Основы молекулярно-кинетической теории строения вещества

Основы молекулярно-кинетической теории разработаны М.В. Ломоносовым, Л.Больцманом, Дж. Максвеллом и др. Эта теория основана на следующих положениях:

1.Все вещества состоят из мельчайших частиц – молекул. Молекулы у сложных веществ состоят из еще более мелких частиц – атомов. Различные комбинации атомов создают виды молекул. Атом состоит из положительно заряженного ядра, окруженного отрицательно заряженной электронной оболочкой. Массу молекул и атомов измеряют в атомных единицах массы (а. е. м.). Диаметр атомов и молекул имеет порядок 10 - 10 см. Количество вещества, в котором содержится число частиц (атомов или молекул) равное числу атомов в 0,012 кг изотопа углерода С называется молем.

Число частиц, содержащих в моле (киломоле) вещества, называется числом Авогадро. N = 6.023*10 кмоль . Массу моля называет молярной массой. Между атомами и молекулами действуют силы взаимного притяжения и отталкивания. По мере увеличения расстояния (r) между молекулами силы отталкивания убывают быстрее, чем силы притяжения. При некотором определенном расстоянии (r ) наступает равенство сил отталкивания и сил притяжения и молекулы находятся в состоянии устойчивого равновесия. Силы взаимодействия обратно пропорциональны n-й степени расстояния между молекулами (для f , n = 7; для f , n принимает значение от 9 до 15).Расстояние r между молекулами соответствует минимуму их потенциальной энергии. Для изменения расстояния, отличного от r требуется затратить работу или против сил отталкивания или против сил притяжения; т.о. положение устойчивого равновесия молекул соответствует минимуму их потенциальной энергии. Молекулы, образующие тело, находятся в состоянии непрерывного беспорядочного движения.

Молекулы сталкиваются друг с другом, изменяют скорость как по величине, так и по направлению. При этом происходит перераспределение их общей кинетической энергии. Состоящее из молекул тело рассматривается как система движущихся и взаимодействующих частиц. Такая система молекул обладает энергией, состоящей из потенциальной энергии взаимодействия частиц и из кинетической энергии движения частиц. Эту энергию и называют внутренней энергией тел . Количество внутренней энергии, передаваемой между телами при теплообмене, называется количеством теплоты (Джоуль, кал). Джоуль – СИ. 1 кал = 4,18 Дж. Атомы и молекулы находятся в непрерывном движении, которое называется тепловым. Основным свойством теплового движения является его бесперебойность (хаотичность). Для количественной характеристики интенсивности теплового движения вводится понятие температуры тела. Чем интенсивнее тепловое движение молекул в теле, тем выше его температура. При соприкосновении двух тел энергия переходит от более нагретого тела к менее нагретому и в конце концов устанавливается состояние теплового равновесия.

С точки зрения молекулярно-кинетических представлений температура есть величина, характеризующая среднюю кинетическую энергию поступательного движения молекул или атомов. За единицу измерения температуры тепла принят градус. (Сотая часть разности между температурами кипения и замерзания чистой воды при атмосферном давлении). В физику введена абсолютная температурная шкала Кельвина. Градус Цельсия равен градусу Кельвина. При температуре – 273 С должно прекратиться поступательное движение молекул газа (абсолютный нуль), т. е. система (тело) обладает наименьшей возможной энергией.

Основные положения молекулярно-кинетической теории строения вещества подтверждаются многочисленными опытами и явлениями (диффузия, броуновское движение, смешивание жидкостей, сжимаемость различных веществ, растворение в жидкостях твердых веществ и т. д.). Современные экспериментальные методы – рентгеноструктурный анализ, наблюдения с помощью электронного микроскопа и другие – обогатили наши представления о строении вещества. В газе между молекулами относительно большие расстояния, силы притяжения ничтожно малы. Молекулы газа стремятся всегда равномерно распределиться по всему занимаемому им объему. Газ оказывает давление на стенки сосуда, в котором он находится. Это давление обусловлено ударами движущихся молекул. При изучении кинетической теории газа рассматривают так называемый идеальный газ. Газ, в котором пренебрегаем силами межмолекулярного взаимодействия и объемом молекул газа. Считая, что при соударениях молекулы идеального газа представляют собой как абсолютно упругие шарики.

Для изучения темы «Тепловое движение» нам необходимо повторить:

В окружающем нас мире происходят различного рода физические явления, которые напрямую связанны с изменением температуры тел.

Еще с детства мы помним, что вода в озере сначала холодная, потом едва теплая и только спустя время становится пригодной для купания

Такими словами как «холодный», «горячий», « чуть-чуть теплый», мы определяем различную степень «нагретости» тел, или, если говорить языком физики на различную температуру тел.

Если сравнивать температуру в озере летом и поздней осенью, то разница очевидна. Температура теплой воды немного выше температуры ледяной воды.

Как известно, диффузия при более высокой температуре происходит быстрее. Из этого следует, что скорость перемещения молекул и температура глубоко взаимосвязаны между собой.

Проведите опыт: Возьмите три стакана и наполните их холодной, теплой и горячей водой, а теперь положите в каждый стакан чайный пакетик и пронаблюдайте, как изменится цвет воды? Где это изменение будет происходить интенсивнее?

Если увеличить температуру, то скорость движения молекул увеличится, если уменьшить – понизится. Таким образом, делаем вывод: температура тела напрямую зависит от скорости перемещения молекул.

Горячая вода состоит из абсолютно таких же молекул, как и холодная. Разница между ними состоит лишь в скорости передвижения молекул.

Явления, которые имеют отношение к нагреву или охлаждению тел, изменению температуры, получили название тепловые . К ним можно отнести нагревание или охлаждение не только жидких тел, но и газообразных и твердых воздуха.

Еще примеры тепловых явлений: плавка метала, таяние снега.

Молекулы, либо атомы, которые являются основой всех тел, находятся в бесконечном хаотичном движении. Движение молекул в разных телах происходит по-разному. Молекулы газов беспорядочно движутся с большими скоростями по очень сложной траектории. Сталкиваясь, они отскакивают друг от друга, изменяя величину и направление скоростей.

Молекулы жидкости колеблются около равновесных положений (т.к. расположены почти вплотную друг к другу) и сравнительно редко перескакивают из одного равновесного положения в другое. Движение молекул в жидкостях является менее свободным, чем в газах, но более свободным, чем в твердых телах.

В твердых телах молекулы и атомы колеблются около некоторых средних положениях.

С ростом температуры скорость частиц увеличивается, поэтому хаотическое движение частиц принято называть тепловым.

Интересно:

Какова точная высота Эйфелевой башни? А это зависит от температуры окружающей среды!

Дело в том, что высота башни колеблется на целых 12 сантиметров.

и температура балок может доходить до 40 градусов по Цельсию.

А как известно, вещества могут расширяться под воздействием высокой температуры.

Хаотичность является важнейшей чертой теплового движения. Одним из самых главных доказательств движения молекул является диффузия и Броуновское движение. (Броуновское движение – движение мельчайших твердых частиц в жидкости под воздействием ударов молекул. Как показывает наблюдение, Броуновское движение не может прекратиться). Броуновское движение было открыто английским ботаником Робертом Броуном (1773-1858гг.)

В тепловом движении молекул и атомов участвуют абсолютно все молекулы тела, именно поэтому с изменением теплового движения меняется и состояние самого тела, его различные свойства.

Вспомним как меняются свойства воды при изменении температуры.

Температура тела напрямую зависит от средней кинетической энергии молекул. Делаем очевидный вывод: чем выше температура тела, тем больше средняя кинетическая энергия его молекул. И, наоборот, при понижении температуры тела, средняя кинетическая энергия его молекул уменьшается.

Температура- величина, которая характеризует тепловое состояние тела или иначе мера «нагретости» тела.

Чем выше температура тела, тем большую в среднем энергию имеют его атомы и молекулы.

Температура измеряется термометрами , т.е. приборами для измерения температуры

Температура непосредственно не измеряется! Измеряется величина, зависящая от температуры!

В настоящее время существуют жидкостные и электрические термометры.

В современных жидкостных термометрах - это объем спирта или ртути. Термометр измеряет собственную температуру! А, если мы хотим измерить с помощью термометра температуру какого-либо другого тела, надо подождать некоторое время, пока температуры тела и термометра уравняются, т.е. наступит тепловое равновесие между термометром и телом. Домашнему термометру «градуснику» нужно время, чтобы дать точнее значение температуры больного.

В этом состоит закон теплового равновесия:

у любой группы изолированных тел через какое-то время температуры становятся одинаковыми,

т.е. наступает состояние теплового равновесия.

Температура тел измеряется с помощью термометра и чаще всего выражается в градусах Цельсия (°C). Существуют еще и другие единицы измерения: Фаренгейт, Кельвин и Реомюр.

Чаще всего физики измеряют температуру по шкале Кельвина. 0 градусов по шкале Цельсия = 273 градусам по шкале Кельвина

В окружающем нас мире происходят различного рода физические явления, которые напрямую связанны с изменением температуры тел . Еще с детства мы знаем, что холодная вода при нагревании сначала становится едва теплой и лишь спустя определенное время горячей.

Такими словами как «холодный», «горячий», «теплый», мы определяем различную степень «нагретости» тел, или, если говорить языком физики на различную температуру тел. Температура теплой воды немного выше температуры прохладной воды. Если сравнивать температуру летнего и зимнего воздуха, то разница в температуре очевидна.

Температура тел измеряется с помощью термометра и выражается в градусах Цельсия (°C).

Как известно, диффузия при более высокой температуре происходит быстрее. Из этого следует, что скорость перемещения молекул и температура глубоко взаимосвязаны между собой. Если увеличить температуру, то скорость движения молекул увеличится, если уменьшить – понизится.

Таким образом, делаем вывод: температура тела напрямую зависит от скорости перемещения молекул.

Горячая вода состоит из абсолютно таких же молекул, как и холодная. Разница между ними состоит лишь в скорости передвижения молекул.

Явления, которые имеют отношение к нагреву или охлаждению тел, изменению температуры, получили название тепловые. К ним можно отнести нагревание или охлаждение воздуха, плавку метала, таяние снега.

Молекулы, либо атомы, которые являются основой всех тел, находятся в бесконечном хаотичном движении. Количество подобных молекул и атомов в окружающих нас телах огромно. В объеме равном 1 см³ воды, содержится приблизительно 3,34 · 10²² молекул. Любая молекула имеет очень сложную траекторию движения. К примеру, частицы газа, передвигающиеся с большими скоростями в различных направлениях, могут сталкиваться как друг c другом, так и со стенками сосуда. Таким образом, они меняют свою скорость и опять продолжают движение.

Рисунок №1 демонстрирует беспорядочное движение частиц краски, растворенных в воде.

Таким образом, делаем еще один вывод: хаотичное движение частиц, которые составляют тела, называют тепловым движением.

Хаотичность является важнейшей чертой теплового движения. Одним из самых главных доказательств движения молекул является диффузия и Броуновское движение. (Броуновское движение – движение мельчайших твердых частиц в жидкости под воздействием ударов молекул. Как показывает наблюдение, Броуновское движение не может прекратиться).

В жидкостях молекулы могут колебаться, вращаться и двигаться относительно других молекул. Если брать твердые тела, то в них молекулы и атомы колеблются около некоторых средних положениях.

В тепловом движении молекул и атомов участвуют абсолютно все молекулы тела, именно поэтому с изменением теплового движения меняется и состояние самого тела, его различные свойства. Таким образом, если повысить температуру льда то он начинает таять, принимая при этом уже абсолютно другую форму – лед становится жидкостью. Если же наоборот, понижать температуру, к примеру, ртути, то она изменит свои свойства и из жидкости, превратится в твердое тело.

Температура тела напрямую зависит от средней кинетической энергии молекул. Делаем очевидный вывод: чем выше температура тела, тем больше средняя кинетическая энергия его молекул. И, наоборот, при понижении температуры тела, средняя кинетическая энергия его молекул уменьшается.

Если у вас остались вопросы, или вы хотите узнать больше о тепловом движении и температуре, зарегистрируйтесь на нашем сайте и получите помощь репетитора.

Остались вопросы? Не знаете, как сделать домашнее задание?
Чтобы получить помощь репетитора – .
Первый урок – бесплатно!

blog.сайт, при полном или частичном копировании материала ссылка на первоисточник обязательна.


















Назад Вперёд

Внимание! Предварительный просмотр слайдов используется исключительно в ознакомительных целях и может не давать представления о всех возможностях презентации. Если вас заинтересовала данная работа, пожалуйста, загрузите полную версию.

Цели.

  • Образовательные.
    • Дать понятие температуры, как меры средней кинетической энергии; рассмотреть историю создания термометров, сравнить различные температурные шкалы; формировать умение применять полученные знания для решения задач и выполнения практических заданий, расширить кругозор учащихся в области тепловых явлений.
  • Воспитательные.
    • Развитие умения слушать собеседника, высказывать собственную точку зрения
  • Развивающие.
    • Развитие у учащихся произвольного внимания, мышления (умения анализировать, сравнивать, строить аналогии, делать умозаключения.), познавательного интереса (на основе физического эксперимента);
    • формирование мировоззренческих понятий о познаваемости мира.

ХОД УРОКА

Здравствуйте, садитесь.

При изучении механики нас интересовало движение тел. Теперь мы рассмотрим явления, связанные с изменением свойств покоящихся тел. Мы будем изучать нагревание и охлаждение воздуха, таяние льда, плавление металлов, кипение воды и т. д. Подобные явления называют тепловыми явлениями .

Мы знаем, что при нагревании холодная вода сначала становится теплой, а затем горячей. Вынутая из пламени металлическая деталь постепенно охлаждается. Воздух, окружающий батареи с горячей водой, нагревается и т. д.

Словами "холодный", "теплый", "горячий" мы обозначаем тепловое состояние тел. Величиной, характеризующей тепловое состояние тел, является температура .

Всем известно, что температура горячей воды выше температуры холодной. Зимой температура воздуха на улице ниже, чем летом.

Все молекулы любого вещества непрерывно и беспорядочно (хаотически) движутся.

Беспорядочное хаотическое движение молекул называется тепловым движением.

Скажите, в чём отличие теплового движения от механического?

В нём участвуют много частиц с разными траекториями. Движение никогда не прекращается. (Пример: броуновское движение)

Демонстрация модели броуновского движения

От чего зависит тепловое движение?

  • Опыт №1: Опустим кусок сахара в холодную воду, а другой в горячую. Какой растворится быстрее?
  • Опыт №2: Опустим 2 куска сахара (один больше другого) в холодную воду. Какой растворится быстрее?

Вопрос о том, что такое температура, оказался очень сложным. Чем, например, горячая вода отличается от холодной? В течение долгого времени на этот вопрос не было ясного ответа. Сегодня мы знаем, что при любой температуре вода состоит из одних и тех же молекул. Тогда что именно изменяется в воде при увеличении ее температуры? Из опыта мы увидели, что в горячей воде сахар растворится значительно быстрее. Растворение происходит из-за диффузии. Таким образом, диффузия при более высокой температуре происходит быстрее, чем при низкой.

Но причиной диффузии является движение молекул. Значит, между скоростью движения молекул и температурой тела есть связь: в теле с большей температурой молекулы движутся быстрее.

Но температура зависит не только от средней скорости молекул. Так, например, кислород, средняя скорость движения молекул которого составляет 440 м/с, имеет температуру 20 °С, а азот при той же средней скорости молекул имеет температуру 16 °С. Меньшая температура азота обусловлена тем, что молекулы азота легче молекул кислорода . Таким образом, температура вещества определяется не только средней скоростью движения его молекул, но и их массой. Это же мы видим и в опыте №2.

Мы знаем величины, которые зависят как от скорости, так и от массы частицы. Это - импульс и кинетическая энергия. Учеными установлено, что именно кинетическая энергия молекул определяет температуру тела: температура является мерой средней кинетической энергии частиц тела; чем больше эта энергия, тем выше температура тела.

Итак, при нагревании тел средняя кинетическая энергия молекул увеличивается, и они начинают двигаться быстрее; при охлаждении энергия молекул уменьшается, и они начинают двигаться медленнее.

Температура- величина, которая характеризует тепловое состояние тела. Мера “нагретости” тела. Чем выше температура тела, тем большую в среднем энергию имеют его атомы и молекулы.

Можно ли только полагаться на свои ощущения, что бы судить о степени нагретости тела?

  • Опыт №1: Дотронуться одной рукой до деревянного предмета, а другой до металлического.

Сравните ощущения

Хотя оба предмета находятся при одной температуре, одна рука ощутит холод, а другая тепло

  • Опыт №2: возьмём три сосуда с горячей, тёплой и холодной водой. Опустить одну руку в сосуд с холодной, а другую в сосуд с горячей водой. Через некоторое время обе руки опустить в сосуд с тёплой водой

Сравните ощущения

Рука, которая была в горячей воде теперь ощущает холод, а рука, которая была в холодной воде теперь ощущает тепло, хотя обе руки находятся в одном сосуде

Мы доказали, что наши ощущения субъективны. Необходимы приборы, подтверждающие их.

Приборы, служащие для измерения температуры, называются термометрами . Действие такого термометра основано на тепловом расширении вещества. При нагревании столбик используемого в термометре вещества (например, ртути или спирта) увеличивается, при охлаждении уменьшается. Первый жидкостный термометр был изобретен в 1631 г. французским физиком Ж.Реем.

Температура тела будет изменяться, пока не придёт в тепловое равновесие со средой.

Закон теплового равновесия: у любой группы изолированных тел через какое-то время температуры становятся одинаковыми, т.е. наступает состояние теплового равновесия.

Следует помнить, что любой термометр всегда показывает свою собственную температуру. Для определения температуры среды термометр следует поместить в эту среду и подождать до тех пор, пока температура прибора не перестанет изменяться, приняв значение, равное температуре окружающей среды . При изменении температуры среды будет изменяться и температура термометра.

Несколько иначе действует медицинский термометр, предназначенный для измерения температуры тела человека. Он относится к так называемым максимальным термометрам , фиксирующим наибольшую температуру, до которой они были нагреты. Измерив свою собственную температуру, вы можете заметить, что, оказавшись в более холодной (по сравнению с человеческим телом) среде, медицинский термометр продолжает показывать прежнее значение. Чтобы вернуть столбик ртути в исходное состояние, этот термометр необходимо встряхнуть.

С лабораторным термометром, используемым для измерения температуры среды, этого делать не нужно.

Использующиеся в быту термометры позволяют выразить температуру вещества в градусах Цельсия (°С).

А. Цельсий (1701-1744) - шведский ученый, предложивший использовать стоградусную шкалу температур. В температурной шкале Цельсия за нуль (с середины XVIII в.) принимается температура тающего льда, а за 100 градусов - температура кипения воды при нормальном атмосферном давлении.

Об истории развития термометров послушаем сообщение (Презентация Сидоровой Е.)

Жидкостные термометры основаны на принципе изменения объёма жидкости, которая залита в термометр (обычно это спирт или ртуть), при изменении температуры окружающей среды. Недостаток: различные жидкости расширяются по-разному, поэтому показания термометров различаются: Ртутный -50 0 С; глицериновый -47,6 0 С

Мы попробовали сделать жидкостный термометр в домашних условиях. Посмотрим, что из этого получилось. (Видеосюжет Брыкиной В. Приложение 1)

Мы узнали, что существуют различные шкалы температур. Помимо шкалы Цельсия широко распространена шкала Кельвина. Понятие абсолютной температуры было введено У. Томсоном (Кельвином). Шкалу абсолютной температуры называют шкалой Кельвина или термодинамической температурной шкалой.

Единица абсолютной температуры - кельвин (К).

Абсолютный ноль - наиболее низкая возможная температура, при которой ничего не может быть холоднее и теоретически невозможно извлечь из вещества тепловую энергию, температура, при которой прекращается тепловое движение молекул

Абсолютный ноль определен как 0 K, что приблизительно равно 273.15 °C

Один Кельвин равен одному градусу T=t+273

Вопросы из ЕГЭ

Какой из приведенных ниже вариантов измерения температуры горячей воды с помощью термометра дает более правильный результат?

1) Термометр опускают в воду и, вынув из воды через несколько минут, снимают показания

2) Термометр опускают в воду и ждут до тех пор, пока температура перестанет изменяться. После этого, не вынимая термометра из воды, снимают его показания

3) Термометр опускают в воду и, не вынимая его из воды, сразу же снимают показания

4) Термометр опускают в воду, затем быстро вынимают из воды и снимают показания

На рисунке показана часть шкалы термометра, висящего за окном. Температура воздуха на улице равна

  • 18 0 С
  • 14 0 С
  • 21 0 С
  • 22 0 С

Решите задачи № 915, 916 (“Сборник задач по физике 7-9” В.И.Лукашик, Е.В. Иванова)

  1. Задание на дом: Параграф 28
  2. №128 Д “Сборник задач по физике 7-9” В.И.Лукашик, Е.В. Иванова

Методическое обеспечение

  1. “Физика 8” С.В. Громов, Н.А. Родина
  2. “Сборник задач по физике 7-9” В.И.Лукашик, Е.В. Иванова
  3. Рисунки, находящиеся в открытом доступе Интернета

Все молекулы любого вещества непрерывно и беспорядочно (хаотически) движутся.

Движение молекул в разных телах происходит по-разному.
Молекулы газов беспорядочно движутся с большими скоростями (сотни м/с) по всему объему газа. Сталкиваясь, они отскакивают друг от друга, изменяя величину и направление скоростей.
Молекулы жидкости колеблются около равновесных положений (т.к. расположены почти вплотную друг к другу) и сравнительно редко перескакивают из одного равновесного положения в другое. Движение молекул в жидкостях является менее свободным, чем в газах, но более свободным, чем в твердых телах.
В твердых телах частицы колеблются около положения равновесия.
С ростом температуры скорость частиц увеличивается, поэтому хаотическое движение частиц принято называть тепловым.

БРОУНОВСКОЕ ДВИЖЕНИЕ

Доказательство теплового движения молекул.
Броуновское движение было открыто английским ботаником Робертом Броуном (1773-1858гг.)

Если распылить на поверхности жидкости мельчайшие крупинки какого-либо вещества,
то они будут непрерывно двигаться.

Эти броуновские частицы движутся под влиянием ударов молекул жидкости. Т.к. тепловое движение молекул - это непрерывное и беспорядочное движение, то и скорость движения броуновских частиц будет беспорядочно меняться по величине и направлению.
Броуновское движение вечное и никогда не прекращается.

ЗАГЛЯНИ НА КНИЖНУЮ ПОЛКУ!


ДОМАШНЯЯ ЛАБОРАТОРНАЯ РАБОТА

1. Возьмите три стакана. В первый налейте кипяток, во второй теплую и в третий холодную воду.
В каждый стакан бросить щепотку гранулированного чая. Что вы заметили?.

2. Возьмите пустую пластиковую бутылку, предварительно охладив ее, опустите горлышко в стакан с водой и обхватите бутылку ладонями, но не нажимайте. Наблюдайте в течение нескольких минут.

3. На горлышко той же, но вновь охлажденной бутылки положите смоченную в воде перевернутую пробку и таккже обхватите ее теплыми ладонями. Наблюдайте в течение нескольких минут.

4. Налейте в неглубокую тарелку воды на высоту 1 - 1,5 см, поставьте в нее перевернутый вверх дном и предварительно нагретый горячей водой стакан. Наблюдайте в течение нескольких минут.

Жду отчет с объяснениями увиденного. Кто первый?


ТЕМПЕРАТУРА

Величина, которая характеризует тепловое состояние тела или иначе мера «нагретости» тела.
Чем выше температура тела, тем большую в среднем энергию имеют его атомы и молекулы.

Приборы, служащие для измерения температуры называются термометрами.

Принцип измерения температуры.

Температура непосредственно не измеряется! Измеряется величина, зависящая от температуры!
В современных жидкостных термометрах - это объем спирта или ртути (в термоскопе Галилея – объем газа). Термометр измеряет собственную температуру! А, если мы хотим измерить с помощью термометра температуру какого-либо другого тела, надо подождать некоторое время, пока температуры тела и термометра уравняются, т.е. наступит тепловое равновесие между термометром и телом.
В этом состоит закон теплового равновесия:
у любой группы изолированных тел через какое-то время температуры становятся одинаковыми,
т.е. наступает состояние теплового равновесия

...

ПРОВЕДИ ДОМАШНИЙ ОПЫТ

Возьмите три тазика с водой: один - с очень горячей, другой - с умеренно теплой, а третий - с очень холодной. Теперь ненадолго опустите левую руку в тазик с горячей водой, а правую - с холодной. Через пару минут извлеките руки из горячей и холодной воды и опустите их в тазик с теплой водой. Теперь спросите каждую руку, что она "скажет" вам о температуре воды?

ТЕРМОМЕТР - СДЕЛАЙ САМ

Возьми маленький стеклянный пузырек (в таких пузырьках в аптеках продают, например, зеленку), пробку (лучше резиновую) и тоненькую прозрачную трубочку (можно взять пустой прозрачный стерженек от шариковой ручки).
Проделай отверстие в пробке и закрой пузырек. Набери в трубочку капельку подкрашенной воды и вставь стержень в пробку. Хорошенько загерметизируй щель между пробкой и стержнем.
Термометр готов.
Теперь необходимо отградуировать его, т.е. сделать измерительную шкалу.
Понятно, что при нагревании воздуха в пузырьке он будет расширяться, и капелька жидкости будет подниматься по трубочке вверх. Твоя задача отметить на стерженьке или прикрепленной к нему картонке деления, соответствующие разным температурам.
Для градуировки можно взять еще один готовый термометр и опустить оба термометра в стакан с теплой водой. Показания термометров должны совпадать. Поэтому, если готовый термометр показывает температуру, например, 40 градусов, можете смело ставить отметинку 40 на стерженьке своего термометра в том месте, где находится капелька жидкости. Вода в стакане будет остывать, и ты сможешь таким образом разметить измерительную шкалу.
Можно сделать термометр, полностью заполнив его жидкостью.

А можно и иначе:

Проделай в крышке пластиковой бутылки отверстие и вставь тонкую пластиковую трубочку.
Бутылку частично заполни водой и закрепи на стене. У свободного конца трубочки разметь температурную шкалу. Отградуировать шкалу можно с помощью обычного комнатного термометра.
При изменении температуры в комнате вода будет расширяться или сжиматься, и уровень воды в трубочке тоже «поползет» по шкале.

А можно и посмотреть, как работает термометр!
Обхвати бутылку руками и погрей ее.
Что произошло с уровнем воды в трубочке?


ТЕМПЕРАТУРНЫЕ ШКАЛЫ

Шкала Цельсия - введена шведским физиком А. Цельсием в 1742 году. Обозначение: C. На шкале есть как положительные, так и отрицательные температуры. Опорные точки: 0C – температура таяния льда, 100C – температура кипения воды.

Шкала Фаренгейта - введена Фаренгейтом, стеклодувом из Голландии, в 1724 году. Обозначение: F. На шкале есть как положительные, так и отрицательные температуры. Опорные точки: 32F – температура таяния льда, 212F – температура кипения воды.

Шкала Реомюра - введена французским физиком Реомюром в 1726 году. Обозначение: R. На шкале есть как положительные, так и отрицательные температуры. Опорные точки: 0R – температура таяния льда, 80R – температура кипения воды.

Шкала Кельвина - введена английским физиком Томсоном (лордом Кельвином) в 1848 году. Обозначение: К. На шкале есть только положительные температуры. Опорные точки: 0K – абсолютный нуль, 273К – температура таяния льда. Т = t + 273


ТЕРМОСКОП

Впервые прибор для определения температуры был изобретен Галилеем в 1592 г. Небольшой стеклянный баллон был припаян к тонкой трубке с открытым концом.

Баллон нагревали руками и погружали конец трубки в сосуд с водой. Баллон охлаждался до температуры окружающего воздуха и уровень воды в трубке поднимался. Т.е. по изменению объема газа в сосуде можно было судить об изменении температуры. Здесь еще не было числовой шкалы, поэтому такой прибор назывался термоскопом. Измерительная шкала появилась только через 150 лет!


ЗНАЕШЬ ЛИ ТЫ

Самая высокая температура на Земле зарегистрированная в Ливии в 1922 году - +57,80С;
самая низкая температура, зарегистрированная на Земле, - –89,20С;
над головой у человека температура выше температуры окружающей среды на 1 – 1,50С; средняя температура животных: лошади - 380С, овцы - 400С, курицы - 410С,
температурав центре Земли - 200000С;
температура на поверхности Солнца - 6000 К, в центре - 20 млн. град.

А какова температура недр Земли?
Раньше высказывались различные гипотетические предположения и приводились расчеты, по которым температура на глубине 15 км получалась 100...400°C. Теперь Кольская сверхглубокая скважина,
которая прошла отметку 12 км, дала точный ответ на поставленный вопрос. Вначале (до 3 км) температура росла на 1° через каждые 100 м проходки, далее этот рост составил 2,5° на каждые новые 100 м. На глубине 10 км температура недр Земли оказалась равной 180°C!
Наука и жизнь

К концу 18 века число изобретенных температурных шкал достигало двух десятков.

Итальянские ученые-полярники, совершив экспедицию в Антарктиду, столкнулись с удивительной загадкой. Близ залива Инглей они открыли ледяное ущелье, где постоянно дует сверхскоростной и сверххолодный ветер. Поток воздуха температурой минус 90 градусов мчится со скоростью 200 км в час. Неудивительно, что это ущелье назвали «вратами ада» – никто не может находиться там без риска для жизни больше одной минуты: ветер несет частицы льда с такой силой, что мигом рвет одежду в клочья.

ПОЛОМАЕМ ГОЛОВУ?

КАВЕРЗНЫЕ ЗАДАЧИ

1. Как измерить температуру тела муравья с помощью обычного термометра?

2. Существуют термометры, в которых используют воду. Почему такие водяные термометры неудобны для измерения температур, близких к температуре замерзания воды?

Жду ответа (на уроке или по почте)!


А ЭТО ТЫ ЗНАЕШЬ?

На самом деле шведский астроном и физик Цельсий предложил шкалу, в которой точка кипения воды была обозначена числом 0, а точка таяния льда числом 100 ! "Зато зимой не будет отрицательных чисел!" -любил говорить Цельсий. Но потом шкалу "перевернули".

· Температура -40 градусов по Цельсию точно равна температуре -40 градусов по Фаренгейту. Это единственная температура, в которой две этих шкалы сходятся.

Одно время в физических лабораториях пользовались для измерения температуры так называемым весовым термометром. Он состоял из полого платинового шара, заполненного ртутью, в котором было капиллярное отверстие. Об изменении термпературы судили по количеству ртути, вытекавшей из отверстия.

Оказывается существует плоский термометр. Это "бумажка", которую накладывают на лоб больного. При высокой температуре "бумажка" становится красного цвета.

Наши ощущения, обычно надежные, могут подвести при определении температуры Например, известен опыт, когда одну руку опускают в горячую, а другую - в холодную воду. Если через некоторое время опустить обе руки в теплую воду, то рука, которая до этого была в горячей воде, почувствует холод, а рука, бывшая в холодной воде - жар!

Понятие температуры неприменимо к отдельной молекуле. О температуре можно говорить лишь в том случае, если имеется достаточно большая совокупность частиц.

Чаще всего физики измеряют температуру по шкале Кельвина: 0 градусов по шкале Цельсия = 273 градусам по шкале Кельвина!


Самая высокая температура.

Она получена в центре взрыва термоядерной бомбы – около 300...400 млн°C. Максимальная температура, достигнутая в ходе управляемой термоядерной реакции на испытательной термоядерной установке ТОКАМАК в Принстонской лаборатории физики плазмы, США, в июне 1986 г., составляет 200 млн°C.

Самая низкая температура.

Абсолютный нуль по шкале Кельвина (0 K) соответствует –273,15° по шкале Цельсия или –459,67° по шкале Фаренгейта. Самая низкая температура, 2·10–9 K (двухбиллионная часть градуса) выше абсолютного нуля, была достигнута в двухступенчатом криостате ядерного размагничивания в Лаборатории низких температур Хельсинкского технологического университета, Финляндия, группой учёных под руководством профессора Олли Лоунасмаа (род. в 1930 г.), о чём было объявлено в октябре 1989 г.

Самый миниатюрный термометр.

Д-р Фредерик Сакс, биофизик из Государственного университета штата Нью-Йорк, Буффало, США, сконструировал микротермометр для измерения температуры отдельных живых клеток. Диаметр наконечника термометра – 1 микрон, т.е. 1/50 часть диаметра человеческого волоса.