В этой статье раскроем тему электропроводности, вспомним о том, что такое электрический ток, как он связан с сопротивлением проводника и соответственно с его электропроводностью. Отметим основные формулы для вычисления данных величин, коснемся темы и ее связи с напряженностью электрического поля. Также затронем связь электрического сопротивления и температуры.

Для начала вспомним о том, что же такое электрический ток. Если поместить вещество во внешнее электрическое поле, то под действием сил со стороны этого поля, в веществе начнется движение элементарных носителей заряда - ионов или электронов. Это и будет электрическим током. Сила тока I измеряется в амперах, и один ампер - это ток, при котором через поперечное сечение проводника протекает за секунду заряд, равный одному кулону.


Ток бывает постоянным, переменным, пульсирующим. Постоянный ток не меняет своей величины и направления в каждый конкретный момент времени, переменный ток с течением времени меняет свои величину и направление (генераторы переменного тока и трансформаторы дают именно переменный ток), пульсирующий ток меняет свою величину, но не меняет направления (например выпрямленный переменный ток является пульсирующим).

Вещества имеют свойство проводить электрический ток под действием электрического поля, и это свойство называется электропроводностью, которая у разных веществ различна. Электропроводность веществ зависит от концентрации в них свободных заряженных частиц, то есть ионов и электронов, не связанных ни с кристаллической структурой, ни с молекулами, ни с атомами данного вещества. Так, в зависимости от концентрации в веществе свободных носителей заряда, вещества по степени электропроводности подразделяются на: проводники, диэлектрики и полупроводники.

Наиболее высокой электропроводностью обладают , и по физической природе, проводники в природе представлены двумя родами: металлами и электролитами. В металлах ток обусловлен перемещением свободных электронов, то есть проводимость у них электронная, а в электролитах (в растворах кислот, солей, щелочей) - перемещением ионов - частей молекул, имеющих положительный и отрицательный заряд, то есть проводимость у электролитов ионная. Ионизированные пары и газы отличаются смешанной проводимостью, в них ток обусловлен движением и электронов и ионов.

Электронная теория отлично объясняет высокую электропроводность металлов. Связь валентных электронов с их ядрами в металлах слаба, потому эти электроны свободно перемещаются от атома к атому по объему проводника.

Получается, что свободные электроны в металлах заполняют пространство между атомами подобно газу, электронному газу, и находятся в хаотичном движении. Но при внесении металлического проводника в электрическое поле, свободные электроны станут двигаться упорядоченно, они переместятся по направлению к положительному полюсу, чем создадут ток. Таким образом, упорядоченное движение свободных электронов в металлическом проводнике называется электрическим током.

Известно, что скорость распространения электрического поля в пространстве примерно равна 300000000 м/с, то есть скорости света. Это та же скорость, с которой ток проходит по проводнику.

Что это значит? Это не значит, что каждый электрон в металле движется с такой огромной скоростью, электроны в проводнике напротив - имеют скорость от нескольких миллиметров в секунду до нескольких сантиметров в секунду, в зависимости от , а вот скорость распространения электрического тока по проводнику как раз равна скорости света.

Все дело в том, что каждый свободный электрон оказывается в общем электронном потоке того самого «электронного газа», и во время прохождения тока, электрическое поле оказывает действие на весь этот поток, в итоге электроны непрерывно друг другу передают это действие поля - от соседа к соседу.

Но движутся электроны на своих местах очень медленно, несмотря на то, что скорость распространения электрической энергии по проводнику оказывается огромной. Так, когда на электростанции включают рубильник, ток мгновенно возникает во всей сети, а электроны при этом практически стоят на местах.


Однако, когда свободные электроны движутся по проводнику, они испытывают многочисленные столкновения на своем пути, они сталкиваются с атомами, ионами, молекулами, передавая им часть своей энергии. Энергия движущихся электронов, преодолевающих такое сопротивление, частично рассеивается в виде тепла, и проводник нагревается.

Эти столкновения служат сопротивлением движению электронов, потому свойство проводника препятствовать движению заряженных частиц и называют электрическим сопротивлением. При малом сопротивлении проводника проводник нагревается током слабо, при значительном - намного сильнее, и даже до бела, этот эффект применяется в нагревательных приборах и в лампах накаливания.


Единица изменения сопротивления - Ом. Сопротивление R = 1 Ом - это сопротивление такого проводника, при прохождении по которому постоянного тока в 1 ампер, разность потенциалов на концах проводника равна 1 вольту. Эталон сопротивления в 1 Ом - столб ртути высотой 1063 мм, сечением 1 кв.мм при температуре 0°С.


Поскольку проводникам характерно электрическое сопротивление, то можно сказать, что в какой-то степени проводник способен проводить электрический ток. В связи с этим введена величина, называемая проводимостью или электропроводностью. Электропроводность - это способность проводника проводить электрический ток, то есть величина, обратная электрическому сопротивлению.

Единица измерения электропроводности G (проводимости) - Сименс (См), и 1 См = 1/(1 Ом). G = 1/R.


Так как атомы различных веществ в разной степени препятствуют прохождению электрического тока, то и электрическое сопротивление у различных веществ разное. По этой причине введено понятие , величина которого «р» характеризует проводящие свойства того или иного вещества.

Удельное электрическое сопротивление измеряется в Ом*м, то есть сопротивление куба вещества с ребром в 1 метр. Таким же образом электропроводность вещества характеризуется удельной электропроводностью?, измеряемой в См/м, то есть проводимость куба вещества с ребром в 1 метр.


Сегодня проводящие материалы в электротехнике используют в основном в виде лент, шин, проволок, с определенной площадью поперечного сечения и определенной длины, но не в виде метровых кубов. И для более удобных расчетов электрического сопротивления и электропроводности проводников конкретных размеров были введены более приемлемые единицы измерения как для удельного электрического сопротивления, так и для удельной электропроводности. Ом*мм2/м - для удельного сопротивления, и См*м/мм2 - для удельной электропроводности.

Теперь можно говорить, что удельное электрическое сопротивление и удельная электропроводность характеризуют проводящие свойства проводника площадью поперечного сечения в 1 кв.мм, длиной в 1 метр при температуре 20°C, это более удобно.

Лучшей электропроводностью обладают такие металлы как: золото, медь, серебро, хром, алюминий. Сталь и железо проводят ток хуже. Чистые металлы всегда обладают лучшей электропроводностью, чем их сплавы, поэтому чистая медь в электротехнике предпочтительней. Если нужно специально высокое сопротивление, то используют вольфрам, нихром, константан.

Зная величину удельного электрического сопротивления или удельной электропроводности, можно легко вычислить сопротивление или электропроводность конкретного проводника, изготовленного из данного материала, приняв в расчет длину l и площадь поперечного сечения S этого проводника.

Электропроводность и электрическое сопротивление всех материалов зависит от температуры , поскольку частота и амплитуда тепловых колебаний атомов кристаллической решетки с ростом температуры так же возрастает, соответственно возрастает и сопротивление электрическому току, потоку электронов.

При понижении температуры - наоборот, колебания атомов кристаллической решетки становятся меньше, сопротивление уменьшается (возрастает электропроводность). У одних веществ зависимость сопротивления от температуры выражена слабее, у других - сильнее. Например такие сплавы как константан, фехраль и манганин слабо меняют удельное сопротивление в определенном интервале температур, поэтому из них делают термостабильные резисторы.

Позволяет вычислить для конкретного материала приращение его сопротивления при определенной температуре, и численно характеризует относительное приращение сопротивления при увеличении температуры на 1 °С.

Зная температурный коэффициент сопротивления и приращение температуры, можно легко вычислить удельное сопротивление вещества при заданной температуре.

Надеемся, что наша статья была для вас полезной, и теперь вы легко сможете вычислить сопротивление и проводимость любого провода при любой температуре.

Ценность металлов напрямую определяется их химическими и физическими свойствами. В случае с таким показателем, как электропроводимость, эта связь не так прямолинейна. Самый электропроводный металл, если измерять данный показатель при комнатной температуре (+20 °C), - серебро.

Но высокая стоимость ограничивает применение деталей из серебра в электротехнике и микроэлектронике. Серебряные элементы в таких приборах применяются только в случае экономической целесообразности.

Физический смысл проводимости

Использование металлических проводников имеет давнишнюю историю. Ученые и инженеры, работающие в областях науки и техники, использующих электроэнергию, давно определились с материалами для проводов, клемм, контактов, и т. д. Определить самый электропроводный металл в мире помогает физическая величина, называемая электрической проводимостью.

Понятие проводимости обратно электрическому сопротивлению. Количественное выражение проводимости связано с единицей сопротивления, которое в международной системе единиц (СИ) измеряется в Омах. Единица в системе СИ - сименс. Русское обозначение этой единицы - См, интернациональное - S. Электрической проводимостью в 1 См обладает участок электрической сети с сопротивлением в 1 Ом.

Удельная проводимость

Мера способности вещества проводить электроток называется Самым высоким подобным показателем обладает самый электропроводный металл. Эта характеристика может быть определена для любого вещества или среды инструментально и имеет числовое выражение. цилиндрического проводника единичной длины и единичной площади сечения связана с удельным сопротивлением данного проводника.

Системной единицей удельной проводимости является сименс на метр - См/м. Чтобы выяснить, какой из металлов самый электропроводный металл в мире, достаточно сравнить их удельную проводимость, определенную экспериментально. Можно определить удельное сопротивление при помощи специального прибора - микроомметра. Эти характеристики являются обратнозависимыми.

Проводимость металлов

Само понятие как направленного потока заряженных частиц кажется более гармоничным для веществ, основанных на кристаллических решетках свойственных металлам. Носителями зарядов при возникновении электрического тока в металлах являются свободные электроны, а не ионы, как это бывает в жидких средах. Экспериментально установлено, что при возникновении тока в металлах не происходит переноса частиц вещества между проводниками.

Металлические вещества отличаются от других более свободными связями на атомарном уровне. Внутреннее устройство металлов отличается присутствием большого числа «одиноких» электронов. которые при малейшем воздействии электромагнитных сил образуют направленный поток. Поэтому не зря именно металлы являются лучшими проводниками электрического тока, и именно такие молекулярные взаимодействия отличают самый электропроводный металл. На особенностях структуры кристаллической решетки металлов основано еще одно их специфическое свойство - высокая теплопроводность.

Топ лучших проводников - металлов

4 металла, имеющие практическое значение для их применения в качестве электропроводников распределяются в следующем порядке относительно величины удельной проводимости, измеряемой в См/м:

  1. Серебро - 62 500 000.
  2. Медь - 59 500 000.
  3. Золото - 45 500 000.
  4. Алюминий - 38 000 000.

Видно, что самый электропроводный металл - серебро. Но подобно золоту, оно используется для организации электрической сети лишь в особых специфических случаях. Причина - высокая стоимость.

Зато медь и алюминий - самый распространенный вариант для электроприборов и кабельной продукции благодаря низкому сопротивлению электрическому току и ценовой доступности. Другие металлы применяются в качестве проводников редко.

Факторы, влияющие на проводимость металлов

Даже самый электропроводный металл снижает свою проводимость, если в нём присутствуют другие добавки и примеси. У сплавов иная, чем у «чистых» металлов, структура кристаллической решетки. Она отличается нарушением в симметрии, трещинами и другими дефектами. Снижается проводимость и при повышении температуры окружающей среды.

Повышенное сопротивление, присущее сплавам, находит применение в нагревательных элементах. Неслучайно для изготовления рабочих элементов электропечей, обогревателей применяют нихром, фехраль и другие сплавы.

Самый электропроводный металл - это драгоценное серебро, больше используемое ювелирами, для чеканки монет и т. д. Но и в технике и приборостроении его особые химические и физические свойства находят широкое применение. Например, кроме использования в узлах и агрегатах с пониженным сопротивлением, серебряное напыление предохраняет контактные группы от окисления. Уникальные свойства серебра и сплавов на его основе часто делают его применение оправданным, несмотря на высокую стоимость.

Рассмотрим поведение электронов проводимости в металле в неравновесном состоянии, когда они движутся под действием приложенных внешних полей. Такие процессы называются явлениями переноса.

Как известно, электропроводность (удельная электрическая проводимость) о - это величина, связывающая плотность электрического тока и напряженность в локальном законе Ома: j - оЕ (см. формулу (14.15) ч. 1). Все вещества по характеру электропроводности делятся на три класса: металлы, полупроводники и диэлектрики.

Характерной особенностью металлов является их металлическая проводимость - уменьшение электропроводности при повышении температуры (при постоянной концентрации носителей тока). Физической причиной электрического сопротивления в металлах является рассеяние электронных волн на примесях и дефектах решетки, а также на фононах.

Наиболее существенной особенностью полупроводников является их способность изменять свои свойства в чрезвычайно широких пределах под влиянием различных воздействий: температуры, электрического и магнитного полей, освещения и т.д. Например, собственная проводимость чистых полупроводников при их нагревании экспоненциально возрастает.

При Т > 300 К удельная проводимость о материалов, относящихся к полупроводникам, изменяется в широком интервале от 10~ 5 до 10 6 (Ом м) -1 , тогда как у металлов о составляет более 10 6 (Ом м) -1 .

Вещества, обладающие малой удельной проводимостью, порядка 10~ 5 (Ом м) -1 и менее, относятся к диэлектрикам. Проводимость у них возникает при очень высоких температурах.

Квантовая теория приводит к следующему выражению для электропроводности металлов:

где п - концентрация свободных электронов; т - время релаксации; т* - эффективная масса электрона.

Время релаксации характеризует процесс установления равновесия между электронами и решеткой, нарушенного, например, внезапным включением внешнего поля Е.

Термин «свободный электрон» означает, что на электрон не действуют никакие силовые поля. Движение электрона проводимости в кристалле под действием внешней силы F и сил со стороны кристаллической решетки в ряде случаев может быть описано как движение свободного электрона, на который действует только сила F (второй закон Ньютона, см. формулу (3.5) ч. 1), но с эффективной массой т*, отличной от массы т е свободного электрона.

Расчеты с использованием выражения (30.18) показывают, что электропроводность металлов о~1/Т. Эксперимент подтверждает данный вывод квантовой теории, в то время как согласно классической теории

о ~ l/fr.

В полупроводниках концентрация подвижных носителей значительно ниже, чем концентрация атомов, и может изменяться при изменении температуры, освещения, при облучении потоком частиц, воздействии электрического поля или введении относительно малого количества примесей. Носителями заряда в полупроводниках в зоне проводимости являются электроны (электроны проводимости), а в валентной зоне - положительно заряженные квазичастицы дырки. Когда в валентной зоне по какой-либо причине отсутствует электрон, то говорят, что в ней образовалась дырка (вакантное состояние). Представления о дырках и электронах проводимости используются для описания электронной системы полупроводников, полуметаллов и металлов.

В состоянии термодинамического равновесия концентрации электронов и дырок в полупроводниках зависят как от температуры и концентрации электрически активных примесей, так и от ширины запрещенной зоны АЕ.

Различают собственные и примесные полупроводники. Собственными полупроводниками являются химически чистые полупроводники (например, германий Ge, селен Se). Число электронов в них равно числу дырок. Проводимость таких полупроводников называется собственной.

В собственных полупроводниках при Т = О К валентная зона полностью заполнена, а зона проводимости - свободна. Поэтому при Т= О К и отсутствии внешнего возбуждения собственные полупроводники ведут себя как диэлектрики. При повышении температуры вследствие термического возбуждения электроны с верхних уровней валентной зоны будут переходить в зону проводимости. Одновременно становится возможным переход электронов валентной зоны на ее освободившиеся верхние уровни. Электроны в зоне проводимости и дырки в валентной зоне будут давать вклад в электропроводность.

Необходимая для переброски электрона из валентной зоны в зону проводимости энергия называется энергией активации собственной проводимости.

При наложении на кристалл внешнего электрического поля электроны перемещаются против поля и создают электрический ток. Во внешнем поле, когда на вакантное место перемешается соседний валентный электрон, дырка «перемешается» на его место. В результате дырка, так же как и перешедший в зону проводимости электрон, будет двигаться по кристаллу, но в направлении, противоположном движению электрона. Формально по кристаллу в направлении поля движется частица с положительным зарядом, равным абсолютной величине заряда электрона. Для учета действия на элементарные заряды внутреннего поля кристалла для дырок вводят понятие эффективной массы ш*. Поэтому при решении задач можно считать, что дырка с эффективной массой движется только под действием одного внешнего поля.

Во внешнем поле направление скоростей движения электронов и дырок противоположны, но создаваемый ими электрический ток имеет одинаковое направление - направление электрического поля. Таким образом, плотность тока при собственной проводимости полупроводника складывается из плотности тока электронов у э и дырок у д:

Электропроводность о пропорциональна числу носителей, значит, можно доказать, что для собственных полупроводников

и зависит от температуры по экспоненциальному закону. Вклад в о электронов и дырок различен, что объясняется различием их эффективных масс.

При сравнительно высоких температурах во всех полупроводниках преобладает собственная проводимость. Иначе электрические свойства полупроводника определяются примесями (атомами других элементов), и тогда говорят о примесной проводимости. Электропроводность будет слагаться из собственной и примесной проводимостей.

Примесными полупроводниками называются полупроводники, отдельные атомы которых замещаются примесями. Концентрация электронов и дырок в них значительно отличается. Примеси, являющиеся источниками электронов, называются донорами. Примеси, захватывающие электроны из валентной зоны, называются акцепторами.

В результате введения примеси в запрещенной зоне возникают дополнительные разрешенные электронные уровни энергии, расположенные в запрещенной зоне близко или ко дну зоны проводимости (донорные уровни ), или к потолку валентной зоны (акцепторные уровни). Это существенно увеличивает электропроводность полупроводников.

В полупроводниках я-типа (от англ, negative - отрицательный) с донорной примесью реализуется электронный механизм проводимости. Проводимость в них обеспечивается избыточными электронами примеси, валентность которой на единицу больше валентности основных атомов.

В полупроводниках р-типа (от англ, positive - положительный) с акцепторной примесью реализуется дырочный механизм проводимости. Проводимость в них обеспечивается дырками вследствие введения примеси, валентность которой на единицу меньше валентности основных атомов.

Убедительное доказательство реальности положительных дырок дает эффект Холла (1879). Данный эффект заключается в возникновении в металле (или полупроводнике) с током плотностью у, помещенном в магнитное поле В , дополнительного электрического поля в направлении, перпендикулярном В и у. Использование эффекта Холла (измерение коэффициента Холла, зависящего от вещества) позволяет определять концентрацию и подвижность носителей заряда в проводнике, а также устанавливать природу проводимости полупроводника (электронная или дырочная).

В настоящее время при разработке материалов для микроэлектроники создаются различные полупроводниковые материалы, в том числе с широкой запрещенной зоной. Полупроводниковые микросхемы считаются одним из перспективных направлений микроэлектроники, позволяя создавать надежные и достаточно сложные в функциональном отношении интегральные схемы.

Электропроводность металлов

При воздействии на металл электрического (или магнитного) поля (или разности температур) в нем возникают потоки заряженных частиц и энергии.

Явления возникновения этих потоков или токов принято называть кинетическими эффектами или явлениями переноса, иначе - транспортными эффектами, имея в виду воздействие стационарных полей на неподвижные проводники. В таком случае ток или поток пропорционален разности потенциалов (или разности температур), а коэффициент пропорциональности определяется только геометрическими размерами проводника и физическими свойствами самого металла.

При единичных геометрических размерах этот коэффициент зависит только от свойств данного металла и является его фундаментальной физической характеристикой, которая носит название кинетического коэффициента. При нахождении проводника в переменном поле возникающие в нем токи зависят не только от геометрических размеров и кинетического коэффициента, но и от частоты переменного поля, формы проводника, взаимного расположения элементов электрической цепи.

Сопротивление проводника при переменном токе существенно зависит от его частоты, обусловленной спинэффектом - вытеснением тока из центра проводника на периферию. Из многих возможных кинетических явлений наиболее известны в технике два: электропроводность - способность вещества проводить постоянный электрический ток под действием не изменяющегося во времени электрического поля, и теплопроводность - аналогично по отношению к разности температур и тепловому потоку. Оба эти явления выражаются (количественно) законами Ома и Фурье соответственно:

j = γ E; ω = k T.

где j - плотность тока, А/м;

γ - кинетический коэффициент электрической проводимости);

Е - напряженность электрического поля В/м;

ω - плотность теплового полтока;

Т – разность температур;

k – коэффициент теплопроводности.

На практике обычно используют удельное электрическое сопротивление или просто удельное сопротивление, Ом м

Однако, для проводников разрешается пользоваться внесистемной единицей измерения Ом мм2/м, или рекомендуется применять равную по размерности единицу СИ мкОм/м. Переход от одной единицы к другой в этом случае: 1 Ом м = 10 6 мкОм м = 10 6 Ом мм2/м.

Сопротивление проводника произвольных размеров с постоянным поперечным сечением определятся:

где l – длина проводника, м;

S – площадь проводника, м2.

Металлы обычно характеризуются как вещества пластичные с характерным «металлическим» блеском, хорошо проводящие электрический ток и теплоту.

Для электропроводности металлов типичны: низкое значение удельного сопротивления при нормальной температуре, значительный рост сопротивления при повышении температуры, достаточно близкий к прямой пропорциональности; при понижении температуры до температуры, близких к абсолютному нулю, сопротивление металлов уменьшается до очень малых значений, составляющих для наиболее чистых металлов до 10-3 или даже меньшую долю сопротивления при нормальных, + 20 0С, температурах.

Для них также характерно наличие связи между удельной электропроводностью и удельной теплопроводностью, которая описывается эмпирическим законом Видемана – Франца, как отношение k / γ приближенно одинаково для разных материалов при одинаковой температуре. Частное от деления k / γ на абсолютную температуру T (L0 = k / (γ T)). называется числом Лоренца, является (для всех металлов) величиной мало отличающихся при всех температурах.

Теория кинетических явлений в металлах может объяснить форму зависимостей кинетических коэффициентов от температуры, давления и других факторов, с ее помощью также можно вычислить и их значения. Для этого рассмотрим внутреннее строение металлов.

Фундаментальная идея этого раздела физики возникла на рубеже 19 –20 го столетия: атомы металла ионизированы, а отделившиеся от них валентные электроны свободны, т. е. принадлежат всему кристаллу.

Ионы строго упорядочены, образуют правильную кристаллическую решетку; их взаимодействие с отрицательно заряженным облаком свободных электронов такое, что делает кристалл стабильным, устойчивым образованием.

Наличие свободных электронов хорошо объясняет высокую электропроводность металлов, а их делокализация обеспечивает высокую пластичность. Значит, наиболее характерной особенностью внутреннего строения металлических проводников является наличие коллективизированных электронов, что подтверждает их электронное строение. В ее простейшей модели совокупность коллективизированных электронов объясняют как электронный газ, в котором частицы находятся в хаотическом тепловом движении.

Равновесие устанавливается (если пренебречь столкновениями между электронами) за счет столкновения электронов с ионами. Поскольку тепловое движение полностью не упорядочено, то, несмотря на заряженность электронов, тока в цепи (макроскопического) не наблюдается. Если к проводнику приложить внешнее электрическое поле, то свободные электроны, получив ускорение, выстраиваются в упорядоченную составляющую, которая ориентирована вдоль поля.

Поскольку ионы в узлах решетки неподвижны, упорядоченность в движении электронов проявится макроскопическим электрическим током. Удельная проводимость в этом случае может быть выражена с учетом средней длины свободного пробега λ электрона в ускоряющем поле напряженностью Е:

λ = е Е τ / (2 m) как γ = е2 n λ / (2 m vτ),

где е - заряд электрона;

n - число свободных электронов в единице объема металла;

λ - средняя длина свободного пробега электрона между двумя соударениями;

m - масса электрона;

v τ- средняя скорость теплового движения свободного электрона в металле.

С учетом положений квантовой механики

γ = К п2/3 / λ ,

где К - числовой коэффициент.

Диапазон удельных сопротивлений металлических проводников при нормальной температуре занимает всего три порядка. Для различных металлов скорости хаотического теплового движения электронов при определенной температуре примерно одинаковы.

Концентрации свободных электронов различаются незначительно, поэтому значение удельного сопротивления в основном зависит от средней длины свободного пробега электронов в данном проводнике, а она определяется структурой материала проводника. Все чистые металлы с наиболее правильной кристаллической решеткой имеют минимальные значения удельного сопротивления. Примеси, искажая решетку, приводят к увеличению удельного сопротивления



Температурный коэффициент удельного сопротивления или средний температурный коэффициент удельного сопротивления выразится

α = 1 / ρ (dρ / dt); α` = 1 / ρ (ρ2 - ρ1) / (T2 – T1),

где ρ1 и ρ2 – удельные сопротивления проводника при температурах Т1 и Т2 соответственно при Т2 > T1.

В технических справочниках обычно приводится величина α`, с помощью которой можно приближенно определить ρ при произвольной температуре Т:

ρ = ρ1 (1 + αρ` (Т - Т1)).

Это выражение дает точное значение удельного сопротивления р только для линейной зависимости ρ(Т). В остальных случаях этот метод является приближенным; он тем точнее, чем уже интервал температур, который использован для определения αρ`.

Удельное сопротивление большинства металлов, увеличивающих свой объем при плавлении, уменьшает плотность. У металлов, уменьшающих свой объем при плавлении, удельное сопротивление уменьшается; к таким металлам относят галлий, сурьму и висмут.

Удельное сопротивление сплавов всегда больше, чем у чистых металлов. Особенно это заметно, если при сплавлении они образуют твердый раствор, т.е. совместно кристаллизуются при затвердевании и атомы одного металла входят в решетку другого.

Если сплав двух металлов создает раздельную кристаллизацию и застывший раствор - смесь кристаллов каждой из составляющих, то удельная проводимость γ такого сплава изменяется с изменением состава почти линейно. В твердых же растворах эта зависимость (от содержания каждого из металлов) не линейна и имеет максимум, соответствующий определенному соотношению компонентов сплава.

Иногда при определенном соотношении между компонентами они образуют химические соединения (интерметаллиды), при этом они обладают не металлическим характером электропроводности, а являются электронными полупроводниками.

Температурный коэффициент линейного расширения проводников определяется так же, как и для диэлектриков по формуле

ТКl = α(l) = l / l (dl / dТ), (3.1)

где ТКl = α(l) -температурный коэффициент линейного расширении К-1

Этот коэффициент необходимо знать, чтобы иметь возможность оценить работу сопряженных материалов в различных конструкциях, а также исключить растрескивание или нарушение вакуумного соединения металла со стеклом или керамикой при изменении температуры. Кроме того, он входит в расчет температурного коэффициента электрического сопротивления проводов

ТКR = α(R) = α(ρ) - α(l).

ТермоЭДС проводников

ТермоЭДС возникает при соприкосновении двух различных проводников (или полупроводников), если температура их спаев неодинакова. Если два различных проводника соприкасаются, то между ними возникает контактная разность потенциалов. Для металлов А и В

Ucb - Uc + К Т / е ln(n0с / nоb),

где U с и U b - потенциалы соприкасающихся металлов; концентрация электронов в соответствующих металлах;

К - постоянная Болъцмана;

Т - температура;

е - абсолютная величина заряда электрона.

Если температура спаев металлов одинакова, то сумма разности потенциалов в замкнутой цепи равна нулю. Если же температура слоев различна (Т2 и Т1, например), то в этом случае

U = К / е (Т1 -Т2) ln(nc / пb). (3.2)

На практике выражение (3.2) не всегда соблюдается, и зависимость термоЭДС от температуры может быть нелинейной. Провод, составленный из двух изолированных проволок разных металлов или сплавов, называется термопарой и используется для измерения температур.

В таких случаях стараются использоватъ материалы, имеющие большой и стабильный коэффициент термоЭдС. для измерения высоких температур иногда приходится (особенно при измерении температур в агрессивных средах) применять термопары с меньшими коэффициентами термо ЭдС, но выдерживающими высокие температуры и не окисляющиеся в агрессивных средах.

Сплавы для термопар имеют различные сочетания, в том числе один электрод может быть из чистого металла. Наиболее распространенными являются никелевые и медно-никелевые сплавы. Для температур в пределах 1000 – 1200 0С используются термопары хромель – алюмель (ТХА), при более высоких температурах применяются электроды платина – платинородий; в этих сплавах родия составляет от 6,7 до 40,5 %. Марки таких термопар следующие: ПлРд-7, ПлРд-10, ПлРд-30, ПлРд-40.

Электрическая проводимость металлов - это способность элементов и тел проводить через себя определенное количество негативно заряженных частиц. Само проведение электрического тока объясняется достаточно просто - в результате воздействия электромагнитного поля на проводниковый металл, электрон настолько ускоряет свое движение, что теряет связь с атомом.

В Международной системе измерения единиц электропроводность значится буквой S и измеряется в сименсах.

В зависимости от вида и природы зарядоносителей проводимость бывает электронной, ионной и дырочной. Электронной проводимостью обладают металлы. Существует такая проводимость и в верхних слоях атмосферы, где плотность вещества невелика, благодаря чему электроны могут свободно перемещаться, не соединяясь с положительно заряженными ионами.Жидкие электроны обладают ионной проводимостью. Ионы, являющиеся зарядоносителями, при движении перемещают вещество, в результате чего происходит выделение его на электродах.Возможен механизм проводимости, обусловленный разрывом валентной связи, приводящим к появлению вакантного места с отсутствующей связью. Такое “пустое” место с отсутствующими электронами связи получило название - дырка. Возникновение дырки в кристалле проводника создаёт дополнительную возможность для переноса заряда. Этот процесс, сопровождающийся перемещением электронов, получил название дырочной проводимостью.

Электропроводность металлов. Виды электропроводности. Уровень Ферми.

Виды электропроводности

В зависимости от вида и природы зарядоносителей проводимость бывает электронной, ионной и дырочной.

Электронной проводимостью обладают металлы.

Жидкие вещества обладают ионной проводимостью. Ионы, являющиеся зарядоносителями, при движении перемещают вещество, в результате чего происходит выделение его на электродах.

Возможен механизм проводимости, обусловленный разрывом валентной связи, приводящим к появлению вакантного места с отсутствующей связью. Такое “пустые” место с отсутствующими электронами связи получило название - дырка. Возникновение дырки в кристалле проводника создаёт дополнительную возможность для переноса заряда. Этот процесс, сопровождающийся перемещением электронов, получил название дырочной проводимостью.

Проводниками электрического тока могут служить твердые тела, жидко­сти, а при соответствующих условиях и газы.

К твердым проводникам относят металлы, металлические сплавы и некоторые модификации углерода.

Металлы – это пластичные вещества с характерным для них блеском, которые хорошо проводят электрический ток и теплоту. Среди материалов электронной техники металлы занимают одно из важнейших мест.

К жидким проводникам относятся расплавленные металлы и различные электролиты. Как правило температура плавления металла высока, за исключе­нием ртути (Hg), у которой она составляет -39°C. Поэтому при нормальной температуре в качестве жидкого металлического проводника можно использо­вать только ртуть. Температуру близкую к нормальной (29,8°С) имеет еще галлий (Ga). Другие металлы являются жидкими проводниками только при повышенных или высоких температурах.

Механизм прохождения тока по металлам в твердом и жидком состояниях обусловлен движением свободных электронов. Поэтому их называют проводниками с электронной электропроводностью или проводниками первого рода.

Электролитами, или проводниками второго рода являются растворы (в основном водные) кислот, щелочей и солей, а также расплавы ионных соединений. Прохождение токов через такие проводники связано с переносом вместе с электрическими зарядами частей молекул (ионов). В результате этого состав электролита постепенно изменяется, а на электродах выделяются продукты электролиза.

Все газы и пары, в том числе и пары металлов, при низких напряженностях электрического поля ток не проводят. Однако, если напряженность поля выше некоторого критического значения, обеспечивающего начало ударной и фотоионизации, то газ может стать проводником, обладающим электронной и ионной электропроводностью. Сильно ионизированный газ при равенстве числа электронов и положительных ионов в единице объема представляет собой равновесную проводящую среду, называемую плазмой.

В основе классической электронной теории металлов, развитой Друде и Лоренцом, лежит представление об электронном газе, состоящем из свободных электронов. Электронному газу приписываются свойства идеального газа, т.е. движение электронов подчиняется законам классической статистики

В случае приложения внешнего напряжения электроны получат некоторую добавочную скорость направленного движения в направлении действующих сил поля, благодаря чему и возникает электрический ток.

В процессе направленного движения электроны сталкиваются с атомами узлов решетки. При этом скорость движения замедляется, а затем под воздействием электрического поля ускоряются:

Наличием свободных электронов обусловливается и высокая теплопроводность металлов. Находясь в непрерывном движении, электроны постоянно сталкиваются с ионами и обмениваются с ними энергией. Поэтому колебания ионов, усилившиеся в данной части металла вследствие нагревания, сейчас же передаются соседним ионам, от них - следующим и т.д., и тепловое состояние металла быстро выравнивается; вся масса металла принимает одинаковую температуру.



Теплопроводность можно определить, как свойство вещества проводить (передавать) тепловой поток под действием не изменяющейся во времени разности температур.

Энергия Ферми E F - максимальное значение энергии, которое может иметь электрон при температуре абсолютного нуля. Энергия Ферми совпадает со значениями химического потенциала газа фермионов при Т =0 К , то есть уровень Ферми для электронов играет роль уровня химического потенциала для незаряженных частиц. Соответствующий ей потенциал j F = E F /е называют электрохимическим потенциалом.

Таким образом, уровнем Ферми или энергией Ферми в металлах является энергия, которую может иметь электрон при температуре абсолютного нуля. При нагревании металла происходит возбуждение некоторых электронов, находящихся вблизи уровня Ферми (за счет тепловой энергии, величина которой порядкаkT ). Но при любой температуре для уровня с энергией, соответствующей уровню Ферми, вероятность заполнения равна 1/2. Все уровни, расположенные ниже уровня Ферми, с вероятностью больше 1/2 заполнены электронами, а все уровни, лежащие выше уровня Ферми, с вероятностью больше 1/2 свободны от электронов.

Существование энергии Ферми является следствием принципа Паули. Величина энергии Ферми существенно зависит от свойств системы.