Выберите рубрику Книги Математика Физика Контроль и управления доступом Пожарная безопасность Полезное Поставщики оборудования Cредства измерений (КИП) Измерение влажности — поставщики в РФ. Измерение давления. Измерение расходов. Расходомеры. Измерение температуры Измерение уровней. Уровнемеры. Бестраншейные технологии Канализационные системы. Поставщики насосов в РФ. Ремонт насосов. Трубопроводная арматура. Затворы поворотные (дисковые затворы). Обратные клапаны. Регулирующая арматура. Фильтры сетчатые, грязевики, магнито-механические фильтры. Шаровые краны. Трубы и элементы трубопроводов. Уплотнения резьб, фланцев и т.д. Электродвигатели, электроприводы… Руководство Алфавиты, номиналы, единицы, коды… Алфавиты, в т.ч. греческий и латинский. Символы. Коды. Альфа, бета, гамма, дельта, эпсилон… Номиналы электрических сетей. Перевод единиц измерения Децибел. Сон. Фон. Единицы измерения чего? Единицы измерения давления и вакуума. Перевод единиц измерения давления и вакуума. Единицы измерения длины. Перевод единиц измерения длины (линейного размера, расстояний). Единицы измерения объема. Перевод единиц измерения объема. Единицы измерения плотности. Перевод единиц измерения плотности. Единицы измерения площади. Перевод единиц измерения площади. Единицы измерения твердости. Перевод единиц измерения твердости. Единицы измерения температуры. Перевод единиц температур в шкалах Кельвина (Kelvin) / Цельсия (Celsius) / Фаренгейта (Fahrenheit) / Ранкина (Rankine) / Делисле (Delisle) / Ньютона (Newton) / Реамюрa Единицы измерения углов ("угловых размеров"). Перевод единиц измерения угловой скорости и углового ускорения. Стандартные ошибки измерений Газы различные как рабочие среды. Азот N2 (хладагент R728) Аммиак (холодильный агент R717). Антифризы. Водород H^2 (хладагент R702) Водяной пар. Воздух (Атмосфера) Газ природный — натуральный газ. Биогаз — канализационный газ. Сжиженный газ. ШФЛУ. LNG. Пропан-бутан. Кислород O2 (хладагент R732) Масла и смазки Метан CH4 (хладагент R50) Свойства воды. Угарный газ CO. Монооксид углерода. Углекислый газ CO2. (Холодильный агент R744). Хлор Cl2 Хлороводород HCl, он же — Cоляная кислота. Холодильные агенты (хладагенты). Хладагент (холодильный агент) R11 — Фтортрихлорметан (CFCI3) Хладагент (Холодильный агент) R12 — Дифтордихлорметан (CF2CCl2) Хладагент (Холодильный агент) R125 — Пентафторэтан (CF2HCF3). Хладагент (Холодильный агент) R134а — 1,1,1,2-Тетрафторэтан (CF3CFH2). Хладагент (Холодильный агент) R22 — Дифторхлорметан (CF2ClH) Хладагент (Холодильный агент) R32 — Дифторметан (CH2F2). Хладагент (Холодильный агент) R407С — R-32 (23%)/ R-125 (25%)/ R-134a (52%)/ Проценты по массе. другие Материалы — тепловые свойства Абразивы — зернистость, мелкость, шлифовальное оборудование. Грунты, земля, песок и другие породы. Показатели разрыхления, усадки и плотности грунтов и пород. Усадка и разрыхление, нагрузки. Углы откоса, отвала. Высоты уступов, отвалов. Древесина. Пиломатериалы. Лесоматериалы. Бревна. Дрова… Керамика. Клеи и клеевые соединения Лед и снег (водяной лед) Металлы Алюминий и сплавы алюминия Медь, бронзы и латуни Бронза Латунь Медь (и классификация медных сплавов) Никель и сплавы Соответствие марок сплавов Стали и сплавы Cправочные таблицы весов металлопроката и труб. +/-5% Вес трубы. Вес металла. Механические свойства сталей. Чугун Минералы. Асбест. Продукты питания и пищевое сырье. Свойства и пр. Ссылка на другой раздел проекта. Резины, пластики, эластомеры, полимеры. Подробное описание Эластомеров PU, ТPU, X-PU, H-PU, XH-PU, S-PU, XS-PU, T-PU, G-PU (CPU), NBR, H-NBR, FPM, EPDM, MVQ, TFE/P, POM, PA-6, TPFE-1, TPFE-2, TPFE-3, TPFE-4, TPFE-5 (PTFE модифицированный), Сопротивление материалов. Сопромат. Строительные материалы. Физические, механические и теплотехнические свойства. Бетон. Бетонный раствор. Раствор. Строительная арматура. Стальная и прочая. Таблицы применимости материалов. Химическая стойкость. Температурная применимость. Коррозионная стойкость. Уплотнительные материалы — герметики соединений. PTFE (фторопласт-4) и производные материалы. Лента ФУМ. Анаэробные клеи Герметики невысыхающие (незастывающие). Герметики силиконовые (кремнийорганические). Графит, асбест, парониты и производные материалы Паронит. Терморасширенный графит (ТРГ, ТМГ), композиции. Свойства. Применение. Производство. Лен сантехнический Уплотнители резиновых эластомеров Утеплители и теплоизоляционные материалы. (ссылка на раздел проекта) Инженерные приемы и понятия Взрывозащита. Защита от воздействия окружающей среды. Коррозия. Климатические исполнения (Таблицы совместимости материалов) Классы давления, температуры, герметичности Падение (потеря) давления. — Инженерное понятие. Противопожарная защита. Пожары. Теория автоматического управления (регулирования). ТАУ Математический справочник Арифметическая, Геометрическая прогрессии и суммы некоторых числовых рядов. Геометрические фигуры. Свойства, формулы: периметры, площади, объемы, длины. Треугольники, Прямоугольники и т.д. Градусы в радианы. Плоские фигуры. Свойства, стороны, углы, признаки, периметры, равенства, подобия, хорды, секторы, площади и т.д. Площади неправильных фигур, объемы неправильных тел. Средняя величина сигнала. Формулы и способы расчета площади. Графики. Построение графиков. Чтение графиков. Интегральное и дифференциальное исчисление. Табличные производные и интегралы. Таблица производных. Таблица интегралов. Таблица первообразных. Найти производную. Найти интеграл. Диффуры. Комплексные числа. Мнимая единица. Линейная алгебра. (Вектора, матрицы) Математика для самых маленьких. Детский сад — 7 класс. Математическая логика. Решение уравнений. Квадратные и биквадратные уравнения. Формулы. Методы. Решение дифференциальных уравнений Примеры решений обыкновенных дифференциальных уравнений порядка выше первого. Примеры решений простейших = решаемых аналитически обыкновенных дифференциальных уравнений первого порядка. Системы координат. Прямоугольная декартова, полярная, цилиндрическая и сферическая. Двухмерные и трехмерные. Системы счисления. Числа и цифры (действительные, комплексные, ….). Таблицы систем счисления. Степенные ряды Тейлора, Маклорена (=Макларена) и периодический ряд Фурье. Разложение функций в ряды. Таблицы логарифмов и основные формулы Таблицы численных значений Таблицы Брадиса. Теория вероятностей и статистика Тригонометрические функции, формулы и графики. sin, cos, tg, ctg….Значения тригонометрических функций. Формулы приведения тригонометрических функций. Тригонометрические тождества. Численные методы Оборудование — стандарты, размеры Бытовая техника, домашнее оборудование. Водосточные и водосливные системы. Емкости, баки, резервуары, танки. КИПиА Контрольно-измерительные приборы и автоматика. Измерение температуры. Конвейеры, ленточные транспортеры. Контейнеры (ссылка) Крепеж. Лабораторное оборудование. Насосы и насосные станции Насосы для жидкостей и пульп. Инженерный жаргон. Словарик. Просеивание. Фильтрация. Сепарация частиц через сетки и сита. Прочность примерная веревок, тросов, шнуров, канатов из различных пластиков. Резинотехнические изделия. Сочленения и присоединения. Диаметры условные, номинальные, Ду, DN, NPS и NB. Метрические и дюймовые диаметры. SDR. Шпонки и шпоночные пазы. Стандарты коммуникации. Сигналы в системах автоматизации (КИПиА) Аналоговые входные и выходные сигналы приборов, датчиков, расходомеров и устройств автоматизации. Интерфейсы подключения. Протоколы связи (коммуникации) Телефонная связь. Трубопроводная арматура. Краны, клапаны, задвижки…. Строительные длины. Фланцы и резьбы. Стандарты. Присоединительные размеры. Резьбы. Обозначения, размеры, использование, типы… (справочная ссылка) Соединения ("гигиенические", "асептические") трубопроводов в пищевой, молочной и фармацевтической промышленности. Трубы, трубопроводы. Диаметры труб и другие характеристики. Выбор диаметра трубопровода. Скорости потока. Расходы. Прочность. Таблицы выбора, Падение давления. Трубы медные. Диаметры труб и другие характеристики. Трубы поливинилхлоридные (ПВХ). Диаметры труб и другие характеристики. Трубы полиэтиленовые. Диаметры труб и другие характеристики. Трубы полиэтиленовые ПНД. Диаметры труб и другие характеристики. Трубы стальные (в т.ч. нержавеющие). Диаметры труб и другие характеристики. Труба стальная. Труба нержавеющая. Трубы из нержавеющей стали. Диаметры труб и другие характеристики. Труба нержавеющая. Трубы из углеродистой стали. Диаметры труб и другие характеристики. Труба стальная. Фитинги. Фланцы по ГОСТ, DIN (EN 1092-1) и ANSI (ASME). Соединение фланцев. Фланцевые соединения. Фланцевое соединение. Элементы трубопроводов. Электрические лампы Электрические разъемы и провода (кабели) Электродвигатели. Электромоторы. Электрокоммутационные устройства. (Ссылка на раздел) Стандарты личной жизни инженеров География для инженеров. Расстояния, маршруты, карты….. Инженеры в быту. Семья, дети, отдых, одежда и жилье. Детям инженеров. Инженеры в офисах. Инженеры и другие люди. Социализация инженеров. Курьезы. Отдыхающие инженеры. Это нас потрясло. Инженеры и еда. Рецепты, полезности. Трюки для ресторанов. Международная торговля для инженеров. Учимся думать барыжным образом. Транспорт и путешествия. Личные автомобили, велосипеды…. Физика и химия человека. Экономика для инженеров. Бормотология финансистов — человеческим языком. Технологические понятия и чертежи Бумага писчая, чертежная, офисная и конверты. Стандартные размеры фотографий. Вентиляция и кондиционирование. Водоснабжение и канализация Горячее водоснабжение (ГВС). Питьевое водоснабжение Сточная вода. Холодное водоснабжение Гальваническая промышленность Охлаждение Паровые линии / системы. Конденсатные линии / системы. Паропроводы. Конденсатопроводы. Пищевая промышленность Поставка природного газа Сварочные металлы Символы и обозначения оборудования на чертежах и схемах. Условные графические изображения в проектах отопления, вентиляции, кондиционирования воздуха и теплохолодоснабжения, согласно ANSI/ASHRAE Standard 134-2005. Стерилизация оборудования и материалов Теплоснабжение Электронная промышленность Электроснабжение Физический справочник Алфавиты. Принятые обозначения. Основные физические константы. Влажность абсолютная, относительная и удельная. Влажность воздуха. Психрометрические таблицы. Диаграммы Рамзина. Время Вязкость, Число Рейнольдса (Re). Единицы измерения вязкости. Газы. Свойства газов. Индивидуальные газовые постоянные. Давление и Вакуум Вакуум Длина, расстояние, линейный размер Звук. Ультразвук. Коэффициенты звукопоглощения (ссылка на другой раздел) Климат. Климатические данные. Природные данные. СНиП 23-01-99. Строительная климатология. (Статистика климатических данных) СНИП 23-01-99 .Таблица 3 — Средняя месячная и годовая температура воздуха, °С. Бывший СССР. СНИП 23-01-99 Таблица 1. Климатические параметры холодного периода года. РФ. СНИП 23-01-99 Таблица 2. Климатические параметры теплого периода года. Бывший СССР. СНИП 23-01-99 Таблица 2. Климатические параметры теплого периода года. РФ. СНИП 23-01-99 Таблица 3. Средняя месячная и годовая температура воздуха, °С. РФ. СНиП 23-01-99. Таблица 5а* — Среднее месячное и годовое парциальное давление водяного пара, гПа = 10^2 Па. РФ. СНиП 23-01-99. Таблица 1. Климатические параметры холодного времени года. Бывший СССР. Плотности. Веса. Удельный вес. Насыпная плотность. Поверхностное натяжение. Растворимость. Растворимость газов и твердых веществ. Свет и цвет. Коэффициенты отражения, поглощения и преломления Цветовой алфавит:) — Обозначения (кодировки) цвета (цветов). Свойства криогенных материалов и сред. Таблицы. Коэффициенты трения для различных материалов. Тепловые величины, включая температуры кипения, плавления, пламени и т.д …… дополнительная информация см.: Коэффициенты (показатели) адиабаты. Конвекционный и полный теплообмен. Коэффициенты теплового линейного расширения, теплового объемного расширения. Температуры, кипения, плавления, прочие… Перевод единиц измерения температуры. Воспламеняемость. Температура размягчения. Температуры кипения Температуры плавления Теплопроводность. Коэффициенты теплопроводности. Термодинамика. Удельная теплота парообразования (конденсации). Энтальпия парообразования. Удельная теплота сгорания (теплотворная способность). Потребность в кислороде. Электрические и магнитные величины Дипольные моменты электрические. Диэлектрическая проницаемость. Электрическая постоянная. Длины электромагнитных волн (справочник другого раздела) Напряженности магнитного поля Понятия и формулы для электричества и магнетизма. Электростатика. Пьезоэлектрические модули. Электрическая прочность материалов Электрический ток Электрическое сопротивление и проводимость. Электронные потенциалы Химический справочник "Химический алфавит (словарь)" — названия, сокращения, приставки, обозначения веществ и соединений. Водные растворы и смеси для обработки металлов. Водные растворы для нанесения и удаления металлических покрытий Водные растворы для очистки от нагара (асфальтосмолистого нагара, нагара двигателей внутреннего сгорания…) Водные растворы для пассивирования. Водные растворы для травления — удаления окислов с поверхности Водные растворы для фосфатирования Водные растворы и смеси для химического оксидирования и окрашивания металлов. Водные растворы и смеси для химического полирования Обезжиривающие водные растворы и органические растворители Водородный показатель pH. Таблицы показателей pH. Горение и взрывы. Окисление и восстановление. Классы, категории, обозначения опасности (токсичности) химических веществ Периодическая система химических элементов Д.И.Менделеева. Таблица Менделеева. Плотность органических растворителей (г/см3)в зависимости от температуры. 0-100 °С. Свойства растворов. Константы диссоциации, кислотности, основности. Растворимость. Смеси. Термические константы веществ. Энтальпии. Энтропии. Энергии Гиббса… (ссылка на химический справочник проекта) Электротехника Регуляторы Системы гарантированного и бесперебойного электроснабжения. Системы диспетчеризации и управления Структурированные кабельные системы Центры обработки данных

Треугольник - это многоугольник с 3-мя сторонами (либо 3-мя углами). Стороны треугольника нередко обозначаются малеханькими буквами, которые соответствуют большим буквам, обозначающим обратные вершины.

Остроугольным треугольником именуется треугольник, у которого все три угла острые.

Тупоугольным треугольником именуется треугольник, у которого один из углов тупой.

Прямоугольным треугольником именуется треугольник, у которого один из углов прямой, другими словами равен 90°; стороны a, b, образующие прямой угол, именуются катетами ; сторона c, обратная прямому углу, именуется гипотенузой .

Равнобедренным треугольником именуется треугольник, у которого две его стороны равны (a = c); эти равные стороны именуются боковыми , 3-я сторона именуется основанием треугольника .

Равносторонним треугольником именуется треугольник, у которого все его стороны равны (a = b = c). В том случае в треугольнике не равна ни одна из его сторон (abc), то это неравносторонний треугольник .

Главные характеристики треугольников

В любом треугольнике:

  • Против большей стороны лежит больший угол, и напротив.
  • Против равных сторон лежат равные углы, и напротив. А именно, все углы в равностороннем треугольнике равны.
  • Сумма углов треугольника равна 180°.
  • Продолжая одну из сторон треугольника, получаем наружный угол. Наружный угол треугольника равен сумме внутренних углов, не смежных с ним.
  • Неважно какая сторона треугольника меньше суммы 2-ух других сторон и больше их разности (a b - c; b a - c; c a - b).
  • Признаки равенства треугольников

    Треугольники равны, в том случае у их соответственно равны:

  • две стороны и угол меж ними;
  • два угла и прилегающая к ним сторона;
  • три стороны.
  • Признаки равенства прямоугольных треугольников

    Два прямоугольных треугольника равны, в том случае производится одно из последующих критерий:

  • равны их катеты;
  • катет и гипотенуза 1-го треугольника равны катету и гипотенузе другого;
  • гипотенуза и острый угол 1-го треугольника равны гипотенузе и острому углу другого;
  • катет и прилежащий острый угол 1-го треугольника равны катету и прилежащему острому углу другого;
  • катет и противолежащий острый угол 1-го треугольника равны катету и противолежащему острому углу другого.
  • Высота треугольника - это перпендикуляр, опущенный из хоть какой вершины на обратную сторону (либо её продолжение). Эта сторона именуется основанием треугольника . Три высоты треугольника всегда пересекаются в одной точке, именуемой ортоцентром треугольника .

    Ортоцентр остроугольного треугольника размещен снутри треугольника, а ортоцентр тупоугольного треугольника - снаружи; ортоцентр прямоугольного треугольника совпадает с верхушкой прямого угла.

    Медиана - это отрезок, соединяющий всякую верхушку треугольника с серединой обратной стороны. Три медианы треугольника пересекаются в одной точке, всегда лежащей снутри треугольника и являющейся его центром масс. Эта точка разделяет каждую медиану в отношении 2:1, считая от вершины.

    Биссектриса - это отрезок биссектрисы угла от вершины до точки скрещения с обратной стороной. Три биссектрисы треугольника пересекаются в одной точке, всегда лежащей снутри треугольника и являющейся центром вписанного круга. Биссектриса разделяет обратную сторону на части, пропорциональные прилегающим сторонам.

    Срединный перпендикуляр - это перпендикуляр, проведенный из средней точки отрезка (стороны). Три срединных перпендикуляра треугольника пересекаются в одной точке, являющейся центром описанного круга.

    В остроугольном треугольнике эта точка лежит снутри треугольника, в тупоугольном - снаружи, в прямоугольном - посреди гипотенузы. Ортоцентр, центр масс, центр описанного и центр вписанного круга совпадают исключительно в равностороннем треугольнике.

    Аксиома Пифагора

    В прямоугольном треугольнике квадрат длины гипотенузы равен сумме квадратов длин катетов.

    Подтверждение аксиомы Пифагора

    Построим квадрат AKMB, используя гипотенузу AB как сторону. Потом продолжим стороны прямоугольного треугольника ABC так, чтоб получить квадрат CDEF, сторона которого равна a + b. Сейчас ясно, что площадь квадрата CDEF равна (a + b) 2. С иной стороны, эта площадь равна сумме площадей четырёх прямоугольных треугольников и квадрата AKMB, другими словами,

    c 2 + 4 (ab / 2) = c 2 + 2 ab,

    c 2 + 2 ab = (a + b) 2,

    и совсем имеем:

    c 2 = a 2 + b 2 .

    Соотношение сторон в случайном треугольнике

    В общем случае (для случайного треугольника) имеем:

    c 2 = a 2 + b 2 - 2 ab * cos C,

    где С - угол меж сторонами а и b.

  • school-club.ru - какие бывают треугольники?
  • math.ru - виды треугольников;
  • raduga.rkc-74.ru - все о треугольниках для самых малеханьких.
  • Дополнительно на сайт:

  • Как классифицируются треугольники?
  • Как отыскать площадь треугольника?
  • Как отыскать площадь прямоугольного треугольника?
  • Как отыскать радиус вписанной в треугольник окружности?
  • Как отыскать радиус описанной вокруг треугольника окружности?
  • Как доказать аксиому косинусов?
  • Сегодня мы отправляемся в страну Геометрия, где познакомимся с различными видами треугольников.

    Рассмотрите геометрические фигуры и найдите среди них «лишнюю» (рис. 1).

    Рис. 1. Иллюстрация к примеру

    Мы видим, что фигуры № 1, 2, 3, 5 - четырехугольники. Каждая из них имеет свое название (рис. 2).

    Рис. 2. Четырехугольники

    Значит, «лишней» фигурой является треугольник (рис. 3).

    Рис. 3. Иллюстрация к примеру

    Треугольником называется фигура, которая состоит из трех точек, не лежащих на одной прямой, и трех отрезков, попарно соединяющих эти точки.

    Точки называются вершинами треугольника , отрезки - его сторонами . Стороны треугольника образуют в вершинах треугольника три угла.

    Основными признаками треугольника являются три стороны и три угла. По величине угла треугольники бывают остроугольные, прямоугольные и тупоугольные.

    Треугольник называется остроугольным, если все три угла его острые, то есть меньше 90° (рис. 4).

    Рис. 4. Остроугольный треугольник

    Треугольник называется прямоугольным, если один из его углов равен 90° (рис. 5).

    Рис. 5. Прямоугольный треугольник

    Треугольник называется тупоугольным, если один из его углов тупой, то есть больше 90° (рис. 6).

    Рис. 6. Тупоугольный треугольник

    По числу равных сторон треугольники бывают равносторонние, равнобедренные, разносторонние.

    Равнобедренным называется треугольник, у которого две стороны равны (рис. 7).

    Рис. 7. Равнобедренный треугольник

    Эти стороны называются боковыми , третья сторона - основанием . В равнобедренном треугольнике углы при основании равны.

    Равнобедренные треугольники бывают остроугольными и тупоугольными (рис. 8).

    Рис. 8. Остроугольный и тупоугольный равнобедренные треугольники

    Равносторонним называется треугольник, у которого все три стороны равны (рис. 9).

    Рис. 9. Равносторонний треугольник

    В равностороннем треугольнике все углы равны . Равносторонние треугольники всегда остроугольные.

    Разносторонним называется треугольник, у которого все три стороны имеют разную длину (рис. 10).

    Рис. 10. Разносторонний треугольник

    Выполните задание. Распределите данные треугольники на три группы (рис. 11).

    Рис. 11. Иллюстрация к заданию

    Сначала распределим по величине углов.

    Остроугольные треугольники: № 1, № 3.

    Прямоугольные треугольники: № 2, № 6.

    Тупоугольные треугольники: № 4, № 5.

    Эти же треугольники распределим на группы по числу равных сторон.

    Разносторонние треугольники: № 4, № 6.

    Равнобедренные треугольники: № 2, № 3, № 5.

    Равносторонний треугольник: № 1.

    Рассмотрите рисунки.

    Подумайте, из какого куска проволоки сделали каждый треугольник (рис. 12).

    Рис. 12. Иллюстрация к заданию

    Можно рассуждать так.

    Первый кусок проволоки разделен на три равные части, поэтому из него можно сделать равносторонний треугольник. На рисунке он изображен третьим.

    Второй кусок проволоки разделен на три разные части, поэтому из него можно сделать разносторонний треугольник. На рисунке он изображен первым.

    Третий кусок проволоки разделен на три части, где две части имеют одинаковую длину, значит, из него можно сделать равнобедренный треугольник. На рисунке он изображен вторым.

    Сегодня на уроке мы познакомились с различными видами треугольников.

    Список литературы

    1. М.И. Моро, М.А. Бантова и др. Математика: Учебник. 3 класс: в 2-х частях, часть 1. - М.: «Просвещение», 2012.
    2. М.И. Моро, М.А. Бантова и др. Математика: Учебник. 3 класс: в 2-х частях, часть 2. - М.: «Просвещение», 2012.
    3. М.И. Моро. Уроки математики: Методические рекомендации для учителя. 3 класс. - М.: Просвещение, 2012.
    4. Нормативно-правовой документ. Контроль и оценка результатов обучения. - М.: «Просвещение», 2011.
    5. «Школа России»: Программы для начальной школы. - М.: «Просвещение», 2011.
    6. С.И. Волкова. Математика: Проверочные работы. 3 класс. - М.: Просвещение, 2012.
    7. В.Н. Рудницкая. Тесты. - М.: «Экзамен», 2012.
    1. Nsportal.ru ().
    2. Prosv.ru ().
    3. Do.gendocs.ru ().

    Домашнее задание

    1. Закончите фразы.

    а) Треугольником называется фигура, которая состоит из …, не лежащих на одной прямой, и …, попарно соединяющих эти точки.

    б) Точки называются , отрезки - его . Стороны треугольника образуют в вершинах треугольника ….

    в) По величине угла треугольники бывают … , … , … .

    г) По числу равных сторон треугольники бывают … , … , … .

    2. Начертите

    а) прямоугольный треугольник;

    б) остроугольный треугольник;

    в) тупоугольный треугольник;

    г) равносторонний треугольник;

    д) разносторонний треугольник;

    е) равнобедренный треугольник.

    3. Составьте задание по теме урока для своих товарищей.

    Самый простой многоугольник, который изучается в школе — это треугольник. Он более понятен для учащихся и встречает меньше трудностей. Несмотря на то что существуют различные виды треугольников, у которых имеются особенные свойства.

    Какая фигура называется треугольником?

    Образованная тремя точками и отрезками. Первые называются вершинами, вторые — сторонами. Причем все три отрезка должны быть соединены, чтобы между ними образовывались углы. Отсюда и название фигуры «треугольник».

    Различия в названиях по углам

    Поскольку они могут быть острыми, тупыми и прямыми, то и виды треугольников определяются по этим названиям. Соответственно, групп таких фигур три.

    • Первая. Если все углы треугольника острые, то он будет иметь название остроугольного. Все логично.
    • Вторая. Один из углов тупой, значит треугольник тупоугольный. Проще некуда.
    • Третья. Имеется угол, равный 90 градусам, который называется прямым. Треугольник становится прямоугольным.

    Различия в названиях по сторонам

    В зависимости от особенностей сторон выделяют такие виды треугольников:

      общий случай — разносторонний, в котором все стороны имеют произвольную длину;

      равнобедренный, у двух сторон которого имеются одинаковые числовые значения;

      равносторонний, длины всех его сторон одинаковые.

    Если в задаче не указан конкретный вид треугольника, то нужно чертить произвольный. У которого все углы острые, а стороны имеют разную длину.

    Свойства, общие для всех треугольников

    1. Если сложить все углы треугольника, то получится число, равное 180º. И неважно, какого он вида. Это правило действует всегда.
    2. Числовое значение любой стороны треугольника меньше, чем сложенные вместе две другие. При этом она же больше, чем их разность.
    3. Каждый внешний угол имеет значение, которое получается при сложении двух внутренних, не смежных с ним. Причем он всегда больше, чем смежный с ним внутренний.
    4. Напротив меньшей стороны треугольника всегда лежит самый маленький угол. И наоборот, если сторона большая, то и угол будет самым большим.

    Эти свойства справедливы всегда, какие бы виды треугольников ни рассматривались в задачах. Все остальные вытекают из конкретных особенностей.

    Свойства равнобедренного треугольника

    • Углы, которые прилегают к основанию, равны.
    • Высота, которая проведена к основанию, является также медианой и биссектрисой.
    • Высоты, медианы и биссектрисы, которые построены к боковым сторонам треугольника, соответственно равны друг другу.

    Свойства равностороннего треугольника

    Если имеется такая фигура, то будут верны все свойства, описанные немного выше. Потому что равносторонний всегда будет равнобедренным. Но не наоборот, равнобедренный треугольник не обязательно будет равносторонним.

    • Все его углы равны друг другу и имеют значение 60º.
    • Любая медиана равностороннего треугольника является его высотой и биссектрисой. Причем они все равны друг другу. Для определения их значений существует формула, которая состоит из произведения стороны на квадратный корень из 3, деленного на 2.

    Свойства прямоугольного треугольника

    • Два острых угла дают в сумме значение в 90º.
    • Длина гипотенузы всегда больше, чем у любого из катетов.
    • Числовое значение медианы, проведенной к гипотенузе, равно ее половине.
    • Этому же значению равен катет, если он лежит напротив угла в 30º.
    • Высота, которая проведена из вершины со значением 90º, имеет определенную математическую зависимость от катетов: 1/н 2 = 1/а 2 + 1/в 2 . Здесь: а, в — катеты, н — высота.

    Задачи с разными видами треугольников

    №1. Дан равнобедренный треугольник. Его периметр известен и равен 90 см. Требуется узнать его стороны. В качестве дополнительного условия: боковая сторона меньше основания в 1,2 раза.

    Значение периметра напрямую зависит от тех величин, которые нужно найти. Сумма всех трех сторон и даст 90 см. Теперь нужно вспомнить признак треугольника, по которому он является равнобедренным. То есть две стороны равны. Можно составить уравнение с двумя неизвестными: 2а + в = 90. Здесь а — боковая сторона, в — основание.

    Настала очередь дополнительного условия. Следуя ему, получается второе уравнение: в = 1,2а. Можно выполнить подстановку этого выражения в первое. Получится: 2а + 1,2а = 90. После преобразований: 3,2а = 90. Отсюда а = 28,125 (см). Теперь несложно узнать основание. Лучше всего это сделать из второго условия: в = 1,2 * 28,125 = 33,75 (см).

    Для проверки можно сложить три значения: 28,125 * 2 + 33,75 = 90 (см). Все верно.

    Ответ: стороны треугольника равны 28,125 см, 28,125 см, 33,75 см.

    №2. Сторона равностороннего треугольника равна 12 см. Нужно вычислить его высоту.

    Решение. Для поиска ответа достаточно вернуться к тому моменту, где были описаны свойства треугольника. Так указана формула для нахождения высоты, медианы и биссектрисы равностороннего треугольника.

    н = а * √3 / 2, где н — высота, а — сторона.

    Подстановка и вычисление дают такой результат: н = 6 √3 (см).

    Эту формулу необязательно запоминать. Достаточно вспомнить, что высота делит треугольник на два прямоугольных. Причем она оказывается катетом, а гипотенуза в нем — это сторона исходного, второй катет — половина известной стороны. Теперь нужно записать теорему Пифагора и вывести формулу для высоты.

    Ответ: высота равна 6 √3 см.

    №3. Дан МКР — треугольник, 90 градусов в котором составляет угол К. Известны стороны МР и КР, они равны соответственно 30 и 15 см. Нужно узнать значение угла Р.

    Решение. Если сделать чертеж, то становится ясно, что МР — гипотенуза. Причем она в два раза больше катета КР. Снова нужно обратиться к свойствам. Одно из них как раз связано с углами. Из него понятно, что угол КМР равен 30º. Значит искомый угол Р будет равен 60º. Это следует из другого свойства, которое утверждает, что сумма двух острых углов должна равняться 90º.

    Ответ: угол Р равен 60º.

    №4. Нужно найти все углы равнобедренного треугольника. Про него известно, что внешний угол от угла при основании равен 110º.

    Решение. Поскольку дан только внешний угол, то этим и нужно воспользоваться. Он образует с внутренним углом развернутый. Значит в сумме они дадут 180º. То есть угол при основании треугольника будет равен 70º. Так как он равнобедренный, то второй угол имеет такое же значение. Осталось вычислить третий угол. По свойству, общему для всех треугольников, сумма углов равна 180º. Значит, третий определится как 180º - 70º - 70º = 40º.

    Ответ: углы равны 70º, 70º, 40º.

    №5. Известно, что в равнобедренном треугольнике угол, лежащий напротив основания, равен 90º. На основании отмечена точка. Отрезок, соединяющий ее с прямым углом, делит его в отношении 1 к 4. Нужно узнать все углы меньшего треугольника.

    Решение. Один из углов можно определить сразу. Поскольку треугольник прямоугольный и равнобедренный, то те, что лежат у его основания, будут по 45º, то есть по 90º/2.

    Второй из них поможет найти известное в условии отношение. Поскольку оно равно 1 к 4, то частей, на которые он делится получается всего 5. Значит, чтобы узнать меньший угол треугольника нужно 90º/5 = 18º. Осталось узнать третий. Для этого из 180º (суммы всех углов треугольника) нужно вычесть 45º и 18º. Вычисления несложные, и получится: 117º.

    Стандартные обозначения

    Треугольник с вершинами A , B и C обозначается как (см. рис.). Треугольник имеет три стороны:

    Длины сторон треугольника обозначаются строчными латинскими буквами (a, b, c):

    Треугольник имеет следующие углы:

    Величины углов при соответствующих вершинах традиционно обозначаются греческими буквами (α, β, γ).

    Признаки равенства треугольников

    Треугольник на евклидовой плоскости однозначно (с точностью до конгруэнтности) можно определить по следующим тройкам основных элементов:

    1. a, b, γ (равенство по двум сторонам и углу лежащему между ними);
    2. a, β, γ (равенство по стороне и двум прилежащим углам);
    3. a, b, c (равенство по трём сторонам).

    Признаки равенства прямоугольных треугольников:

    1. по катету и гипотенузе;
    2. по двум катетам;
    3. по катету и острому углу;
    4. по гипотенузе и острому углу.

    Некоторые точки в треугольнике - «парные». Например, существует две точки, из которых все стороны видны либо под углом в 60°, либо под углом в 120°. Они называются точками Торричелли . Также существует две точки, проекции которых на стороны лежат в вершинах правильного треугольника. Это - точки Аполлония . Точки и такие, что и называются точками Брокара .

    Прямые

    В любом треугольнике центр тяжести, ортоцентр и центр описанной окружности лежат на одной прямой, называемой прямой Эйлера .

    Прямая, проходящая через центр описанной окружности и точку Лемуана, называется осью Брокара . На ней лежат точки Аполлония. Также на одной прямой лежат точки Торричелли и точка Лемуана. Основания внешних биссектрис углов треугольника лежат на одной прямой, называемой осью внешних биссектрис . На одной прямой лежат также точки пересечения прямых, содержащих стороны ортотреугольника, с прямыми, содержащими стороны треугольника. Эта прямая называется ортоцентрической осью , она перпендикулярна прямой Эйлера.

    Если на описанной окружности треугольника взять точку, то её проекции на стороны треугольника будут лежать на одной прямой, называемой прямой Симсона данной точки. Прямые Симсона диаметрально противоположных точек перпендикулярны.

    Треугольники

    • Треугольник с вершинами в основаниях чевиан, проведённых через данную точку, называется чевианным треугольником этой точки.
    • Треугольник с вершинами в проекциях данной точки на стороны называется подерным или педальным треугольником этой точки.
    • Треугольник в вершинами во вторых точках пересечения прямых, проведённых через вершины и данную точку, с описанной окружностью, называют окружностно-чевианным треугольником . Окружностно-чевианный треугольник подобен подерному.

    Окружности

    • Вписанная окружность - окружность , касающаяся всех трёх сторон треугольника. Она единственна. Центр вписанной окружности называется инцентром .
    • Описанная окружность - окружность, проходящая через все три вершины треугольника. Описанная окружность также единственна.
    • Вневписанная окружность - окружность, касающаяся одной стороны треугольника и продолжения двух других сторон. Таких окружностей в треугольнике три. Их радикальный центр - центр вписанной окружности срединного треугольника, называемый точкой Шпикера .

    Середины трёх сторон треугольника, основания трёх его высот и середины трёх отрезков, соединяющих его вершины с ортоцентром, лежат на одной окружности, называемой окружностью девяти точек или окружностью Эйлера . Центр окружности девяти точек лежит на прямой Эйлера. Окружность девяти точек касается вписанной окружности и трёх вневписанных. Точка касания вписанной окружности и окружности девяти точек называется точкой Фейербаха . Если от каждой вершины отложить наружу треугольника на прямых, содержащих стороны, ортезки, равные по длине противоположным сторонам, то получившиеся шесть точек лежат на одной окружности - окружности Конвея . В любой треугольник можно вписать три окружности таким образом, что каждая из них касается двух сторон треугольника и двух других окружностей. Такие окружности называются окружностями Мальфатти . Центры описанных окружностей шести треугольников, на которые треугольник разбивается медианами, лежат на одной окружности, которая называется окружностью Ламуна .

    В треугольнике есть три окружности, которые касаются двух сторон треугольника и описанной окружности. Такие окружности называют полувписанными или окружностями Веррьера . Отрезки, соединяющие точки касания окружностей Веррьера с описанной окружностью, пересекаются в одной точке, называемой точкой Веррьера . Она служит центром гомотетии , которая переводит описанную окружность во вписанную. Точки касания окружностей Веррьера со сторонами лежат на прямой, которая проходит через центр вписанной окружности.

    Отрезки, соединяющие точки касания вписанной окружности с вершинами, пересекаются в одной точке, называемой точкой Жергонна , а отрезки, соединяющие вершины с точками касания вневписанных окружностей - в точке Нагеля .

    Эллипсы, параболы и гиперболы

    Вписанная коника (эллипс) и её перспектор

    В треугольник можно вписать бесконечно много коник (эллипсов , парабол или гипербол). Если в треугольник вписать произвольную конику и соединить точки касания с противоположными вершинами, то получившиеся прямые пересекутся в одной точке, называемой перспектором коники. Для любой точки плоскости, не лежащей на стороне или на её продолжении существует вписанная коника с перспектором в этой точке.

    Описанный эллипс Штейнера и чевианы, проходящие через его фокусы

    В треугольник можно вписать эллипс, который касается сторон в серединах. Такой эллипс называется вписанным эллипсом Штейнера (его перспектором будет центроид треугольника). Описанный эллипс, который касается прямых, проходящих через вершины параллельно сторонам, называется описанным эллипсом Штейнера . Если аффинным преобразованием («перекосом») перевести треугольник в правильный, то его вписанный и описанный эллипс Штейнера перейдут во вписанную и описанную окружности. Чевианы, проведённые через фокусы описанного эллипса Штейнера (точки Скутина), равны (теорема Скутина). Изо всех описанных эллипсов описанный эллипс Штейнера имеет наименьшую площадь, а изо всех вписанных наибольшую площадь имеет вписанный эллипс Штейнера.

    Эллипс Брокара и его перспектор - точка Лемуана

    Эллипс с фокусами в точках Брокара называется эллипсом Брокара . Его перспектором служит точка Лемуана.

    Свойства вписанной параболы

    Парабола Киперта

    Перспекторы вписанных парабол лежат на описанном эллипсе Штейнера. Фокус вписанной параболы лежит на описанной окружности, а директриса проходит через ортоцентр. Парабола, вписанная в треугольник, имеющая директрисой прямую Эйлера, называется параболой Киперта . Её перспектор - четвёртая точка пересечения описанной окружности и описанного эллипса Штейнера, называемая точкой Штейнера .

    Гипербола Киперта

    Если описанная гипербола проходит через точку пересечения высот, то она равносторонняя (то есть её асимптоты перпендикулярны). Точка пересечения асимптот равносторонней гиперболы лежит на окружности девяти точек.

    Преобразования

    Если прямые, проходящие через вершины и некоторую точку, не лежащую на сторонах и их продолжениях, отразить относительно соответствующих биссектрис, то их образы также пересекутся в одной точке, которая называется изогонально сопряжённой исходной (если точка лежала на описанной окружности, то получившиеся прямые будут параллельны). Изогонально сопряжёнными являются многие пары замечательных точек : центр описанной окружности и ортоцентр, центроид и точка Лемуана, точки Брокара. Точки Аполлония изогонально сопряжены точкам Торричелли, а центр вписанной окружности изогонально сопряжён сам себе. Под действием изогонального сопряжения прямые переходят в описанные коники, а описанные коники - в прямые. Так, изогонально сопряжены гипербола Киперта и ось Брокара, гипербола Енжабека и прямая Эйлера, гипербола Фейербаха и линия центров вписанной о описанной окружностей. Описанные окружности подерных треугольников изогонально сопряжённых точек совпадают. Фокусы вписанных эллипсов изогонально сопряжены.

    Если вместо симметричной чевианы брать чевиану, основание которой удалено от середины стороны так же, как и основание исходной, то такие чевианы также пересекутся в одной точке. Получившееся преобразование называется изотомическим сопряжением . Оно также переводит прямые в описанные коники. Изотомически сопряжены точки Жергонна и Нагеля. При аффинных преобразованиях изотомически сопряжённые точки переходят в изотомически сопряжённые. При изотомическом сопряжении в бесконечно удалённую прямую перейдёт описанный эллипс Штейнера.

    Если в сегменты, отсекаемые сторонами треугольника от описанного круга, вписать окружности, касающиеся сторон в основаниях чевиан, проведённых через некоторую точку, а затем соединить точки касания этих окружностей с описанной окружностью с противоположными вершинами, то такие прямые пересекутся в одной точке. Преобразование плоскости, сопоставляющее исходной точке получившуюся, называется изоциркулярным преобразованием . Композиция изогонального и изотомического сопряжений является композицией изоциркулярного преобразования с самим собой. Эта композиция - проективное преобразование , которое стороны треугольника оставляет на месте, а ось внешних биссектрис переводит в бесконечно удалённую прямую.

    Если продолжить стороны чевианного треугольника некоторой точки и взять их точки пересечения с соответствующими сторонами, то полученные точки пересечения будут лежать на одной прямой, называемой трилинейной полярой исходной точки. Ортоцентрическая ось - трилинейная поляра ортоцентра; трилинейной полярой центра вписанной окружности служит ось внешних биссектрис. Трилинейные поляры точек, лежищих на описанной конике, пересекаются в одной точке (для описанной окружности это точка Лемуана, для описанного эллипса Штейнера - центроид). Композиция изогонального (или изотомического) сопряжения и трилинейной поляры является преобразованием двойственности (если точка, изогонально (изотомически) сопряжённая точке , лежит на трилинейной поляре точки , то трилинейная поляра точки, изогонально (изотомически) сопряжённой точке лежит на трилинейной поляре точки ).

    Кубики

    Соотношения в треугольнике

    Примечание: в данном разделе , , - это длины трёх сторон треугольника, и , , - это углы, лежащие соответственно напротив этих трёх сторон (противолежащие углы).

    Неравенство треугольника

    В невырожденном треугольнике сумма длин двух его сторон больше длины третьей стороны, в вырожденном - равна. Иначе говоря, длины сторон треугольника связаны следующими неравенствами:

    Неравенство треугольника является одной из аксиом метрики .

    Теорема о сумме углов треугольника

    Теорема синусов

    ,

    где R - радиус окружности, описанной вокруг треугольника. Из теоремы следует, что если a < b < c, то α < β < γ.

    Теорема косинусов

    Теорема тангенсов

    Прочие соотношения

    Метрические соотношения в треугольнике приведены для :

    Решение треугольников

    Вычисление неизвестных сторон и углов треугольника, исходя из известных, исторически получило название «решения треугольников» . При этом используются приведенные выше общие тригонометрические теоремы.

    Площадь треугольника

    Частные случаи Обозначения

    Для площади справедливы неравенства:

    Вычисление площади треугольника в пространстве с помощью векторов

    Пусть вершины треугольника находятся в точках , , .

    Введём вектор площади . Длина этого вектора равна площади треугольника, а направлен он по нормали к плоскости треугольника:

    Положим , где , , - проекции треугольника на координатные плоскости. При этом

    и аналогично

    Площадь треугольника равна .

    Альтернативой служит вычисление длин сторон (по теореме Пифагора) и далее по формуле Герона .

    Теоремы о треугольниках

    Теорема Дезарга : если два треугольника перспективны (прямые, проходящие через соответственные вершины треугольников, пересекаются в одной точке), то их соответственные стороны пересекаются на одной прямой.

    Теорема Сонда́ : если два треугольника перспективны и ортологичны (перпендикуляры, опущенные из вершин одного треугольника на стороны, противоположные соответственным вершинам треугольника, и наоборот), то оба центра ортологии (точки пересечения этих перпендикуляров) и центр перспективы лежат на одной прямой, перпендикулярной оси перспективы (прямой из теоремы Дезарга).