотоле не известное, создающее сильное притяжение между частицами внутри ядра!

В 1932 году Чедвик открыл нейтрон, и это в итоге привело к замене ранее популярной протонно-электронной модели ядра новой моделью, согласно которой ядро содержит протоны и нейтроны, сильное взаимодействие между которыми удерживает ядро от распада. Но даже это сильное взаимодействие было еще не все, что ускользало от понимания в то время. Радиоактивность урана, известная со времени наблюдения Анри Беккереля в 1896 году, оказалась результатом еще одного - слабого - взаимодействия, отличного и от сильного, и от электромагнитного взаимодействия. Даже сам нейтрон, будучи предоставлен самому себе, распадается приблизительно за 15 минут.

Одним из загадочных продуктов радиоактивного распада оказалось неуловимое нейтрино, пробная гипотеза о существовании которого была выдвинута Паули в 1929 году, но которое не было непосредственно обнаружено вплоть до 1956 года. Именно изучение радиоактивности в конечном счете принесло физикам неожиданную популярность и влиятельность к концу Второй мировой войны и после нее...

Многое изменилось с той поры первоначального проникновения в физику элементарных частиц в первой трети XX века. Сейчас, в начале XXI века, мы имеем гораздо более полную картину, известную под названием стандартной модели физики элементарных частиц. Эта модель описывает почти все наблюдаемое поведение широкого класса известных ныне элементарных частиц. К фотону, электрону, протону, позитрону, нейтрону и нейтрино в дальнейшем присоединились разные другие сорта нейтрино, мюон, пионы (эффектно предсказанные Юкавой в 1934 году), каоны, ламбда- и сигма-частицы, а также омега-минус- частица, знаменитая благодаря истории ее предсказания. В 1955 году был экспериментально обнаружен антипротон, в 1956 году - антинейтрон. Существуют объекты нового типа - кварки, глюоны и W- и Z-бозоны, а также целая стая частиц, существование которых столь быстротечно, что они никогда не наблюдались непосредственно, их относят к «резонансам». Формализм современной теории требует также существования нестационарных объектов, называемых «виртуальными частицами», а также величин, именуемых «духами», относительно которых исключается возможность непосредственного наблюдения.

Существует также вызывающее замешательство изобилие гипотетических (и пока не обнаруженных) частиц, предсказываемых некоторыми теоретическими моделями, но пока не укладывающихся в общепринятую схему элементарных частиц, - «Х-бозоны», «аксионы», «фотино», «скварки», «глюино», «магнитные монополи», «дилатоны» и т. д. Есть еще призрачная частица Хиггса, не обнаруженная к моменту написания этой книги, существование которой в той или иной форме (возможно, не в качестве одиночной частицы) существенно для сегодняшней физики элементарных частиц, в которой связанное с этой частицей поле Хиггса определяет массу каждой элементарной частицы.

Уравнение Дирака

$$\left(i\hbar c \, \gamma^\mu \, \partial_\mu - mc^2 \right) \psi = 0$$ Из уравнения Дирака следует, что электрон обладает собственным механическим моментом количества движения - спином, равным ħ/2, а также собственным магнитным моментом, равным магнетону Бора $e\hbar/2Мc$, которые ранее (1925) были открыты экспериментально (e и m - заряд и масса электрона, с - скорость света, $\hbar$ - постоянная Дирака (редуцированная постоянная Планка)). С помощью уравнения Дирака была получена более точная формула для уровней энергии атома водорода (и водородоподобных атомов), включающая тонкую структуру уровней, а также объяснён эффект Зеемана. На основе уравнения Дирака были найдены формулы для вероятностей рассеяния фотонов свободными электронами (комптон-эффекта) и излучения электрона при его торможении (тормозного излучения), получившие экспериментальное подтверждение. Однако последовательное релятивистское описание движения электрона даётся квантовой электродинамикой.

Характерная особенность уравнения Дирака - наличие среди его решений таких, которые соответствуют состояниям с отрицательными значениями энергии для свободного движения частицы (что соответствует отрицательной массе частицы). Это представляло трудность для теории, так как все механические законы для частицы в таких состояниях были бы неверными, переходы же в эти состояния в квантовой теории возможны. Действительный физический смысл переходов на уровни с отрицательной энергией выяснился в дальнейшем, когда была доказана возможность взаимопревращения частиц. Из уравнения Дирака следовало, что должна существовать новая частица (античастица по отношению к электрону) с массой электрона и электрическим зарядом противоположного знака; такая частица была действительно открыта в 1932 К. Андерсоном и названа позитроном. Это явилось огромным успехом теории электрона Дирака. Переход электрона из состояния с отрицательной энергией в состояние с положительной энергией и обратный переход интерпретируются как процесс образования пары электрон-позитрон и аннигиляция такой пары.

Уравнение Дирака справедливо и для др. частиц со спином 1/2 (в единицах $\hbar$) - фермионов, например мюонов, нейтрино, при этом хорошее соответствие опыту получается при прямом применении уравнения Дирака к простым (а не составным) частицам, как те, которые только что упомянуты. Для протона и нейтрона (составных частиц, состоящих из кварков, связанных глюонным полем, но также обладающих спином 1/2) оно при прямом применении (как к простым частицам) приводит к неправильным значениям магнитных моментов: магнитный момент «дираковского» протона «должен быть» равен ядерному магнетону $e\hbar/2Мc$ (М - масса протона), а нейтрона (поскольку он не заряжен) - нулю. Опыт же даёт, что магнитный момент протона примерно в 2,8 раза больше ядерного магнетона, а магнитный момент нейтрона отрицателен и по абсолютной величине составляет около 2/3 от магнитного момента протона. Аномальные магнитные моменты этих частиц обусловлены их составной природой и сильными взаимодействиями.

В действительности данное уравнение применимо для кварков, которые также являются элементарными частицами со спином 1/2. Модифицированное уравнение Дирака можно использовать для описания протонов и нейтронов, которые не являются элементарными частицами (они состоят из кварков). Другую модификацию уравнения Дирака - уравнение Майорана, применяют в некоторых расширениях Стандартной модели для описания нейтрино.

Зигзаг-представление электрона

В этой и ряде последующих статей предлагается краткий путеводитель по стандартной модели современной физики элементарных частиц.
Начнем несколько нестандартным образом, переформулировав уравнение Дирака в «2-спинорном представлении. Спинор Паули, описывающий частицу со спином -, представляет собой двухкомпонентную величину $\psi_a$- (Компонентами служат $\psi_0$- и $\psi_1$.) При учете требований теории относительности нам потребуются также величины со штрихованными индексами $A", B", C’$,..., которые появляются при комплексном сопряжении, применяемом к нештрихованным индексам. Оказывается, что описанный выше дираковский спинор $\psi$ с его четырьмя комплексными компонентами можно представить в виде пары 2-спиноров, $\alpha_a$ и $\beta_{a’}$, один из которых имеет нештрихованный индекс, а другой - штрихованный:
$$\psi=(\alpha_a,\beta_{a’}) $$

Тогда уравнение Дирака можно записать в виде уравнения, связывающего эти два 2-спинора, при этом каждый из них играет в отношении другого роль «источника» с «константой связи» $2^{-1/2}M$, определяющей «силу взаимодействия» между ними:
$$\nabla^{A}_{B’ }\alpha_a =2^{-1/2}M\beta_{B’}, ~~\nabla ^{B’}_{A }\beta_{B’} =2^{-1/2}M,\alpha _{A’}, $$

Операторы $\nabla^{A}_{B’ }$, и $\nabla^{B}_{A’ }$ представляют собой 2-спинорные трансляции обычного оператора градиента $\nabla$ . Не следует придавать большого значения всем этим индексам, множителям $2^{-1/2}$ и точной форме этих уравнений, - я привожу их здесь лишь для того, чтобы показать, как можно ввести уравнение Дирака в общие рамки 2-спинорного анализа и как это может помочь, коль скоро это сделано, в обретении некоторого нового взгляда на природу уравнения Дирака.

Форма этих уравнений показывает, что дираковский электрон можно считать состоящим из двух ингредиентов - $\alpha_A$ и $\beta_{A’}$. Им можно придать некоторый физический смысл.

Можно представить себе картину, в которой существуют две «частицы», одна из которых описывается величиной а $\alpha_A$ а другая - $\beta_{A’}$, причем обе они не имеют массы и каждая из них непрерывно превращается в другую. Дадим этим частицам имена «зиг» и «заг», так что $\alpha_A$ будет описывать частицу «зиг», а $\beta_{A’}$ - частицу «заг». Будучи безмассовыми, они должны перемещаться со скоростью света, однако вместо этого можно считать, что они «качаются» взад-вперед, причем движение вперед частицы «зиг» непрерывно превращается в движение назад частицы «заг» и наоборот. Фактически это есть реализация явления, называемого «zitterbewegung» («дрожание») и состоящего в том, что мгновенное движение электрона из-за участия в таких колебаниях всегда происходит со скоростью света, хотя полное усредненное движение электрона характеризуется скоростью, меньшей скорости света. Каждый из указанных ингредиентов имеет спин величиной $\frac{1}{2}\hbar$ в направлении движения, соответствующий левому вращению в случае частицы «зиг» и правому для частицы «заг». (Это связано с тем обстоятельством, что частица «зиг» $\alpha_A$ имеет нештрихованный индекс, соответствующий отрицательной спиральности, а частица «заг» $\beta_{A’}$ - штрихованный индекс, отвечающий положительной спиральности.

Заметим, что хотя скорость все время меняется, направление спина в системе покоя электрона остается постоянным (рис. 1). При такой интерпретации частица «зиг» выступает как источник для частицы «заг», а частица «заг» - как источник в отношении частицы «зиг», сила связи между ними определяется величиной $M$.

Рис. 1. Зигзаг-представление электрона, а) Электрон (или другую массивную частицу со спином $\frac{1}{2}\hbar$) можно рассматривать как осциллирующую в пространстве-времени между безмассовой частицей «зиг» с левой спиральностью (спиральность $-\frac{1}{2}$ описывается нештрихованным 2-спинором $\alpha_A$ или, в обозначениях, более привычных для физиков, частью, проектируемой оператором -$\frac{1}{2}(1-\gamma_5)$)) и безмассовой частицей «заг» с правой спиральностью (спиральность $+\frac{1}{2}$ описывается штрихованным 2-спинором $\beta_{A"}$ или частью, проектируемой оператором $\frac{1}{2}(1+\gamma_5)$. Каждая из частиц служит источником для другой с массой покоя в качестве константы связи, б) С точки зрения 3-пространства, в системе покоя электрона происходит непрерывное изменение скорости (всегда равной по величине скорости света), однако направление спина остается постоянным. (Для большей наглядности изображена картина не вполне в системе покоя электрона - вместо этого электрон медленно смещается вправо.)

На рис. 2 дано диаграммное представление вклада этого процесса в полный «фейнмановский пропагатор. Каждый отдельный зигзаг-процесс имеет конечную длину, однако вся их совокупность, включающая зигзаги все нарастающей длины, дает вклад в полный процесс распространения электрона в соответствии с матрицей $2\times2$, изображенной на рис. 2. При этом частица «зиг» становится частицей «заг», затем «заг» превращается в «зиг», та снова в «заг» и так далее на некотором конечном отрезке.

Рассматривая процесс в целом, мы обнаружим, что средняя частота, с которой это происходит, связана обратным соотношением с параметром связи - массой М; фактически это есть «де-бройлевская частота» электрона.
Необходимо, однако, сделать замечание относительно того, как следует интерпретировать фейнмановские диаграммы. Изображаемый процесс можно на законных основаниях рассматривать как пространственно-временное описание происходящего, однако при рассмотрении на квантовом уровне необходимо иметь в виду, что даже в случае одной частицы одновременно протекает множество таких процессов. Каждый из них следует рассматривать как один из вкладов в некоторую квантовую суперпозицию огромного числа различных процессов. Реальное квантовое состояние определяется всей суперпозицией в целом. Каждая отдельная фейнмановская диаграмма - это всего лишь одна из ее компонент.

Необходимо, однако, сделать замечание относительно того, как следует интерпретировать фейнмановские диаграммы. Изображаемый процесс можно на законных основаниях рассматривать как пространственно-временное описание происходящего, однако при рассмотрении на квантовом уровне необходимо иметь в виду, что даже в случае одной частицы одновременно протекает множество таких процессов. Каждый из них следует рассматривать как один из вкладов в некоторую квантовую суперпозицию огромного числа различных процессов. Реальное квантовое состояние определяется всей суперпозицией в целом. Каждая отдельная фейнмановская диаграмма - это всего лишь одна из ее компонент.

В таком же духе следует понимать и приведенное выше описание движения электрона как качания взад-вперед, при котором «зиг» непрерывно превращается в «заг» и наоборот. Реальное движение слагается из большого (фактически бесконечно большого) числа таких отдельных процессов, так что наблюдаемое движение электрона можно рассматривать как результат некоторого их «усреднения» (хотя, строго говоря, здесь имеет место квантовая суперпозиция). Так обстоит дело в случае всего лишь свободного электрона. В действительности электрон непрерывно взаимодействует с другими частицами (например, с фотонами - квантами электромагнитного поля). Все подобные процессы взаимодействия также должны быть включены в общую суперпозицию.

Имея все это в виду, зададимся вопросом: насколько «реальны» частицы «зиг» и «заг»? Или это всего лишь артефакты некоторого математического формализма, которым я вос пользовался здесь при описании уравнения Дирака для электрона? Возникает вопрос более общего характера: насколько оправданно с физической точки зрения руководствоваться соображениями изящества некоторого математического описания, а затем пытаться выдать это за описание «реальности»? В данном случае следует начать с постановки вопроса о важности (а также изяществе) самого 2-спинорного формализма как математического метода. Я должен предупредить читателя, что этот формализм не относится к числу широко используемых физиками, которые занимаются уравнением Дирака и его приложениями, в частности, квантовой электродинамикой (КЭД) - наиболее успешным разделом квантовой теории поля.

Рис.2. Каждый зигзаг-процесс в отдельности вносит вклад, как часть бесконечной квантовой суперпозиции, в полный «пропагатор» наподобие фейнмановских диаграмм. Изображенный слева стандартный фейнмановский пропагатор в виде прямой линии представляет целую матрицу из бесконечных сумм конечных зигзагов, показанную справа.

Читателя, который уже немного знаком с фейнмановскими диаграммами, может смутить используемое здесь вертикальное упорядочение во времени. В квантовой теории поля обычно рисуют диаграммы, на которых временная переменная увеличивается слева направо. Этот выбор, при котором время течет снизу вверх, согласуется с принятым в теории относительности, поскольку такое направление времени выбирается для большинства пространственно-временных диаграмм.

Большинство физиков пользуется формализмом «дираковских спиноров» (или 4-спиноров), в котором спинорные индексы отбрасываются. Вместо 2-спинора $\alpha_A$ они используют 4-спинор $(1-\gamma_5)\psi$ (называя его «левоспиральной частью дираковского электрона» или
как-нибудь в этом роде, вместо моей частицы «зиг») LINK8. Величина $\gamma_5$ представляет собой произведение
$$\gamma_5=-i\gamma_0\gamma_1\gamma_2\gamma_3$$
и обладает свойством антикоммутировать с каждым из элементов алгебры Клиффорда, при этом $\gamma_5^2=1$ Аналогично вместо $\beta_{A’}$ используется $(1+\gamma_5)\psi$ (правоспиральная часть).

Кто-то может заметить, что это всего лишь вопрос обозначений, и действительно можно переходить от 2-спинорного формализма к 4-спинорному и обратно. Зигзаг-представление определенно применимо (хотя и не всегда применяется) к любому формализму, однако к 2-спинорному формализму оно ближе, чем к 4-спинорному. Так реальны ли частицы «зиг» и «заг»? Можно сказатьчто они реальны в той же мере, в какой реален сам «дираковский электрон», - как в высшей степени полезное идеализированное математическое описание одного из наиболее фундаментальных элементов Вселенной. Но есть ли это реальная «реальность»?

Положения

Стандартная модель состоит из следующих положений:

  • Всё вещество состоит из 24 фундаментальных квантовых полей спина ½, квантами которых являются фундаментальные частицы -фермионы , которые можно объединить в три поколения фермионов: 6 лептонов (электрон , мюон , тау-лептон , электронное нейтрино , мюонное нейтрино и тау-нейтрино), 6 кварков (u, d, s, c, b, t) и 12 соответствующих им античастиц.
  • Кварки участвуют в сильных, слабых и электромагнитных взаимодействиях; заряжённые лептоны (электрон, мюон, тау-лептон) - в слабых и электромагнитных; нейтрино - только в слабых взаимодействиях.
  • Все три типа взаимодействий возникают как следствие постулата, что наш мир симметричен относительно трёх типов калибровочных преобразований. Частицами-переносчиками взаимодействий являются бозоны :
8 глюонов для сильного взаимодействия (группа симметрии SU(3)); 3 тяжёлых калибровочных бозона (W + , W − , Z 0) для слабого взаимодействия (группа симметрии SU(2)); один фотон для электромагнитного взаимодействия (группа симметрии U(1)).
  • В отличие от электромагнитного и сильного, слабое взаимодействие может смешивать фермионы из разных поколений, что приводит к нестабильности всех частиц, за исключением легчайших, и к таким эффектам, как нарушение CP-инвариантности и нейтринные осцилляции .
  • Внешними параметрами стандартной модели являются:
    • массы лептонов (3 параметра, нейтрино принимаются безмассовыми) и кварков (6 параметров), интерпретируемые как константы взаимодействия их полей с полем бозона Хиггса ,
    • параметры CKM-матрицы смешивания кварков - три угла смешивания и одна комплексная фаза, нарушающая CP-симметрию - константы взаимодействия кварков с электрослабым полем,
    • два параметра поля Хиггса , которые связаны однозначно с его вакуумным средним и массой бозона Хиггса ,
    • три константы взаимодействия, связанные соответственно с калибровочными группами U(1), SU(2) и SU(3), и характеризующие относительные интенсивности электромагнитного, слабого и сильного взаимодействий.

В связи с тем, что обнаружены нейтринные осцилляции , стандартная модель нуждается в расширении, которое вводит дополнительно 3 массы нейтрино и как минимум 4 параметра PMNS-матрицы смешивания нейтрино , аналогичные CKM-матрице смешивания кварков, и, возможно, ещё 2 параметра смешивания, если нейтрино являются майорановскими частицами . Также в число параметров стандартной модели иногда вводят вакуумный угол квантовой хромодинамики. Примечательно, что математическая модель с набором из 20 с небольшим чисел способна описать результаты миллионов проведённых к настоящему времени в физике экспериментов.

За пределами Стандартной модели

См. также

Примечания

Литература

  • Емельянов В. М. Стандартная модель и ее расширения. - М .: Физматлит, 2007. - 584 с. - (Фундаментальная и прикладная физика). - ISBN 978-5-922108-30-0

Ссылки

  • Все фундаментальные частицы и взаимодействия Стандартной модели на одной иллюстрации (англ.)

Wikimedia Foundation . 2010 .

Смотреть что такое "Стандартная модель" в других словарях:

    СТАНДАРТНАЯ МОДЕЛЬ, модель ЭЛЕМЕНТАРНЫХ ЧАСТИЦ и их взаимодействий, представляющая собой наиболее полное описание физических явлений, связанных с электричеством. Частицы делятся на АДРОНЫ (под воздействием ЯДЕРНЫХ СИЛ превращающиеся в КВАРКИ),… … Научно-технический энциклопедический словарь

    В физике элементарных частиц, теория, согласно к рой осн. (фундамент.) элементарными частицами являются кварки и лептоны. Сильное взаимодействие, посредством к рого кварки связываются в адроны, осуществляется путём обмена глюонами. Электрослабое… … Естествознание. Энциклопедический словарь

    - … Википедия

    Стандартная модель международной торговли - наиболее широко используемая в настоящее время модель международной торговли, раскрывающая воздействие внешней торговли на основные макроэкономические показатели торгующей страны: производство, потребление, общественное благосостояние … Экономика: глоссарий

    - (Heckscher Ohlin model) Стандартная модель внешней торговли между странами (intra industry trade) с разной отраслевой структурой, названная по фамилиям ее шведских создателей. Согласно этой модели, страны имеют одни и те же производственные… … Экономический словарь

    Научная картина мира (НКМ) (одно из основополагающих понятий в естествознании) особая форма систематизации знаний, качественное обобщение и мировоззренческий синтез различных научных теорий. Будучи целостной системой представлений об общих… … Википедия

    Стандартная библиотека языка программирования С assert.h complex.h ctype.h errno.h fenv.h float.h inttypes.h iso646.h limits.h locale.h math.h setjmp.h signal.h stdarg.h stdbool.h stddef.h … Википедия

    СТАНДАРТНАЯ КОНЦЕПЦИЯ НАУКИ форма логико методологического анализа естественнонаучных теорий, разработанная под значительным влиянием неопозитивистской философии науки. В рамках стандартной концепции науки свойства теории (трактуемой как… … Философская энциклопедия

    Форма логико методологического анализа естественнонаучных теорий, разработанная под значительным влиянием неопозитивистской философии науки. В рамках стандартной концепции науки свойства теории (трактуемой как множество научно осмысленных… … Философская энциклопедия

Книги

  • Физика частиц - 2013. Квантовая электродинамика и Стандартная модель , О. М. Бояркин, Г. Г. Бояркина. Во втором томе двухтомника, содержащего современный курс физики элементарных частиц, в качестве первого примера теории реальных взаимодействий рассматривается квантовая электродинамика.…

В масштабах микромира фактически теряется разница между частицами вещества и частицами (квантами) поля, поэтому в соответствии с общепринятой в настоящее время стандартной моделью все известные на сегодняшний день элементарные частицы делятся на два больших класса: частицы - источники взаимодействий и частицы - переносчики взаимодействий (рис.8.1). Частицы первого класса, в свою очередь, подразделяются на две группы, отличающиеся тем, что частицы первой группы - адроны 1 - участвуют во всех четырех фундаментальных взаимодействиях, включая сильные, а частицы второй группы - лептоны - не участвуют в сильных взаимодействиях. К адронам относится очень много различных элементарных частиц, большинство из которых имеет своего «двойника» - античастицу . Как правило, это довольно массивные частицы, с малым временем жизни. Исключение составляют нуклоны, причем считается, что время жизни протона превышает возраст Вселенной. Лептонами являются шесть элементарных частиц: электрон е, мюон  и таон , а также связанные с ними три нейтрино  е,   и   . Кроме того, каждая из этих частиц также имеет своего «двойника» - соответствующую античастицу. Все лептоны настолько похожи друг на друга по некоторым, специфическим в масштабах микромира свойствам, что мюон и таон можно было бы назвать тяжелыми электронами, а нейтрино - электронами, «потерявшими» заряд и массу. В то же время, в отличие от электронов, мюоны и таоны являются радиоактивными, а все нейтрино чрезвычайно слабо взаимодействуют с веществом и поэтому настолько неуловимы, что, например, их поток проходит через Солнце, практически не ослабляясь. Отметим, что нейтрино в последнее время привлекают к себе огромный интерес, особенно в связи с проблемами космологии, так как считается, что в потоках нейтрино сосредоточена значительная часть массы Вселенной.

Что касается адронов, то сравнительно недавно, около 30 лет назад, физики нащупали еще один «этаж» в их строении. Рассматриваемая стандартная модель предполагает, что все адроны являются суперпозицией нескольких кварков и антикварков . Кварки различаются по свойствам, многие из которых не имеют аналогов в макромире. Различные кварки обозначаются буквами латинского алфавита: u («up»), d («down»), c («charm»), b («beauty»), s («strange»), t («truth»). Кроме того,

Рис.8.1. Стандартная модель элементарных частиц

каждый из перечисленных кварков может существовать в трех состояниях, которые называются «цветом» : «синем», «зеленом» и «красном». В последнее время стало общепринятым говорить еще и об «аромате» кварка - так называют все его параметры, не зависящие от «цвета». Конечно, все эти термины не имеют ничего общего с обычными значениями соответствующих слов. Этими вполне научными терминами обозначаются физические характеристики, которым как правило невозможно дать макроскопическую интерпретацию. Предполагается, что кварки имеют дробный электрический заряд (-е/3 и +2е/3, где е = 1,6  10 -19 Кл - заряд электрона) и взаимодействуют друг с другом с «силой», увеличивающейся с расстоянием. Поэтому кварки нельзя «разорвать», они не могут существовать отдельно друг от друга 1 . В определенном смысле кварки являются «настоящими», «истинными» элементарными частицами для адронной формы материи. Теория, описывающая поведение и свойства кварков, называется квантовой хромодинамикой .

Частицы - переносчики взаимодействий включают в себя восемь глюонов (от английского слова glue - клей), ответственных за сильные взаимодействия кварков и антикварков, фотон , осуществляющий электромагнитное взаимодействие, промежуточные бозоны , которыми обмениваются слабо-взаимодействующие частицы, и гравитон , принимающий участие в универсальном гравитационном взаимодействии между всеми частицами.

Стандартная модель элементарных частиц считается крупнейшим достижением физики второй половины XX века. Но что лежит за ее пределами?

Стандартная модель (СМ) элементарных частиц, базирующаяся на калибровочной симметрии , — великолепное творение Мюррея Гелл-Манна, Шелдона Глэшоу, Стивена Вайнберга, Абдуса Салама и целой плеяды блестящих ученых. СМ прекрасно описывает взаимодействия между кварками и лептонами на дистанциях порядка 10−17 м (1% диаметра протона), которые можно изучать на современных ускорителях. Однако она начинает буксовать уже на расстояниях в 10−18 м и тем более не обеспечивает продвижения к заветному планковскому масштабу в 10−35 м.

Считается, что именно там все фундаментальные взаимодействия сливаются в квантовом единстве. На смену СМ когда-нибудь придет более полная теория, которая, скорее всего, тоже не станет последней и окончательной. Ученые пытаются найти замену Стандартной модели. Многие считают, что новая теория будет построена путем расширения списка симметрий, образующих фундамент СМ. Один из наиболее перспективных подходов к решению этой задачи был заложен не только вне связи с проблемами СМ, но даже до ее создания.


Частицы, подчиняющиеся статистике Ферми-Дирака (фермионы с полуцелым спином) и Бозе-Эйнштейна (бозоны с целым спином). В энергетическом колодце все бозоны могут занимать один и тот же нижний энергетический уровень, образуя конденсат Бозе-Эйнштейна. Фермионы же подчиняются принципу запрета Паули, и поэтому две частицы с одинаковыми квантовыми числами (в частности, однонаправленными спинами) не могут занимать один и тот же энергетический уровень.

Смесь противоположностей

В конце 1960-х старший научный сотрудник теоротдела ФИАН Юрий Гольфанд предложил своему аспиранту Евгению Лихтману обобщить математический аппарат, применяемый для описания симметрий четырехмерного пространства-времени специальной теории относительности (пространства Минковского).

Лихтман обнаружил, что эти симметрии можно объединить с внутренними симметриями квантовых полей с ненулевыми спинами. При этом образуются семейства (мультиплеты), объединяющие частицы с одинаковой массой, обладающие целым и полуцелым спином (иначе говоря, бозоны и фермионы). Это было и новым, и непонятным, поскольку те и другие подчиняются разным типам квантовой статистики. Бозоны могут накапливаться в одном и том же состоянии, а фермионы следуют принципу Паули, строго запрещающему даже парные союзы этого рода. Поэтому возникновение бозонно-фермионных мультиплетов выглядело математической экзотикой, не имеющей отношения к реальной физике. Так это и было воспринято в ФИАН. Позже в своих «Воспоминаниях» Андрей Сахаров назвал объединение бозонов и фермионов великой идеей, однако в то время она не показалась ему интересной.

За пределами стандарта

Где же пролегают границы СМ? «Стандартная модель согласуется почти со всеми данными, полученными на ускорителях высоких энергий. — объясняет ведущий научный сотрудник Института ядерных исследований РАН Сергей Троицкий. — Однако в ее рамки не вполне укладываются результаты экспериментов, свидетельствующие о наличии массы у двух типов нейтрино, а возможно, что и у всех трех. Этот факт означает, что СМ нуждается в расширении, а в каком именно, никто толком не знает. На неполноту СМ указывают и астрофизические данные. Темная материя, а на нее приходится более пятой части массы Вселенной, состоит из тяжелых частиц, которые никак не вписываются в СМ. Кстати, эту материю точнее было бы называть не темной, а прозрачной, поскольку она не только не излучает света, но и не поглощает его. Кроме того, СМ не объясняет почти полного отсутствия антивещества в наблюдаемой Вселенной».
Есть также возражения эстетического порядка. Как отмечает Сергей Троицкий, СМ устроена весьма некрасиво. Она содержит 19 численных параметров, которые определяются экспериментом и, с точки зрения здравого смысла, принимают весьма экзотические значения. Например, вакуумное среднее поля Хиггса, несущее ответственность за массы элементарных частиц, равно 240 ГэВ. Непонятно, почему этот параметр в 1017 раз меньше параметра, определяющего гравитационное взаимодействие. Хотелось бы иметь более полную теорию, которая даст возможность определить это отношение из каких-то общих принципов.
СМ не объясняет и огромной разницы между массами самых легких кварков, из которых сложены протоны и нейтроны, и массой top-кварка, превышающей 170 ГэВ (во всем остальном он ничем не отличается от u-кварка, который почти в 10 тысяч раз легче). Откуда берутся вроде бы одинаковые частицы со столь различными массами, пока непонятно.

Лихтман в 1971 году защитил диссертацию, а потом ушел в ВИНИТИ и почти забросил теорфизику. Гольфанда уволили из ФИАН по сокращению штатов, и он долго не мог найти работы. Однако сотрудники Украинского физико-технического института Дмитрий Волков и Владимир Акулов тоже открыли симметрию между бозонами и фермионами и даже воспользовались ею для описания нейтрино. Правда, никаких лавров ни москвичи, ни харьковчане тогда не обрели. Лишь в 1989 году Гольфанд и Лихтман получили премию АН СССР по теоретической физике имени И.Е. Тамма. В 2009 году Владимир Акулов (сейчас он преподает физику в Техническом колледже Городского университета Нью-Йорка) и Дмитрий Волков (посмертно) удостоились Национальной премии Украины за научные исследования.


Элементарные частицы Стандартной модели делятся на бозоны и фермионы по типу статистики. Составные частицы — адроны — могут подчиняться либо статистике Бозе-Эйнштейна (к таким относятся мезоны — каоны, пионы), либо статистике Ферми-Дирака (барионы — протоны, нейтроны).

Рождение суперсимметрии

На Западе смеси бозонных и фермионных состояний впервые появились в зарождающейся теории, представляющей элементарные частицы не точечными объектами, а вибрациями одномерных квантовых струн.

В 1971 году была построена модель, в которой с каждой вибрацией бозонного типа сочеталась парная ей фермионная вибрация. Правда, эта модель работала не в четырехмерном пространстве Минковского, а в двумерном пространстве-времени струнных теорий. Однако уже в 1973 году австриец Юлиус Весс и итальянец Бруно Зумино доложили в ЦЕРН (а годом позже опубликовали статью) о четырехмерной суперсимметричной модели с одним бозоном и одним фермионом. Она не претендовала на описание элементарных частиц, но демонстрировала возможности суперсимметрии на наглядном и чрезвычайно физичном примере. Вскоре эти же ученые доказали, что обнаруженная ими симметрия является расширенной версией симметрии Гольфанда и Лихтмана. Вот и получилось, что в течение трех лет суперсимметрию в пространстве Минковского независимо друг от друга открыли три пары физиков.

Результаты Весса и Зумино подтолкнули разработку теорий с бозонно-фермионными смесями. Поскольку эти теории связывают калибровочные симметрии с симметриями пространства-времени, их назвали суперкалибровочными, а потом суперсимметричными. Они предсказывают существование множества частиц, ни одна из которых еще не открыта. Так что суперсимметричность реального мира все еще остается гипотетической. Но даже если она и существует, то не может быть строгой, иначе электроны обладали бы заряженными бозонными родичами с точно такой же массой, которых легко можно было бы обнаружить. Остается предположить, что суперсимметричные партнеры известных частиц чрезвычайно массивны, а это возможно лишь при нарушении суперсимметрии.


Суперсимметричная идеология вошла в силу в середине 1970-х годов, когда уже существовала Стандартная модель. Естественно, что физики принялись строить ее суперсимметричные расширения, иными словами, вводить в нее симметрии между бозонами и фермионами. Первая реалистичная версия суперсимметричной СМ, получившая название минимальной (Minimal Supersymmetric Standard Model, MSSM), была предложена Говардом Джорджи и Савасом Димопулосом в 1981 году. Фактически это та же Стандартная модель со всеми ее симметриями, но к каждой частице добавлен партнер, чей спин отличается от ее спина на ½, — бозон к фермиону и фермион к бозону.

Поэтому все взаимодействия СМ остаются на месте, но обогащаются взаимодействиями новых частиц со старыми и друг с другом. Позднее возникли и более сложные суперсимметричные версии СМ. Все они сопоставляют уже известным частицам тех же партнеров, но различным образом объясняют нарушения суперсимметрии.

Частицы и суперчастицы

Названия суперпартнеров фермионов строятся с помощью приставки «с» — сэлектрон, смюон, скварк. Суперпартнеры бозонов обзаводятся окончанием «ино»: фотон — фотино, глюон — глюино, Z-бозон — зино, W-бозон — вино, бозон Хиггса — хиггсино.

Спин суперпартнера любой частицы (за исключением бозона Хиггса) всегда на ½ меньше ее собственного спина. Следовательно, партнеры электрона, кварков и прочих фермионов (а также, естественно, и их античастиц) имеют нулевой спин, а партнеры фотона и векторных бозонов с единичным спином — половинный. Это связано с тем, что количество состояний частицы тем больше, чем больше ее спин. Поэтому замена вычитания на сложение привела бы к появлению избыточных суперпартнеров.


Слева — Стандартная модель (СМ) элементарных частиц: фермионы (кварки, лептоны) и бозоны (переносчики взаимодействий). Справа — их суперпартнеры в Минимальной суперсимметричной стандартной модели, MSSM: бозоны (скварки, слептоны) и фермионы (суперпартнеры переносчиков взаимодействий). Пять бозонов Хиггса (на схеме обозначены одним синим символом) также имеют своих суперпартнеров — пятерку хиггсино.

Возьмем для примера электрон. Он может находиться в двух состояниях — в одном его спин направлен параллельно импульсу, в другом — антипараллельно. С точки зрения СМ это разные частицы, поскольку они не вполне одинаково участвуют в слабых взаимодействиях. Частица с единичным спином и ненулевой массой может пребывать в трех различных состояниях (как говорят физики, имеет три степени свободы) и потому не годится в партнеры электрону. Единственным выходом будет приписать каждому из состояний электрона по одному суперпартнеру с нулевым спином и считать эти сэлектроны различными частицами.

Суперпартнеры бозонов Стандартной модели возникают несколько хитрее. Поскольку масса фотона равна нулю, то и при единичном спине он имеет не три, а две степени свободы. Поэтому ему без проблем сопоставляется фотино, суперпартнер с половинным спином, который, как и электрон, обладает двумя степенями свободы. По этой же схеме возникают глюино. С хиггсами ситуация посложнее. В MSSM есть два дублета хиггсовских бозонов, которым соответствует четверка суперпартнеров — два нейтральных и два разноименно заряженных хиггсино. Нейтралы смешиваются разными способами с фотино и зино и образуют четверку физически наблюдаемых частиц с общим именем нейтралино. Подобные же смеси со странным для русского уха названием чарджино (по-английски — chargino) образуют суперпартнеры положительного и отрицательного W-бозонов и пары заряженных хиггсов.


Своей спецификой обладает и ситуация с суперпартнерами нейтрино. Если бы эта частица не имела массы, ее спин всегда был бы направлен противоположно импульсу. Поэтому у безмассового нейтрино можно было бы ожидать наличие единственного скалярного партнера. Однако реальные нейтрино все же не безмассовы. Не исключено, что существуют также нейтрино с параллельными импульсами и спинами, но они очень тяжелы и еще не обнаружены. Если это действительно так, то каждой разновидности нейтрино соответствует свой суперпартнер.

Как говорит профессор физики Мичиганского университета Гордон Кейн, самый универсальный механизм нарушения суперсимметрии связан с тяготением.

Однако величина его вклада в массы суперчастиц еще не выяснена, а оценки теоретиков противоречивы. Кроме того, он вряд ли является единственным. Так, Next-to-Minimal Supersymmetric Standard Model, NMSSM, вводит еще два хиггсовских бозона, вносящих свои добавки в массу суперчастиц (а также увеличивает число нейтралино с четырех до пяти). Такая ситуация, отмечает Кейн, резко умножает число параметров, заложенных в суперсимметричные теории.


Даже минимальное расширение Стандартной модели требует около сотни дополнительных параметров. Этому не стоит удивляться, поскольку все эти теории вводят множество новых частиц. По мере появления более полных и согласованных моделей число параметров должно уменьшиться. Как только детекторы Большого адронного коллайдера отловят суперчастицы, новые модели не заставят себя ждать.

Иерархия частиц

Суперсимметричные теории позволяют устранить ряд слабых мест Стандартной модели. Профессор Кейн на первое место ставит загадку, связанную с бозоном Хиггса, которую называют проблемой иерархии .

Эта частица приобретает массу в ходе взаимодействия с лептонами и кварками (подобно тому, как они сами обретают массы при взаимодействии с хиггсовским полем). В СМ вклады от этих частиц представлены расходящимися рядами с бесконечными суммами. Правда, вклады бозонов и фермионов имеют разные знаки и в принципе могут почти полностью погасить друг друга. Однако такое погашение должно быть практически идеальным, поскольку масса хиггса, как теперь известно, равна лишь 125 ГэВ. Это не невозможно, но крайне маловероятно.


Для суперсимметричных теорий в этом нет ничего страшного. При точной суперсимметрии вклады обычных частиц и их суперпартнеров должны полностью компенсировать друг друга. Поскольку суперсимметрия нарушена, компенсация оказывается неполной, и бозон Хиггса обретает конечную и, главное, вычисляемую массу. Если массы суперпартнеров не слишком велики, она должна измеряться одной-двумя сотнями ГэВ, что и соответствует действительности. Как подчеркивает Кейн, физики стали серьезно относиться к суперсимметрии именно тогда, когда было показано, что она решает проблему иерархии.

На этом возможности суперсимметрии не заканчиваются. Из СМ вытекает, что в области очень высоких энергий сильное, слабое и электромагнитное взаимодействия хотя и обладают примерно одинаковой силой, но никогда не объединяются. А в суперсимметричных моделях при энергиях порядка 1016 ГэВ такое объединение имеет место, и это выглядит намного естественней. Эти модели предлагают также и решение проблемы темной материи. Суперчастицы при распадах порождают как суперчастицы, так и обычные частицы — естественно, меньшей массы. Однако суперсимметрия, в отличие от СМ, допускает быстрый распад протона, которого, на наше счастье, реально не происходит.


Протон, а вместе с ним и весь окружающий мир можно спасти, предположив, что в процессах с участием суперчастиц сохраняется квантовое число R-четности, которое для обычных частиц равно единице, а для суперпартнеров — минус единице. В таком случае самая легкая суперчастица должна быть полностью стабильной (и электрически нейтральной). Распасться на суперчастицы она не может по определению, а сохранение R-четности запрещает ей распадаться на частицы. Темная материи может состоять именно из таких частиц, возникших сразу вслед за Большим взрывом и избежавших взаимной аннигиляции.

В ожидании экспериментов

«Незадолго до открытия бозона Хиггса на основе М-теории (наиболее продвинутой версии теории струн) его массу предсказали с ошибкой всего в два процента! — говорит профессор Кейн. — Были также вычислены массы сэлектронов, смюонов и скварков, которые оказались слишком велики для современных ускорителей — порядка нескольких десятков ТэВ. Суперпартнеры фотона, глюона и прочих калибровочных бозонов намного легче, и поэтому есть шансы их обнаружить на БАК».

Конечно, правильность этих вычислений ничем не гарантирована: М-теория — дело тонкое. И все же, можно ли обнаружить на ускорителях следы суперчастиц? «Массивные суперчастицы должны распадаться сразу после рождения. Эти распады происходят на фоне распадов обычных частиц, и однозначно выделить их очень непросто, — объясняет главный научный сотрудник Лаборатории теоретической физики ОИЯИ в Дубне Дмитрий Казаков. — Было бы идеально, если бы суперчастицы проявляли себя уникальным образом, который невозможно спутать ни с чем другим, но теория этого не предсказывает.


Приходится анализировать множество различных процессов и искать среди них те, которые не вполне объясняются Стандартной моделью. Эти поиски пока не увенчались успехом, но у нас уже есть ограничения на массы суперпартнеров. Те из них, которые участвуют в сильных взаимодействиях, должны тянуть как минимум на 1 ТэВ, в то время как массы прочих суперчастиц могут варьировать между десятками и сотнями ГэВ.

В ноябре 2012 года на симпозиуме в Киото были доложены результаты экспериментов на БАК, в ходе которых впервые удалось надежно зарегистрировать очень редкий распад Bs-мезона на мюон и антимюон. Его вероятность составляет приблизительно три миллиардных, что хорошо соответствует предсказаниям СМ. Поскольку ожидаемая вероятность этого распада, вычисленная на основе MSSM, может оказаться в несколько раз большей, кое-кто решил, что с суперсимметрией покончено.

Однако эта вероятность зависит от нескольких неизвестных параметров, которые могут давать как большой, так и малый вклад в конечный результат, здесь еще много неясного. Поэтому ничего страшного не произошло, и слухи о кончине MSSM сильно преувеличены. Но из этого вовсе не следует, что она неуязвима. БАК пока не работает на полную мощность, он выйдет на нее лишь через два года, когда энергию протонов доведут до 14 ТэВ. И вот если тогда не найдется никаких проявлений суперчастиц, то MSSM, скорее всего, умрет естественной смертью и настанет время новых суперсимметричных моделей.

Числа Грассмана и супергравитация

Еще до создания MSSM суперсимметрию объединили с гравитацией. Неоднократное применение преобразований, связывающих бозоны и фермионы, перемещает частицу в пространстве-времени. Это позволяет связать суперсимметрии и деформации пространственно-временной метрики, которые, согласно общей теории относительности, и есть причина тяготения. Когда физики это поняли, они начали строить суперсимметричные обобщения ОТО, которые называются супергравитацией. Эта область теоретической физики активно развивается и сейчас.
Тогда же выяснилось, что суперсимметричным теориям необходимы экзотические числа, придуманные в XIX столетии немецким математиком Германом Гюнтером Грассманом. Их можно складывать и вычитать как обычные, но произведение таких чисел изменяет знак при перестановке сомножителей (поэтому квадрат и вообще любая целая степень грассманова числа равна нулю). Естественно, что функции от таких чисел нельзя дифференцировать и интегрировать по стандартным правилам математического анализа, нужны совершенно другие приемы. И они, к счастью для суперсимметричных теорий, уже были найдены. Их придумал в 1960-е годы выдающийся советский математик из МГУ Феликс Березин, который создал новое направление — суперматематику.

Однако есть и другая стратегия, не связанная с БАК. Пока в ЦЕРН работал электронно-позитронный коллайдер LEP, на нем искали наиболее легкие из заряженных суперчастиц, чьи распады должны порождать наилегчайших суперпартнеров. Эти частицы-предшественники легче зарегистрировать, поскольку они заряжены, а легчайший суперпартнер нейтрален. Эксперименты на LEP показали, что масса таких частиц не превышает 104 ГэВ. Это не так уж много, но их трудно обнаружить на БАК из-за высокого фона. Поэтому сейчас началось движение за постройку для их поиска сверхмощного электрон-позитронного коллайдера. Но это очень дорогая машина, в скором времени ее уж точно не построят».


Закрытия и открытия

Однако, как считает профессор теоретической физики Университета Миннесоты Михаил Шифман, измеренная масса бозона Хиггса слишком велика для MSSM, и эта модель, скорее всего, уже закрыта:

«Правда, ее пытаются спасти с помощью различных надстроек, но они столь неизящны, что имеют малые шансы на успех. Возможно, что другие расширения сработают, но когда и как, пока неизвестно. Но этот вопрос выходит за рамки чистой науки. Нынешнее финансирование физики высоких энергий держится на надежде обнаружить на БАК что-то действительно новое. Если этого не произойдет, финансирование урежут, и денег не хватит для строительства ускорителей нового поколения, без которых эта наука не сможет реально развиваться». Так что суперсимметричные теории по‑прежнему подают надежды, но ждут не дождутся вердикта экспериментаторов.