Практически каждому человеку известно определение электрического тока как Однако все дело в том, что происхождение и движение его в различных средах достаточно сильно отличается друг от друга. В частности, электрический ток в жидкостях обладает несколько другими свойствами, чем Речь идет о тех же металлических проводниках.

Основное отличие состоит в том, что ток в жидкостях - это движение заряженных ионов, то есть атомов или даже молекул, которые по какой-либо причине потеряли или приобрели электроны. При этом одним из показателей этого движения является изменение свойств того вещества, по которому данные ионы проходят. Опираясь на определение электрического тока, мы можем предположить, что при разложении отрицательно заряженные ионы будут двигаться в сторону положительного а положительные, наоборот, к отрицательному.

Процесс разложения молекул раствора на положительные и отрицательные заряженные ионы получил в науке название электролитической диссоциации. Таким образом, электрический ток в жидкостях возникает вследствие того, что, в отличие от того же металлического проводника, изменяется состав и химические свойства этих жидкостей, результатом чего является процесс перемещения заряженных ионов.

Электрический ток в жидкостях, его происхождение, количественные и качественные характеристики были одной из главных проблем, изучением которой долгое время занимался знаменитый физик М. Фарадей. В частности, с помощью многочисленных экспериментов ему удалось доказать, что масса выделяемого при электролизе вещества напрямую зависит от количества электричества и времени, в течении которого этот электролиз осуществлялся. Ни от каких других причин, за исключением рода вещества, эта масса не зависит.

Кроме того, изучая ток в жидкостях, Фарадей экспериментально выяснил, что для выделения одного килограмма любого вещества при электролизе необходимо одно и то же количество Это количество, равное 9,65.10 7 к., получило название числа Фарадея.

В отличие от металлических проводников, электрический ток в жидкостях оказывается окруженным которые значительно затрудняют передвижение ионов вещества. В связи с этим, в любом электролите возможно образование тока только небольшого напряжения. В то же время, если температура раствора повышается, то его проводимость увеличивается, а поля возрастает.

Электролиз обладает еще одним интересным свойством. Все дело в том, что вероятность распада той или иной молекулы на положительные и отрицательные заряженные ионы тем выше, чем большее число молекул собственно вещества и растворителя. В то же время, в определенный момент наступает перенасыщение раствора ионами, после чего проводимость раствора начинает снижаться. Таким образом, наиболее сильная будет проходить в растворе, где концентрация ионов крайне невелика, однако напряженность электрического тока в таких растворах будет крайне низкой.

Процесс электролиза нашел широкое применение в различных промышленных производствах, связанных с проведением электрохимических реакций. К числу наиболее важных из них можно отнести получение металла с помощью электролитов, электролиз солей, содержащих хлор и его производные, окислительно-восстановительные реакции, получение такого необходимого вещества, как водород, полировка поверхностей, гальваника. Например, на многих предприятиях машино- и приборостроения весьма распространен метод рафинирования, который представляет собой получение металла без всяких ненужных примесей.

Жидкости, как и твердые тела, могут быть проводниками, полупроводниками и диэлектриками. В этом уроке речь пойдет о жидкостях-проводниках. Причем не о жидкостях с электронной проводимостью (расплавленные металлы), а о жидкостях-проводниках второго рода (растворы и расплавы солей, кислот, оснований). Тип проводимости таких проводников - ионный.

Определение . Проводники второго рода - такие проводники, в которых при протекании тока происходят химические процессы.

Для лучшего понимания процесса проводимости тока в жидкостях, можно представить следующий опыт: В ванну с водой поместили два электрода, подключенные к источнику тока, в цепи в качестве индикатора тока можно взять лампочку. Если замкнуть такую цепь, лампа гореть не будет, что означает отсутствие тока, а это значит, что в цепи есть разрыв, и вода сама по себе ток не проводит. Но если в ванную поместить некоторое количество - поваренной соли - и повторить замыкание, то лампочка загорится. Это значит, что в ванной между катодом и анодом начали двигаться свободные носители заряда, в данном случае ионы (рис. 1).

Рис. 1. Схема опыта

Проводимость электролитов

Откуда во втором случае берутся свободные заряды? Как было сказано в одном из предыдущих уроков, некоторые диэлектрики - полярные. Вода имеет как раз-таки полярные молекулы (рис. 2).

Рис. 2. Полярность молекулы воды

При внесении в воду соли молекулы воды ориентируются таким образом, что их отрицательные полюса находятся возле натрия, положительные - возле хлора. В результате взаимодействий между зарядами молекулы воды разрывают молекулы соли на пары разноименных ионов. Ион натрия имеет положительный заряд, ион хлора - отрицательный (рис. 3). Именно эти ионы и будут двигаться между электродами под действием электрического поля.

Рис. 3. Схема образования свободных ионов

При подходе ионов натрия к катоду он получает свои недостающие электроны, ионы хлора при достижении анода отдают свои.

Электролиз

Так как протекание тока в жидкостях связано с переносом вещества, при таком токе имеет место процесс электролиза.

Определение. Электролиз - процесс, связанный с окислительно-восстановительными реакциями, при которых на электродах выделяется вещество.

Вещества, которые в результате подобных расщеплений обеспечивают ионную проводимость, называются электролитами. Такое название предложил английский физик Майкл Фарадей (рис. 4).

Электролиз позволяет получать из растворов вещества в достаточно чистом виде, поэтому его применяют для получения редких материалов, как натрий, кальций… в чистом виде. Этим занимается так называемая электролитическая металлургия.

Законы Фарадея

В первой работе по электролизу 1833 года Фарадей представил свои два закона электролиза. В первом речь шла о массе вещества, выделяющегося на электродах:

Первый закон Фарадея гласит, что эта масса пропорциональна заряду, прошедшему через электролит:

Здесь роль коэффициента пропорциональности играет величина - электрохимический эквивалент. Это табличная величина, которая уникальна для каждого электролита и является его главной характеристикой. Размерность электрохимического эквивалента:

Физический смысл электрохимического эквивалента - масса, выделившаяся на электроде при прохождении через электролит количества электричества в 1 Кл.

Если вспомнить формулы из темы о постоянном токе:

То можно представить первый закон Фарадея в виде:

Второй закон Фарадея непосредственно касается измерения электрохимического эквивалента через другие константы для конкретно взятого электролита:

Здесь: - молярная масса электролита; - элементарный заряд; - валентность электролита; - число Авогадро.

Величина называется химическим эквивалентом электролита. То есть, для того чтобы знать электрохимический эквивалент, достаточно знать химический эквивалент, остальные составляющие формулы являются мировыми константами.

Исходя из второго закона Фарадея, первый закон можно представить в виде:

Фарадей предложил терминологию этих ионов по признаку того электрода, к которому они движутся. Положительные ионы называются катионами, потому что они движутся к отрицательно заряженному катоду, отрицательные заряды называются анионами как движущиеся к аноду.

Вышеописанное действие воды по разрыву молекулы на два иона называется электролитической диссоциацией.

Помимо растворов, проводниками второго рода могут быть и расплавы. В этом случае наличие свободных ионов достигается тем, что при высокой температуре начинаются очень активные молекулярные движения и колебания, в результате которых и происходит разрушение молекул на ионы.

Практическое применение электролиза

Первое практическое применение электролиза произошло в 1838 году русским ученым Якоби. С помощью электролиза он получил оттиск фигур для Исаакиевского собора. Такое применение электролиза получило название гальванопластика. Другой сферой применения является гальваностегия - покрытие одного металла другим (хромирование, никелирование, золочение и т.д., рис. 5)

  • Генденштейн Л.Э., Дик Ю.И. Физика 10 класс. - М.: Илекса, 2005.
  • Мякишев Г.Я., Синяков А.З., Слободсков Б.А. Физика. Электродинамика. - М.: 2010.
    1. Fatyf.narod.ru ().
    2. ХиМиК ().
    3. Ens.tpu.ru ().

    Домашнее задание

    1. Что такое электролиты?
    2. Какие существуют два принципиально разных типа жидкостей, в которых может протекать электрический ток?
    3. Какие могут быть механизмы образования свободных носителей зарядов?
    4. *Почему масса, выделившаяся на электроде, пропорциональна заряду?

    То, что жидкости могут отлично проводить электрическую энергию, знают абсолютно все. И также общеизвестным фактом является то, что все проводники по своему типу делятся на несколько подгрупп. Предлагаем рассмотреть в нашей статье, как электрический ток в жидкостях, металлах и прочих полупроводниках проводится, а также законы электролиза и его виды.

    Теория электролиза

    Чтобы было легче понять, о чем идет речь, предлагаем начать с теории, электричество, если мы рассматриваем электрический заряд, как своего рода жидкость, стало известным уже более 200 лет. Заряды состоят из отдельных электронов, но те, настолько малы, что любой большой заряд ведет себя как непрерывного течения, жидкость.

    Как и тела твердого типа, жидкие проводники могут быть трех типов:

    • полупроводниками (селен, сульфиды и прочие);
    • диэлектиками (щелочные растворы, соли и кислоты);
    • проводниками (скажем, в плазме).

    Процесс, при котором происходит растворение электролитов и распадение ионов под воздействием электрического молярного поля, называется диссоциация. В свою очередь, доля молекул, которые распались на ионы, либо распавшихся ионов в растворенном веществе, полностью зависит от физических свойств и температуры в различных проводниках и расплавах. Обязательно нужно помнить, что ионы могут рекомбинироваться или вновь объединиться. Если условия не будут меняться, то количество распавшихся ионов и объединившихся будет равно пропорциональным.

    В электролитах проводят энергию ионы, т.к. они могут являться и положительно заряженными частицами, и отрицательно. Во время подключения жидкости (или точнее, сосуда с жидкостью к сети питания), начнется движение частиц к противоположным зарядам (положительные ионы начнут притягиваться к катодам, а отрицательные – к анодам). В этом случае, энергию транспортируют непосредственно, ионы, поэтому проводимость такого типа называется – ионной.

    Во время этого типа проводимости, ток переносят ионы, и на электродах выделяются вещества, которые являются составляющими электролитов. Если рассуждать с точки зрения химии, то происходит окисление и восстановление. Таким образом, электрический ток в газах и жидкостях транспортируется при помощи электролиза.

    Законы физики и ток в жидкостях

    Электричество в наших домах и технике, как правило, не передается в металлических проволоках,. В металле электроны могут переходить от атома к атому, и, таким образом нести отрицательный заряд.

    Как жидкости, они приводятся в виде электрического напряжения, известного как напряжение, изменяемом в единицах – вольт, в честь итальянского ученого Алессандро Вольта.

    Видео: Электрический ток в жидкостях: полная теория

    Также, электрический ток течет от высокого напряжения в низкое напряжение и измеряется в единицах, известных как ампер, названных по имени Андре-Мари Ампера. И согласно теории и формулы, если увеличить напряжение тока, то его сила также увеличится пропорционально. Это соотношение известно как закон Ома. Как пример, виртуальная ампермерная характеристика ниже.

    Рисунок: зависимость тока от напряжения

    Закон Ома (с дополнительными подробностями относительно длины и толщины проволоки), как правило, является одним из первых вещей, преподаваемых в классах, изучающих физику, многие студенты и преподаватели поэтому рассматривают электрический ток в газах и жидкостях как основной закон в физике.

    Для того чтобы увидеть своими глазами движение зарядов, нужно приготовить колбу с соленой водой, плоские прямоугольные электроды и источники питания, также понадобится ампермерная установка, при помощи которой будет проводиться энергия от сети питания к электродам.

    Рисунок: Ток и соль

    Пластины, которые выступают проводниками необходимо опустить в жидкость, и включить напряжение. После этого начнется хаотичное перемещение частиц, но как после возникновения магнитного поля между проводниками, этот процесс упорядочится.

    Как только ионы начнут меняться зарядами и объединяться, аноды станут катодами, а катоды – анодами. Но здесь нужно учитывать и электрическое сопротивление. Конечно, не последнюю роль играет теоретическая кривая, но основное влияние – это температура и уровень диссоциации (зависит от того, какие носители будут выбраны), а также выбран переменный ток или постоянный. Завершая это опытное исследование, Вы можете обратить внимание, что на твердых телах (металлических пластинах), образовался тончайший слой соли.

    Электролиз и вакуум

    Электрический ток в вакууме и жидкостях – это достаточно сложный вопрос. Дело в том, что в таких средах полностью отсутствуют заряды в телах, а значит, это диэлектрик. Иными словами, наша цель – это создание условий, для того, чтобы атом электрона мог начать свое движение.

    Для того нужно использовать модульное устройство, проводники и металлические пластины, а далее действовать, как и в методе выше.

    Проводники и вакуум Характеристика тока в вакууме

    Применение электролиза

    Этот процесс применяется практически во всех сферах жизни. Даже самые элементарные работы подчас требуют вмешательства электрического тока в жидкостях, скажем,

    При помощи этого простого процесса происходит покрытие твердых тел тончайшим слоем какого-либо металла, например, никелирование иди хромирование Т.е. это один из возможных способов борьбы с коррозийными процессами. Подобные технологии используются в изготовлении трансформаторов, счетчиков и прочих электрических приборов.

    Надеемся, наше обоснование ответило на все вопросы, которые возникают, изучая явление электрический ток в жидкостях. Если нужны более качественные ответы, то советуем посетить форум электриков, там Вас с радостью проконсультируют бесплатно.

    Жидкости, как и твердые тела, могут быть проводниками, полупроводниками и диэлектриками. В этом уроке речь пойдет о жидкостях-проводниках. Причем не о жидкостях с электронной проводимостью (расплавленные металлы), а о жидкостях-проводниках второго рода (растворы и расплавы солей, кислот, оснований). Тип проводимости таких проводников - ионный.

    Определение . Проводники второго рода - такие проводники, в которых при протекании тока происходят химические процессы.

    Для лучшего понимания процесса проводимости тока в жидкостях, можно представить следующий опыт: В ванну с водой поместили два электрода, подключенные к источнику тока, в цепи в качестве индикатора тока можно взять лампочку. Если замкнуть такую цепь, лампа гореть не будет, что означает отсутствие тока, а это значит, что в цепи есть разрыв, и вода сама по себе ток не проводит. Но если в ванную поместить некоторое количество - поваренной соли - и повторить замыкание, то лампочка загорится. Это значит, что в ванной между катодом и анодом начали двигаться свободные носители заряда, в данном случае ионы (рис. 1).

    Рис. 1. Схема опыта

    Проводимость электролитов

    Откуда во втором случае берутся свободные заряды? Как было сказано в одном из предыдущих уроков, некоторые диэлектрики - полярные. Вода имеет как раз-таки полярные молекулы (рис. 2).

    Рис. 2. Полярность молекулы воды

    При внесении в воду соли молекулы воды ориентируются таким образом, что их отрицательные полюса находятся возле натрия, положительные - возле хлора. В результате взаимодействий между зарядами молекулы воды разрывают молекулы соли на пары разноименных ионов. Ион натрия имеет положительный заряд, ион хлора - отрицательный (рис. 3). Именно эти ионы и будут двигаться между электродами под действием электрического поля.

    Рис. 3. Схема образования свободных ионов

    При подходе ионов натрия к катоду он получает свои недостающие электроны, ионы хлора при достижении анода отдают свои.

    Электролиз

    Так как протекание тока в жидкостях связано с переносом вещества, при таком токе имеет место процесс электролиза.

    Определение. Электролиз - процесс, связанный с окислительно-восстановительными реакциями, при которых на электродах выделяется вещество.

    Вещества, которые в результате подобных расщеплений обеспечивают ионную проводимость, называются электролитами. Такое название предложил английский физик Майкл Фарадей (рис. 4).

    Электролиз позволяет получать из растворов вещества в достаточно чистом виде, поэтому его применяют для получения редких материалов, как натрий, кальций… в чистом виде. Этим занимается так называемая электролитическая металлургия.

    Законы Фарадея

    В первой работе по электролизу 1833 года Фарадей представил свои два закона электролиза. В первом речь шла о массе вещества, выделяющегося на электродах:

    Первый закон Фарадея гласит, что эта масса пропорциональна заряду, прошедшему через электролит:

    Здесь роль коэффициента пропорциональности играет величина - электрохимический эквивалент. Это табличная величина, которая уникальна для каждого электролита и является его главной характеристикой. Размерность электрохимического эквивалента:

    Физический смысл электрохимического эквивалента - масса, выделившаяся на электроде при прохождении через электролит количества электричества в 1 Кл.

    Если вспомнить формулы из темы о постоянном токе:

    То можно представить первый закон Фарадея в виде:

    Второй закон Фарадея непосредственно касается измерения электрохимического эквивалента через другие константы для конкретно взятого электролита:

    Здесь: - молярная масса электролита; - элементарный заряд; - валентность электролита; - число Авогадро.

    Величина называется химическим эквивалентом электролита. То есть, для того чтобы знать электрохимический эквивалент, достаточно знать химический эквивалент, остальные составляющие формулы являются мировыми константами.

    Исходя из второго закона Фарадея, первый закон можно представить в виде:

    Фарадей предложил терминологию этих ионов по признаку того электрода, к которому они движутся. Положительные ионы называются катионами, потому что они движутся к отрицательно заряженному катоду, отрицательные заряды называются анионами как движущиеся к аноду.

    Вышеописанное действие воды по разрыву молекулы на два иона называется электролитической диссоциацией.

    Помимо растворов, проводниками второго рода могут быть и расплавы. В этом случае наличие свободных ионов достигается тем, что при высокой температуре начинаются очень активные молекулярные движения и колебания, в результате которых и происходит разрушение молекул на ионы.

    Практическое применение электролиза

    Первое практическое применение электролиза произошло в 1838 году русским ученым Якоби. С помощью электролиза он получил оттиск фигур для Исаакиевского собора. Такое применение электролиза получило название гальванопластика. Другой сферой применения является гальваностегия - покрытие одного металла другим (хромирование, никелирование, золочение и т.д., рис. 5)

  • Генденштейн Л.Э., Дик Ю.И. Физика 10 класс. - М.: Илекса, 2005.
  • Мякишев Г.Я., Синяков А.З., Слободсков Б.А. Физика. Электродинамика. - М.: 2010.
    1. Fatyf.narod.ru ().
    2. ХиМиК ().
    3. Ens.tpu.ru ().

    Домашнее задание

    1. Что такое электролиты?
    2. Какие существуют два принципиально разных типа жидкостей, в которых может протекать электрический ток?
    3. Какие могут быть механизмы образования свободных носителей зарядов?
    4. *Почему масса, выделившаяся на электроде, пропорциональна заряду?

    Доклад на тему:

    Электрический ток

    в жидкостях

    (электролитах)

    Электролиз

    Законы Фарадея

    Элементарный электрический заряд

    Ученицы 8 го класса « Б »

    Л огиновой М арии А ндреевны

    Москва 2003

    Школа № 91

    Введение

    С электропроводностью растворов солей в воде (электролитов) связано очень многое в нашей жизни. С первого удара сердца («живое» электричество в теле человека, на 80% состоящем из воды) до автомобилей на улице, плееров и мобильных телефонов (неотъемлимой частью этих устройств являются «батарейки» – электрохимические элменты питания и различные аккумуляторы – от свинцово-кислотных в автомобилях до литий-полимерных в самых дорогих мобильных телефонах). В огромных, дымящихся ядовитыми парами чанах из расплавленного при огромной температуре боксита электролизом получают алюминий – «крылатый» металл для самолётов и банок для «Фанты». Все вокруг – от хромированной решетки радиатора иномарки до посеребрённой серёжки в ухе когда-либо сталкивалось с раствором или расплавом солей, а следовательно и с электротоком в жидкостях. Не зря это явление изучает целая наука – электрохимия. Но нас сейчас больше интересуют физические основы этого явления.

    Электроток в растворе. Электролиты

    Из уроков физики в 8 классе нам известно, что заряд в проводниках (металлах) переносят отрицательно заряженные электроны.

    Упорядоченное движение заряженных частиц называется электрическим током.

    Но если мы соберем прибор (с электродами из графита):

    то убедимся, что стрелка амперметра отклоняется – через раствор идет ток! Какие же заряженные частицы есть в растворе?

    Ещё в 1877 году шведский ученый Сванте Аррениус, изучая электропроводность растворов различных веществ, пришел к выводу, что её причиной являются ионы, которые образуются при растворении соли в воде. При растворении в воде молекула CuSO 4 распадается (диссоциирует) на два разнозаряженных иона – Cu 2+ и SO 4 2- . Упрощенно происходящие процессы можно отразить следующей формулой:

    CuSO 4 ÞCu 2+ +SO 4 2-

    Проводят электрический ток растворы солей, щелочей, кислот.

    Вещества, растворы которых проводят электрический ток, называются электролитами.

    Растворы сахара, спирта, глюкозы и некоторых других веществ не проводят электрический ток.

    Вещества, растворы которых не проводят электрический ток, называются неэлектролитами.

    Электролитическая диссоциация

    Процесс распада электролита на ионы называется электролитической диссоциацией.

    С. Аррениус, который придерживался физической теории растворов, не учитывал взаимодействия электролита с водой и считал, что в растворах находятся свободные ионы. В отличие от него русские химики И. А. Каблуков и В. А. Кистяковский применили к объяснению электролитической диссоциации химическую теорию Д. И. Менделеева и доказали, что при растворении электролита происходит химическое взаимодействие растворённого вещества с водой, которое приводит к образованию гидратов, а затем они диссоциируют на ионы. Они считали, что в растворах находятся не свободные, не «голые» ионы, а гидратированные, то есть «одетые в шубку» из молекул воды. Следовательно, диссоциация молекул электролитов происходит в следующей последовательности:

    а) ориентация молекул воды вокруг полюсов молекулы электролита

    б) гидратация молекулы электролита

    в) её ионизация

    г) распад её на гидратированные ионы

    По отношению к степени электролитической диссоциации электролиты делятся на сильные и слабые.

    - Сильные электролиты – такие, которые при растворении практически полностью диссоциируют.

    У них значение степени диссоциации стремится к единице.

    - Слабые электролиты – такие, которые при растворении почти не диссоциируют. Их степень диссоциации стремится к нулю.

    Из этого делаем вывод, что переносчиками электрического заряда (носителями электрического тока) в растворах электролитов являются не электроны, а положительно и отрицательно заряженные гидратированные ионы .

    Температурная зависимость сопротивления электролита

    При повышении температуры облегчается процесс диссоциации, повышается подвижность ионов и сопротивление электролита падает .

    Катод и анод. Катионы и анионы

    А что же происходит с ионами под воздействием электрического тока?

    Вернёмся к нашему прибору:

    В растворе CuSO 4 диссоциировал на ионы – Cu 2+ и SO 4 2- . Положительно заряженный ион Cu 2+ (катион) притягивается к отрицательно заряженному электроду – катоду , где получает недостающие электроны и восстанавливается до металлической меди – простого вещества. Если извлечь катод из прибора после прохождения через раствор тока, то нетрудно заметить красно-рыжий налет – это металлическая медь.

    Первый закон Фарадея

    А можем ли мы узнать сколько меди выделилось? Взвешивая катод до и после опыта, можно точно определить массу осадившегося металла. Измерения показывают, что масса вещества, выделевшегося на электродах, зависит от силы тока и времени электролиза:

    где K – коэффиент пропорциональности, называемый также электрохимическим эквивалентом .

    Следовательно, масса выделевшегося вещества прямо пропорциональна силе тока и времени электролиза. Но ток за время (согласно формуле):

    есть заряд.

    Итак, масса вещества, выделевшегося на электроде, пропорциональна заряду, или количеству электричества, прошедшему через электролит.

    M=K´q

    Этот закон был эксперементально открыт в 1843 году английским ученым Майклом Фарадеем и называется первый закон Фарадея .

    Второй закон Фарадея

    А что такое и от чего зависит электрохимический эквивалент? На этот вопрос тоже дал ответ Майкл Фарадей.

    На основании многочисленных опытов он пришёл к выводу, что эта величина является характерной для каждого вещества. Так, например при электролизе раствора ляписа (азотнокислого серебра AgNO 3) 1 кулон выделяет 1,1180 мг серебра; точно такое же количество серебра выделяется при электролизе зарядом в 1 кулон любой серебряной соли. При электролизе соли другого металла 1 кулон выделяет другое количество данного металла. Таким образом, электрохимическим эквивалентом какого-либо вещества называется масса этого вещества, выделяемая при электролизе 1кулоном протекшего через раствор электричества . Приведем его значения для некоторых веществ:

    Вещество

    K в мг/к

    Ag (серебро)

    H (водород)

    Из таблицы мы видим, что электрохимические эквиваленты различных веществ существенно отличны один от другого. От каких же свойств вещества зависит величина его электрохимического эквивалента? Ответ на этот вопрос даёт второй закон Фарадея :

    Электрохимические эквиваленты различных веществ пропорциональны их атомным весам и обратно пропорциональны числам, выражающим их химическую валентность.

    n – валентность

    A – атомный вес

    – называют химическим эквивалентом данного вещества

    – коэффициент пропорциональности, который является уже универсальной постоянной, то есть имеет одинаковое значение для всех веществ. Если измерить электрохимический эквивалент в г/к то найдем, что он равен 1,037´10 -5 г/к.

    Обьединяя первый и второй законы Фарадея получаем:

    Эта формула имеет простой физический смысл: F численно равно заряду, котоый надо пропустить через любой электролит, чтобы выделить на электродах вещество в количестве, равном одному химическому эквиваленту. F называют числом Фарадея и оно равно 96400 к/г.

    Моль и количество молекул в нем. Число Авогадро

    Из курса химии за 8й класс мы знаем, что для измерения количеств веществ, участвующих в химических реакциях, была выбрана особая еденица – моль. Чтобы отмерять один моль вещества, нужно взять столько граммов его, какова относительная молекулярная масса его.

    Например, 1моль воды (H 2 O) равен 18 граммам (1+1+16=18), моль кислорода (O 2) – 32 грамма, а моль железа (Fe) – 56 грамм.Но что особенно для нас важно, установлено, что 1 моль любого вещества всегда содержит одинаковое число молекул .

    Моль – это такое количество вещества, в котором содержится 6 ´ 10 23 молекул этого вещества.

    В честь итальянского ученого А. Авогадро это число (N ) называется постоянной Авогадро или числом Авогадро .

    Из формулы следует, что если q=F , то . Это значит что при прхождении через электролит заряда равного 96400 кулонам, выделится граммов любого вещества. Иначе говоря, для выделения одного моля одновалентного вещества через электролит должен протечь заряд q=F кулонов. Но мы знаем, что в любом моле вещества содержится одно и то же число его молекул – N=6x10 23 . Это позволяет нам вычислить заряд одного иона одновалентного вещества – элементарный электрический заряд – заряд одного (!) электрона:

    Применение электролиза

    Электролитический метод получения чистых металлов (рафинирование, аффинаж). Электролиз, сопровождающийся растворением анода

    Хорошим примером является электролитическое очищение (рафинирование) меди. Полученная непосредственно из руды медь отливается в виде пластин и помещается в качестве анода в раствор CuSO 4 . Подбирая напряжение на электродах ванны (0,20-0,25в), можно добиться, чтобы на катоде выделялась только металлическая медь. При этом посторонние примеси либо переходят в раствор (без выделения на катоде), либо выпадают на дно ванны в виде осадка («анодный шлам»). Катионы вещества анода соединяются с анионом SO 4 2- , а на катоде при этом напряжении выделяется только металлическая медь. Анод как бы «растворяется». Такая очистка позволяет добится чистоты 99,99% («четыре девятки»). Аналогично (аффинаж) очищают и драгоценные металлы (золото Au, серебро Ag).

    В настоящее время весь алюминий (Al) добывается электролитически (из расплава бокситов).

    Гальванотехника

    Гальванотехника – область прикладной электрохимии, занимающаяся процессами нанесения металлических покрытий на поверхность как металлических, так и неметаллических изделий при прохождении постоянного электрического тока через растворы их солей. Гальванотехника пожразделяется на гальваностегию и гальванопластику .

    Посредством электролиза можно покрыть металлические предметы слоем другого металла. Этот процесс называется гальваностегией . Особое техническое значение имеют покрытия трудноокисляемыми металлами, в частности никелирование и хромирование, а также серебрение и золочение, часто применяемые для защиты металлов от коррозии. Для получения нужных покрытий предмет тщательно очищяют, хорошо обезжиривают и помещают как катод в электролитическую ванну, содержащую соль того металла, которым желают покрыть предмет. Для более равномерного покрытия полезно применять две пластины в качестве анода, помещая предмет между ними.

    Также посредством электролиза можно не только покрыть предметы слоем того или иного металла, но и изготовить их рельефные металлические копии (например, монет, медалей). Этот процесс был изобретен русским физиком и электротехником, членом Российской Академии наук Борисом Семеновичем Якоби (1801-1874) в сороковых годах XIX века и называется гальванопластикой . Для изготовления рельефной копии предмета сначала делают слепок из какого-либо пластичного материала, например из воска. Этот слепок натирают графитом и погружают в электролитическую ванну в качестве катода, где на нём и осаждается слой металла. Это применяется в полиграфии при изготовлении печатных форм.

    Кроме указанных выше, электролиз нашел применение и в других областях:

    Получение оксидных защитных пленок на металлах (анодирование);

    Электрохимическая обработка поверхности металлического изделия (полировка);

    Электрохимическое окрашивание металлов (например, меди, латуни, цинка, хрома и др.);

    Очистка воды – удаление из нее растворимых примесей. В результате получается так называемая мягкая вода (по своим свойствам приближающаяся к дистиллированной);

    Электрохимическая заточка режущих инструментов (например, хирургических ножей, бритв и т.д.).

    Список использованной литературы:

    1. Гуревич А. Е. «Физика. Электромагнитные явления. 8 класс» Москва, Издательский дом «Дрофа». 1999 год.

    2. Габриэлян О. С. «Химия. 8 класс» Москва, Издательский дом «Дрофа». 1997 год.

    3. «Элементарный учебник физики под редакцией академика Г. С. Ландсберга - Том II – электричество и магнетизм». Москва, «Наука» 1972 год.

    4. Eric M. Rogers. «Physics for the Inquiring Mind (the methods, nature and phylosophy of physical science)». «Prinseton University press» 1966. Том III – электричество и магнетизм. Перевод Москва, «Мир» 1971 год.

    5. А. Н. Ремизов «Курс физики, электроники и кибернетики для медицинских институтов». Москва, «Высшая школа» 1982 год.