Министерство образования и науки РФ

ФГБОУ ВПО «Марийский государственный университет»

Кафедра педагогики

реферат

По дисциплине: методика обучения математике

на тему: «Декартовая система координат»

Выполнила:

Викторова О.К.

Проверил:

канд. пед. наук, профессор

Бородина М.В.

Йошкар-Ола

2015

  1. Рене Декарт. Биография………………………………………………….3
  2. Вклад Декарта в развитие математики как науки…………………….6
  3. Возможный метод изучения декартовой системы координат на примере легенды об ее открытии……………………………………………………8
  4. Заключение………………………………………………………………15
  5. Список используемой литературы……………………………………..16
  1. Биография

Рене́ Дека́рт — французский философ, математик, механик, физик и физиолог, создатель аналитической геометрии и современной алгебраической символики, автор метода радикального сомнения в философии, механицизма в физике, предтеча рефлексологии.

Декарт происходил из старинного, но обедневшего дворянского рода де Карт — отсюда впоследствии возникло его латинизированное имя Картезиус и направление в философии — картезианство; и был младшим (третьим) сыном в семье. Он родился 31 марта 1596 года в городе Лаэ, Франция. Его мать умерла, когда ему был 1 год. Отец Декарта был судьёй в городе Ренн и в Лаэ появлялся редко; воспитанием мальчика занималась бабушка по матери. В детстве Рене отличался хрупким здоровьем и невероятной любознательностью.

Начальное образование Декарт получил в иезуитском колле́же Ла Флеш, где его учителем был Жан Франсуа. В коллеже Декарт познакомился с Мареном Мерсенном (тогда — учеником, позже — священником), будущим координатором научной жизни Франции. Религиозное образование только укрепило в молодом Декарте скептическое отношение к тогдашним философским авторитетам. Позже он сформулировал свой метод познания: дедуктивные (математические) рассуждения над результатами воспроизводимых опытов.

В 1612 году Декарт закончил коллеж, некоторое время изучал право в Пуатье, затем уехал в Париж, где несколько лет чередовал рассеянную жизнь с математическими исследованиями. Затем он поступил на военную службу (1617) — сначала в революционной Голландии (в те годы — союзнице Франции), затем в Германии, где участвовал в недолгой битве за Прагу (Тридцатилетняя война). В Голландии в 1618 г. Декарт познакомился с выдающимся физиком и натурфилософом Исааком Бекманом, оказавшим значительное влияние на его формирование как учёного. Несколько лет Декарт провёл в Париже, предаваясь научной работе, где, помимо прочего, открыл принцип виртуальных скоростей, который в то время никто ещё не был готов оценить по достоинству.

Затем — ещё несколько лет участия в войне (осада Ля-Рошели). По возвращении во Францию оказалось, что свободомыслие Декарта стало известно иезуитам, и те обвинили его в ереси. Поэтому Декарт переезжает в Голландию (1628), где проводит 20 лет в уединённых научных занятиях.

Он ведёт обширную переписку с лучшими учёными Европы (через верного Мерсенна), изучает самые различные науки — от медицины до метеорологии. Наконец, в 1634 году он заканчивает свою первую, программную книгу под названием «Мир» (Le Monde), состоящую из двух частей: «Трактат о свете» и «Трактат о человеке». Но момент для издания был неудачным — годом ранее инквизиция чуть не замучила Галилея. Поэтому Декарт решил при жизни не печатать этот труд. Он писал Мерсенну об осуждении Галилея:

«Это меня так поразило, что я решил сжечь все мои бумаги, по крайней мере никому их не показывать; ибо я не в состоянии был вообразить себе, что он, итальянец, пользовавшийся расположением даже Папы, мог быть осуждён за то, без сомнения, что хотел доказать движение Земли… Признаюсь, если движение Земли есть ложь, то ложь и все основания моей философии, так как они явно ведут к этому же заключению».

Вскоре, однако, одна за другой, появляются другие книги Декарта:

«Рассуждение о методе…» (1637)

«Размышления о первой философии…» (1641)

«Первоначала философии» (1644)

В «Первоначалах философии» сформулированы главные тезисы Декарта:

«Бог сотворил мир и законы природы, а далее Вселенная действует как самостоятельный механизм».

«В мире нет ничего, кроме движущейся материи различных видов. Материя состоит из элементарных частиц, локальное взаимодействие которых и производит все природные явления».

«Математика — мощный и универсальный метод познания природы, образец для других наук».

Кардинал Ришельё благожелательно отнёсся к трудам Декарта и разрешил их издание во Франции, а вот протестантские богословы Голландии наложили на них проклятие (1642); без поддержки принца Оранского учёному пришлось бы нелегко.

В 1649 году Декарт, измученный многолетней травлей за вольнодумство, поддался уговорам шведской королевы Кристины (с которой много лет активно переписывался) и переехал в Стокгольм. Почти сразу после переезда он серьёзно простудился и вскоре умер. Предположительной причиной смерти явилась пневмония. Существует также гипотеза о его отравлении, поскольку симптомы болезни Декарта были сходны с симптомами, возникающими при остром отравлении мышьяком. Эту гипотезу выдвинул Айки Пиз, немецкий учёный, а затем поддержал Теодор Эберт. Поводом для отравления, по этой версии, послужило опасение католических агентов, что вольнодумство Декарта может помешать их усилиям по обращению королевы Кристины в католичество (это обращение действительно произошло в 1654 году).

К концу жизни Декарта отношение церкви к его учению стало резко враждебным. Вскоре после его смерти основные сочинения Декарта были внесены в пресловутый «Индекс», а Людовик XIV специальным указом запретил преподавание философии Декарта («картезианства») во всех учебных заведениях Франции.

  1. Вклад Декарта в развитие математики как науки

В 1637 году вышел в свет главный философско-математический труд Декарта, «Рассуждение о методе» (полное название: «Рассуждение о методе, позволяющем направлять свой разум и отыскивать истину в науках»).

В этой книге излагалась аналитическая геометрия, а в приложениях — многочисленные результаты в алгебре, геометрии, оптике (в том числе — правильная формулировка закона преломления света) и многое другое.

Особо следует отметить переработанную им математическую символику Виета, с этого момента близкую к современной. Коэффициенты он обозначал a, b, c…, а неизвестные — x, y, z. Натуральный показатель степени принял современный вид (дробные и отрицательные утвердились благодаря Ньютону). Появилась черта над подкоренным выражением. Уравнения приводятся к канонической форме (в правой части — ноль).

Символическую алгебру Декарт называл «Всеобщей математикой», и писал, что она должна объяснить «всё относящееся к порядку и мере».

Создание аналитической геометрии позволило перевести исследование геометрических свойств кривых и тел на алгебраический язык, то есть анализировать уравнение кривой в некоторой системе координат. Этот перевод имел тот недостаток, что теперь надо было аккуратно определять подлинные геометрические свойства, не зависящие от системы координат (инварианты). Однако достоинства нового метода были исключительно велики, и Декарт продемонстрировал их в той же книге, открыв множество положений, неизвестных древним и современным ему математикам.

В приложении «Геометрия» были даны методы решения алгебраических уравнений (в том числе геометрические и механические), классификация алгебраических кривых. Новый способ задания кривой — с помощью уравнения — был решающим шагом к понятию функции. Декарт формулирует точное «правило знаков» для определения числа положительных корней уравнения, хотя и не доказывает его.

Декарт исследовал алгебраические функции (многочлены), а также ряд «механических» (спирали, циклоида). Для трансцендентных функций, по мнению Декарта, общего метода исследования не существует.

Комплексные числа ещё не рассматривались Декартом на равных правах с вещественными, однако он сформулировал (хотя и не доказал) основную теорему алгебры: общее число вещественных и комплексных корней многочлена равно его степени. Отрицательные корни Декарт по традиции именовал ложными, однако объединял их с положительными термином действительные числа, отделяя от мнимых (комплексных). Этот термин вошёл в математику. Впрочем, Декарт проявил некоторую непоследовательность: коэффициенты a, b, c… у него считались положительными, а случай неизвестного знака специально отмечался многоточием слева.

Все неотрицательные вещественные числа, не исключая иррациональные, рассматриваются Декартом как равноправные; они определяются как отношения длины некоторого отрезка к эталону длины. Позже аналогичное определение числа приняли Ньютон и Эйлер. Декарт пока ещё не отделяет алгебру от геометрии, хотя и меняет их приоритеты; решение уравнения он понимает как построение отрезка с длиной, равной корню уравнения. Этот анахронизм был вскоре отброшен его учениками, прежде всего — английскими, для которых геометрические построения — чисто вспомогательный приём.

Книга «Метод» сразу сделала Декарта признанным авторитетом в математике и оптике. Примечательно, что издана она была на французском, а не на латинском языке. Приложение «Геометрия» было, однако, тут же переведено на латинский и неоднократно издавалось отдельно, разрастаясь от комментариев и став настольной книгой европейских учёных. Труды математиков второй половины XVII века отражают сильнейшее влияние Декарта.

  1. Возможный метод изучения декартовой системы координат на примере легенды об ее открытии

Существует несколько легенд об изобретении системы координат, которая носит имя Декарта.

Однажды Рене Декарт весь день пролежал в кровати, думая о чем-то, а муха жужжала вокруг и не давала ему сосредоточиться. Он стал размышлять, как бы описать положение мухи в любой момент времени математически, чтобы иметь возможность прихлопнуть ее без промаха. И... придумал декартовы координаты, одно из величайших изобретений в истории человечества. Проследим путь открытия системы координат согласно этой легенде в картинках.

Время открытия: 1637 год.

Действующие лица:

Место действия: "кабинет" Рене Декарта.

На рисунке условно показаны три стены кабинета:

стена с дверным проемом

Профильная плоскость

пол - горизонтальная плоскость

стена с оконными проемами

Фронтальная плоскость;

Обратите внимание! Каждые две плоскости пересекаются по прямой

линии.

  1. На фронтальную плоскость садится муха
  1. Предположим, что

Рене Декарт смотрит на

фронтальную плоскость в

перпендикулярном ей

направлении.

Мы видим, что муха

находится на

фронтальной плоскости.

Но как точно определить

ее положение ?

  1. Эврика!

Нужно взять две взаимно перпендикулярные числовые прямые. Точку пересечения прямых обозначим как О - начало системы координат. Одну из прямых назовем ось X, другую - ось Y.

На нашем рисунке расстояние между делениями на числовых прямых

равно единице.

Внимание! Вы можете выбрать начало координат и направление осей

так, как это удобно в конкретной задаче.

  1. Определим точное положение "соавтора" - мухи.

Проведем через точку, где находится муха две прямые:

  1. Параллельно оси X. Прямая пересекает ось Y в точке с числовым

значением, равным 4. Это значение назовем координатой "у" нашего

  1. Параллельно оси Y. Прямая пересекает ось Х в точке с числовым

значением, равным (-2). Это значение назовем координатой "х" нашего объекта.

Принято координаты объекта, обычно точки, записывать в форме (x, y). Для нашей мухи мы можем сказать, что она находится в точке с координатами (-2, 4).

Задача точного определения положения мухи решена!

Новизна идеи состоит в том, что положение точки или объекта на

плоскости определяется с помощью двух пересекающихся осей.

Точно так же можно поступить и для определения положения мухи на

потолке.

Определите положение жука и бабочки на координатной плоскости.

Все эти примеры демонстрируют преимущества координатного способа определения положения мухи, жука и бабочки на плоскости с помощью системы координат Декарта. А как определить координаты тех же насекомых, если они летают, ведь в этом случае они не ползают по поверхности стены или потолка.

Для измерения положения объектов в пространстве в начале 19-го века

была добавлена ось Z, которая направлена перпендикулярно осям X и Y.

На рисунке ось Z направлена вверх.


Представьте себе, что амурский кот сидит на ветке дерева.

Если бы кот упал на горизонтальную плоскость - плоскость XOY, точка

его падения имела координаты (X1, Y1). Кот сидит на высоте Z1 от горизонтальной плоскости. Итак, положение амурского кота в пространстве

можно описать тремя координатами (X1, Y1 Z1), он находится на некоторой

высоте над поверхностью земли.

Координаты могут иметь различные числовые значения, в том числе и

нулевые, это означает, что объект находится на какой-то координатной оси.

Если все три координаты имеют нулевые значения - объект находится в начале системы координат.

Давайте определим координаты различных объектов на следующем

рисунке.

Попугай находится в точке с координатами (0, 0, Z1) .

Бобер слева - (X1 0 0) . Бобер справа - (0 Y1 0) .

Мышь - (X1 Y1 0) . Кот амурский - (X1 Y1 Z1) .

Ответьте на вопрос:

"Куда нужно сесть этому хамелеону?"

  1. Заключение

Декартовая система координат подтолкнула науку математику, вывела ее на совершенно новый уровень. Геометрия стала развиваться стремительнее. В данной работе рассмотрена координатная система на уровне 5-6 классов, чтобы дети заинтересовались и главное поняли, каким образом работать с системой координат. Конечно же в дальнейшем изучение декартовой системы координат будет более углубленное. В более старших классах речь пойдет о трехмерном пространстве. О построении объемных фигур и т. д. Изучение декартовой системы координат является одним из самых важных аспектов математики как науки, и каждый учитель должен донести свои знания до каждого ученика так, чтобы эти знания усвоились на всю жизнь.

  1. Список используемой литературы
  1. Любимов Н.А. Философия Декарта. СПб., 1886
  2. Лят-кер Я.А. Декарт. М., 1975
  3. Фишер К. Декарт: его жизнь, сочинения и учение. СПб., 1994
  4. Мамардашвили М.К. Картезианские размышления. М., 1995
  5. Используемые сайты: https://ru.wikipedia.org

Диэлектрическая проницаемость характеризует количественно процесс поляризации.

Диэлектрической проницаемостью (или относительной диэлектрической проницаемостью) ε называется отношение абсолютной диэлектрической проницаемости вещества ε а к электрической постоянной ε о.

Значение относительной диэлектрической проницаемости электроизоляционных материалов можно вычислить, сравнив емкости двух конденсаторов, одинаковых по форме и геометрическим размерам:

где С х – емкость конденсатора с испытываемым диэлектриком;

С о – емкость конденсатора при тех же геометрических размерах, но в случае, когда испытываемый диэлектрик заменен вакуумом.

Значение ε исследуемого диэлектрика можно определить, измеряя дважды емкость разборного конденсатора: когда между обкладками данный диэлектрик (С х) и когда между ними воздух (С о). Замена вакуума воздухом дает малую погрешность (сотые доли процента).

Поляризация газообразных веществ вследствие больших рас­стояний между молекулами незначительна, и диэлектрическая про­ницаемость близка к единице. Диэлектрическая проницаемость газа пропорциональна давлению и обратно пропорциональна аб­солютной температуре, так как она определяется изменением чис­ла молекул в единице объема. Однако эта зависимость слабо вы­ражена.

Жидкие диэлектрики могут быть построены из нейтральных (неполярных) молекул, обладающих только электронной поляриза­цией, а также из дипольных (полярных) молекул, поляризация которых определяется одновременно электронной и дипольной сос­тавляющими.

Жидкости обладают тем большей диэлектрической проницаемостью, чем больше значение электрического момента диполей и чем больше число молекул в единице объема. Диэлек­трическая проницаемость нейтральных жидкостей обычно не пре­вышает 2.5. Сильнополярные жидкости, характеризующиеся очень высоким значением диэлектрической проницаемости, например во­да, этиловый спирт, не находят практического применения в качест­ве диэлектрика вследствие их высокой электропроводности. Ди­электрическая проницаемость нейтральной жидкости обратно про­порциональна температуре, так как с ростом последней уменьша­ется число молекул в единице объема.

Зависимость диэлектрической проницаемости дипольных жид­костей от температуры носит более сложный характер.

При низких температурах диэлектрическая проницаемость но­сит только электронный характер, диполи еще не могут поверты­ваться. С повышением температуры вязкость жидкости уменьша­ется и диполи начинают ориентироваться в электрическом поле, что ведет к резкому увеличению диэлектрической проницаемости. При дальнейшем увеличении температуры возросшая кинетическая энергия хаотического движения диполей мешает их ориентации, и поэтому диэлектрическая проницаемость начинает постепенно уменьшаться (рис. 12.2).




Рис. 12.2- Зависимость диэлектри­ческой проницаемости от тем­пературы

Диэлектрическая проницаемость дипольной жидкости зависит от частоты тока. При малых частотах диполи успевают следовать за изменением поля и значение диэлектрической проницаемости при этом близко к значению проницаемости, определяемому при постоянном токе. При увеличении частоты молекулы не успевают следовать за изменением поля, и диэлектрическая проницаемость начинает уменьшаться. При большой частоте ее значение прибли­жается к значению, обусловленному только электронной поляриза­цией (рис. 12.3).

Рис. 12.3- Зависимость диэлектри­ческой проницаемости от час­тоты

Диэлектрическая проницаемость полярных жидкостей повыше­на по сравнению с нейтральными жидкостями. Например, для совтола ее значение равно 3,2, для касторового масла – 4,5.

Диэлектрическая проницаемость твердых тел может принимать самые различные значения в соответствии с разнообразием струк­турных особенностей твердых диэлектриков. Наименьшее значе­ние диэлектрической проницаемости имеют твердые диэлектрики, построенные из нейтральных молекул и обладающие только элект­ронной поляризацией. К такому виду относится парафин, имеющий диэлектрическую проницаемость 1,9...2,2. Температурная зависи­мость диэлектрической проницаемости нейтральных твердых ди­электриков подобна зависимости нейтральных жидкостей. В твер­дых диэлектриках, представляющих собой ионные кристаллы с плотной упаковкой частиц и обладающих электронной и ионной поляризациями, значение диэлектрической проницаемости меняется в очень широких пределах. С увеличением температуры таких диэлектриков их диэлектрическая проницаемость возрастает почти линейно за счет возрастания поляризуемости ионов, несмотря на уменьшение плотности вещества.

Твердые дипольные диэлектрики аморфной и кристаллической структуры и ионные аморфные диэлектрики, в том числе полярные полимеры (бакелит, шеллак, плексиглас, эбонит, поливинилхлорид и др.), целлюлоза и продукты ее переработки (галовакс, неоргани­ческие стекла), характеризуются наличием электронной, ионной и структурной поляризаций и делятся на две подгруппы:

Ионные аморфные диэлектрики (неорганические стекла), структурная по­ляризация которых состоит в перебросе тепловым движением внут­ри замкнутой ячейки ионов, направляемых электрическим полем; диэлектрическая проницаемость стекол находится в пределах от 4 до 20;

Дипольные аморфные и кристаллические твердые тела, в которых в твердом состоянии обнаруживается дипольная поляри­зация, аналогичная поляризации дипольных жидкостей, но с со­вершенно иными значениями времени релаксации. Диэлектричес­кая проницаемость материалов второй подгруппы в большой степе­ни зависит от температуры и от частоты приложенного напряжения, подчиняясь тем же закономерностям, какие наблюдаются у ди­польных диэлектриков.

От значения диэлектрической проницаемости зависит емкость материала. Поэтому, например, сверхвысокая диэлектрическая про­ницаемость керамического сегнето диэлектрика используется в ма­логабаритных конденсаторах. Интересно отметить, что диэлектри­ческая проницаемость сегнетодиэлектриков имеет резко выражен­ную зависимость не только от температуры, но и от напряженности поля, при этом отмечено явление диэлектрического гистерезиса сегнетодиэлектриков.

Уровень поляризуемости вещества характеризуется особенной величиной, которую называют диэлектрическая проницаемость. Рассмотрим, что это за величина.

Допустим, что напряженность однородного поля между двух заряженных пластин в пустоте равна Е₀. Теперь заполним промежуток между ними любым диэлектриком. которые появятся на границе между диэлектриком и проводником благодаря его поляризации, частично нейтрализуют воздействие зарядов на пластинах. Напряженность Е данного поля станет меньше напряженности Е₀.

Опыт обнаруживает, что при последовательном заполнении промежутка между пластинами равными диэлектриками, величины напряженности поля окажутся разными. Поэтому зная величину отношения напряженности электрополя между пластинами в отсутствие диэлектрика Е₀ и при наличии диэлектрика Е, можно определять его поляризуемость, т.е. его диэлектрическую проницаемость. Эту величину принято обозначать греческой буквой ԑ (эпсилон). Следовательно, можно написать:

Диэлектрическая проницаемость демонстрирует, во сколько раз данных зарядов в диэлектрике (однородном) будет меньше, чем в вакууме.

Уменьшение силы взаимодействия между зарядами вызвано процессами поляризации среды. В электрическом поле электроны в атомах и молекулах уменьшаются по отношению к ионам, и возникает Т.е. те молекулы, у которых есть свой дипольный момент (в частности молекулы воды), ориентируются в электрическом поле. Эти моменты создают собственное электрическое поле, противодействующее тому полю, которое вызвало их появление. В результате суммарное электрическое поле уменьшается. В небольших полях это явление описывают с помощью понятия диэлектрической проницаемости.

Ниже приведена диэлектрическая проницаемость в вакууме различных веществ:

Воздух……………………………....1,0006

Парафин…………………………....2

Плексиглас (оргстекло)……3-4

Эбонит……………………………..…4

Фарфор……………………………....7

Стекло…………………………..…….4-7

Слюда……………………………..….4-5

Шелк натуральный............4-5

Шифер..............................6-7

Янтарь…………………………...……12,8

Вода………………………………...….81

Данные значения диэлектрической проницаемости веществ относятся к окружающим температурам в пределах 18—20 °С. Так, диэлектрическая проницаемость твердых тел незначительно изменяется с температурой, исключением являются сегнетоэлектрики.

Напротив, у газов она уменьшается из-за повышения температуры и возрастает в связи с увеличением давления. В практике принимается за единицу.

Примеси в небольших количествах мало влияют на уровень диэлектрической проницаемости жидкостей.

Если два произвольных точечных заряда поместить в диэлектрик, то напряженность поля, создаваемого каждым из этих зарядов в точке нахождения другого заряда, уменьшается в ԑ раз. Из этого следует, что сила, с которой эти заряды взаимодействуют один с другим, также в ԑ раз меньше. Поэтому для зарядов, помещенных в диэлектрик, выражается формулой:

F = (q₁q₂)/(4πԑₐr²),

где F — является силой взаимодействия, q₁ и q₂, — величины зарядов, ԑ — является абсолютной диэлектрической проницаемостью среды, г — дистанция между точечными зарядами.

Значение ԑ численно можно показать в относительных единицах (по отношению к значению абсолютной диэлектрической проницаемости вакуума ԑ₀). Величина ԑ = ԑₐ/ԑ₀ называют относительной диэлектрической проницаемостью. Она раскрывает, во сколько раз взаимодействие между зарядами в бесконечной однородной среде слабее, чем в вакууме; ԑ = ԑₐ/ԑ₀ часто называют комплексная диэлектрическая проницаемость. Численное значение величины ԑ₀, а также ее размерность зависимы от того, какая система единиц выбрана; а значение ԑ - не зависит. Так, в системе СГСЭ ԑ₀ = 1 (эта четвертая основная единица); в системе СИ диэлектрическая проницаемость вакуума выражается:

ԑ₀ = 1/(4π˖9˖10⁹) фарада/метр = 8,85˖10⁻¹² ф/м (в этой системе ԑ₀ является производной величиной).

Любое вещество или тело, окружающее нас, обладает определенными электрическими свойствами. Это объясняется молекулярной и атомной структурой: наличием заряженных частиц, находящихся во взаимно связанном или свободном состоянии.

Когда на вещество не действует никакое внешнее электрическое поле, то эти частицы распределяются так, что уравновешивают друг друга и во всем суммарном объеме не создают дополнительного электрического поля. В случае приложения извне электрической энергии внутри молекул и атомов возникает перераспределение зарядов, которое ведет к созданию собственного внутреннего электрического поля, направленного встречно внешнему.

Если вектор приложенного внешнего поля обозначить «Е0», а внутреннего - «Е"», то полное поле «Е» будет складываться из энергии этих двух величин.

В электричестве принято делить вещества на:

    проводники;

    диэлектрики.

Такая классификация существует издавна, хотя она довольно условна потому, что многие тела обладают другими или комбинированными свойствами.

Проводники

В роли проводников выступают среды, имеющие в наличии свободные заряды. Чаще всего проводниками выступают металлы, ведь в их структуре всегда присутствуют свободные электроны, которые способны перемещаться внутри всего объема вещества и, одновременно, являются участниками тепловых процессов.

Когда проводник изолирован от действия внешних электрических полей, то в нем создается баланс положительных и отрицательных зарядов из ионных решеток и свободных электронов. Это равновесие сразу разрушается при внесении - благодаря энергии которого начинается перераспределение заряженных частиц и возникают несбалансированные заряды положительных и отрицательных величин на внешней поверхности.

Это явление принято называть электростатической индукцией . Возникшие при ней заряды на поверхности металлов именуют индукционными зарядами .

Образованные в проводнике индукционные заряды формируют собственное поле Е", компенсирующее действие внешнего Е0 внутри проводника. Поэтому значение полного, суммарного электростатического поля скомпенсировано и равно 0. При этом потенциалы всех точек как внутри, так и снаружи одинаковы.


Полученный вывод свидетельствует, что внутри проводника, даже при подключенном внешнем поле, отсутствует разность потенциалов и нет электростатических полей. Этот факт используется при экранировании - применении способа электростатической защиты людей и чувствительного к наведенным полям электрооборудования, особенно высокоточных измерительных приборов и микропроцессорной техники.


Экранированная одежда и обувь из тканей с токопроводящими нитями, включая головной убор, используется в энергетике для защиты персонала, работающего в условиях повышенной напряженности, создаваемой высоковольтным оборудованием.

Диэлектрики

Так называют вещества, обладающие изоляционными свойствами. Они имеют в своем составе только связанные между собой, а не свободные заряды. У них все положительные и отрицательные частицы скреплены внутри нейтрального атома, лишены свободы передвижения. Они распределены внутри диэлектрика и не перемещаются под действием приложенного внешнего поля Е0.

Однако, его энергия все же вызывает определенные изменения в структуре вещества - внутри атомов и молекул изменяется соотношение положительных и отрицательных частиц, а на поверхности вещества возникают излишние, несбалансированные связанные заряды, образующие внутреннее электрическое поле Е". Оно направлено встречно приложенной извне напряженности.

Это явление получило название поляризации диэлектрика . Оно характеризуется тем, что внутри вещества проявляется электрическое поле Е, образованное действием внешней энергии Е0, но ослабленное противодействием внутренней Е".

Виды поляризации

Она внутри диэлектриков бывает двух видов:

1. ориентационной;

2. электронной.

Первый тип имеет дополнительное название дипольной поляризации. Он присущ диэлектрикам со смещенными центрами у отрицательных и положительных зарядов, которые образуют молекулы из микроскопических диполей - нейтральной совокупности из двух зарядов. Это характерно для воды, диоксида азота, сероводорода.

Без действия внешнего электрического поля у таких веществ молекулярные диполи ориентируются хаотичным образом под влиянием действующих температурных процессов. При этом в любой точке внутреннего объема и на внешней поверхности диэлектрика нет электрического заряда.

Эта картина изменяется под влиянием приложенной извне энергии, когда диполи немного изменяют свою ориентацию и на поверхности возникают области не скомпенсированных макроскопических связанных зарядов, образующих поле Е" со встречным направлением к приложенному Е0.


При такой поляризации большое влияние на процессы оказывает температура, вызывающая тепловое движение и создающая дезориентирующие факторы.

Электронная поляризация, упругий механизм

Она проявляется у неполярных диэлектриков - материалов другого вида с молекулами, лишенными дипольного момента, которые под влияние внешнего поля деформируются так, что положительные заряды ориентируются по направлению вектора Е0, а отрицательные - в противоположную сторону.

В итоге каждая из молекул работает как электрический диполь, сориентированный по оси приложенного поля. Они, таким способом, создают на внешней поверхности свое поле Е" со встречным направлением.


У подобных веществ деформация молекул, а, следовательно, и поляризация от воздействия поля извне не зависит от их движения под влиянием температуры. В качестве примера неполярного диэлектрика можно привести метан СH4.

Численное значение внутреннего поля обоих видов диэлектриков по величине вначале изменяется прямо пропорционально возрастанию внешнего поля, а затем, при достижении насыщения, проявляются эффекты нелинейного характера. Они наступают тогда, когда все молекулярные диполи выстроились вдоль силовых линий у полярных диэлектриков или произошли изменения структуры неполярного вещества, обусловленные сильной деформацией атомов и молекул от большой приложенной извне энергии.

На практике такие случаи возникают редко - обычно раньше наступает пробой или нарушение изоляции.

Диэлектрическая проницаемость

Среди изоляционных материалов важная роль отводится электрическим характеристикам и такому показателю, как диэлектрическая проницаемость . Она может оцениваться двумя различными характеристиками:

1. абсолютным значением;

2. относительной величиной.

Термином абсолютной диэлектрической проницаемости вещества εa пользуются при обращении к математической записи закона Кулона. Она, в форме коэффициента εа, связывает вектора индукции D и напряженности E.


Вспомним, что французский физик Шарль де Кулон с помощью собственных крутильных весов исследовал закономерности электрических и магнитных сил между небольшими заряженными телами.

Определение относительной диэлектрической проницаемости среды используется для характеристики изоляционных свойств вещества. Она оценивает соотношение силы взаимодействия между двумя точечными зарядами при двух различных условиях: в вакууме и рабочей среде. При этом показатели вакуума принимаются за 1 (εv=1), а у реальных веществ они всегда выше, εr>1.

Численное выражение εr отображается безразмерной величиной, объясняется эффектом поляризации у диэлектриков, используется для оценки их характеристик.

Значения диэлектрической проницаемости отдельных сред (при комнатной температуре)

Вещество ε Вещество ε
Сегнетова соль 6000 Алмаз 5,7
Рутил (вдоль оптической оси) 170 Вода 81
Полиэтилен 2,3 Спирт этиловый 26,8
Кремний 12,0 Слюда 6
Стекло 5-16 Углекислый газ 1,00099
NaCl 5,26 Водяной пар 1,0126
Бензол 2,322 Воздух (760 мм рт. ст.) 1,00057

Диэлектрическая проницаемость диэлектри́ческая проница́емость

величина ε, показывающая, во сколько раз сила взаимодействия двух электрических зарядов в среде меньше, чем в вакууме. В изотропной среде ε связана с диэлектрической восприимчивостью χ соотношением: ε = 1 + 4π χ. Диэлектрическая проницаемость анизотропной среды - тензор. Диэлектрическая проницаемость зависит от частоты поля; в сильных электрических полях Диэлектрическая проницаемость начинает зависеть от напряжённости поля.

ДИЭЛЕКТРИЧЕСКАЯ ПРОНИЦАЕМОСТЬ

ДИЭЛЕКТРИ́ЧЕСКАЯ ПРОНИЦА́ЕМОСТЬ, безразмерная величина e, показывающая, во сколько раз сила взаимодействия F между электрическими зарядами в данной среде меньше их силы взаимодействия F o в вакууме:
e =F о /F.
Диэлектрическая проницаемость показывает, во сколько раз поле ослабляется диэлектриком (см. ДИЭЛЕКТРИКИ) , количественно характеризуя свойство диэлектрика поляризоваться в электрическом поле.
Значение относительной диэлектрической проницаемости вещества, характеризующее степень его поляризуемости, определяется механизмами поляризации (см. ПОЛЯРИЗАЦИЯ) . Однако величина в большой мере зависит и от агрегатного состояния вещества, так как при переходах из одного состояния в другое существенно меняется плотность вещества, его вязкость и изотропность (см. ИЗОТРОПИЯ) .
Диэлектрическая проницаемость газов
Газообразные вещества характеризуются весьма малыми плотностями вследствие больших расстояний между молекулами. Благодаря этому поляризация всех газов незначительна и диэлектрическая проницаемость их близка к единице. Поляризация газа может быть чисто электронной или дипольной, если молекулы газа полярны, однако и в этом случае основное значение имеет электронная поляризация. Поляризация различных газов тем больше, чем больше радиус молекулы газа, и численно близка к квадрату коэффициента преломления для этого газа.
Зависимость газа от температуры и давления определяется числом молекул в единице объема газа, которое пропорционально давлению и обратно пропорционально абсолютной температуре.
У воздуха в нормальных условиях e =1,0006, а ее температурный коэффициент имеет значение около 2 . 10 -6 К -1 .
Диэлектрическая проницаемость жидких диэлектриков
Жидкие диэлектрики могут состоять из неполярных или полярных молекул. Значение e неполярных жидкостей определяется электронной поляризацией, поэтому оно невелико, близко к значению квадрата преломления света и обычно не превышает 2,5. Зависимость e неполярной жидкости от температуры связана с уменьшением числа молекул в единице объема, т. е. с уменьшением плотности, а ее температурный коэффициент близок к температурному коэффициенту объемного расширения жидкости, но отличается знаком.
Поляризация жидкостей, содержащих дипольные молекулы, определяется одновременно электронной и дипольно-релаксационной составляющими. Такие жидкости обладают тем большей диэлектрической проницаемостью, чем больше значение электрического момента диполей (см. ДИПОЛЬ) и чем больше число молекул в единице объема. Температурная зависимость в случае полярных жидкостей носит сложный характер.
Диэлектрическая проницаемость твердых диэлектриков
В твердых телах может принимать самые разные числовые значения в соответствии с разнообразием структурных особенностей твердого диэлектрика. В твердых диэлектриках возможны все виды поляризации.
Наименьшее значение e имеют твердые диэлектрики, состоящие из неполярных молекул и обладающие только электронной поляризацией .
Твердые диэлектрики, представляющие собой ионные кристаллы с плотной упаковкой частиц, обладают электронной и ионной поляризациями и имеют значения e, лежащие в широких пределах (e каменной соли - 6; e корунда - 10; e рутила - 110; e титаната кальция - 150).
e различных неорганических стекол, приближающихся по строению к аморфным диэлектрикам, лежит в сравнительно узких пределах от 4 до 20.
Полярные органические диэлектрики обладают в твердом состоянии дипольно-релаксационной поляризацией. e этих материалов в большой степени зависит от температуры и частоты приложенного напряжения, подчиняясь тем же закономерностям, что и у дипольных жидкостей.


Энциклопедический словарь . 2009 .

Смотреть что такое "диэлектрическая проницаемость" в других словарях:

    Величина e, показывающая, во сколько раз сила взаимодействия двух электрических зарядов в среде меньше, чем в вакууме. В изотропной среде e связана с диэлектрической восприимчивостью c соотношением: e = 1 + 4pc. Диэлектрическая проницаемость… … Большой Энциклопедический словарь

    Величина e, характеризующая поляризацию диэлектриков под действием электрич. поля Е. Д. п. входит в Кулона закон как величина, показывающая, во сколько раз сила вз ствия двух свободных зарядов в диэлектрике меньше, чем в вакууме. Ослабление вз… … Физическая энциклопедия

    ДИЭЛЕКТРИЧЕСКАЯ ПРОНИЦАЕМОСТЬ, Величина e, показывающая, во сколько раз сила взаимодействия двух электрических зарядов в среде меньше, чем в вакууме. Величина e колеблется в широких пределах: водород 1,00026, трансформаторное масло 2,24,… … Современная энциклопедия

    - (обозначение e), в физике одно из свойств различных материалов (см. ДИЭЛЕКТРИК). Выражается отношением плотности ЭЛЕКТРИЧЕСКОГО ПОТОКА в среде к напряженности ЭЛЕКТРИЧЕСКОГО ПОЛЯ, которое его вызывает. Диэлектрическая проницаемость вакуума… … Научно-технический энциклопедический словарь

    диэлектрическая проницаемость - Величина, характеризующая диэлектрические свойства вещества, скалярная для изотропного вещества и тензорная для анизотропного вещества, произведение которой на напряженность электрического поля равно электрическому смещению. [ГОСТ Р 52002 2003]… … Справочник технического переводчика

    Диэлектрическая проницаемость - ДИЭЛЕКТРИЧЕСКАЯ ПРОНИЦАЕМОСТЬ, величина e, показывающая, во сколько раз сила взаимодействия двух электрических зарядов в среде меньше, чем в вакууме. Величина e колеблется в широких пределах: водород 1,00026, трансформаторное масло 2,24,… … Иллюстрированный энциклопедический словарь

    Диэлектрическая проницаемость - величина, характеризующая диэлектрические свойства вещества, скалярная для изотропного вещества и тензорная для анизотропного вещества, произведение которой на напряженность электрического поля равно электрическому смещению... Источник:… … Официальная терминология

    диэлектрическая проницаемость - абсолютная диэлектрическая проницаемость; отрасл. диэлектрическая проницаемость Скалярная величина, характеризующая электрические свойства диэлектрика равная отношению величины электрического смещения к величине напряженности электрического поля … Политехнический терминологический толковый словарь

    Абсолютная диэлектрическая проницаемость Относительная диэлектрическая проницаемость Диэлектрическая проницаемость вакуума … Википедия

    диэлектрическая проницаемость - dielektrinė skvarba statusas T sritis chemija apibrėžtis Elektrinio srauto tankio tiriamojoje medžiagoje ir elektrinio lauko stiprio santykis. atitikmenys: angl. dielectric constant; dielectric permittivity; permittivity rus. диэлектрическая… … Chemijos terminų aiškinamasis žodynas

Книги

  • Свойства материалов. Анизотропия, симметрия, структура. Пер. с англ. , Ньюнхем Р.Э.. Эта книга посвящена анизотропии и взаимосвязи структуры материалов с их свойствами. Она охватывает обширный диапазон тем и является своего рода вводным курсом пофизическим свойствам…