Наиболее мощным источником теплового излучения, обуславливающим жизнь на Земле, является Солнце.

Спектр Солнца непрерывный, в нем наблюдается множество темных фраунгоферовых линий . Фраунгофер был первым, кто описал темные линии на фоне непрерывного спектра в 1814 году. Эти линии в спектре Солнца образуются в результате поглощения квантов света в более холодных слоях солнечной атмосферы.

Наибольшую интенсивность непрерывный спектр имеет в области длин волн 430–500 нм. В видимой и инфракрасной областях спектр электромагнитного излучения Солнца близок к спектру излученияабсолютно черного тела с температурой 6000 К. Эта температура соответствует температуре видимой поверхности Солнца – фотосферы. В видимой области спектра Солнца наиболее интенсивны линии Н и К ионизованного кальция, линии бальмеровской серии водорода Нα, Нβ и Нγ.

Около 9 % энергии в солнечном спектре приходится на ультрафиолетовое излучение с длинами волн от 100 до 400 нм. Остальная энергия разделена приблизительно поровну между видимой (400–760 нм) и инфракрасной (760–5000 нм) областями спектра.

Солнце – мощный источник радиоизлучения. В межпланетное пространство проникают радиоволны, которые излучает хромосфера (сантиметровые волны) и корона (дециметровые и метровые волны). Радиоизлучение Солнца имеет две составляющие – постоянную и переменную. Постоянная составляющая характеризует радиоизлучение спокойного Солнца. Солнечная корона излучает радиоволны как абсолютно черное тело с температурой T = 106 К. Переменная составляющая радиоизлучения Солнца проявляется в виде всплесков, шумовых бурь. Шумовые бури длятся от нескольких часов до нескольких дней. Через 10 минут после сильной солнечной вспышки радиоизлучение Солнца возрастает в тысячи и даже миллионы раз по сравнению с радиоизлучением спокойного Солнца; это состояние длится от нескольких минут до нескольких часов. Это радиоизлучение имеет нетепловую природу.

Плотность потока излучения Солнца в рентгеновской области (0,1–10 нм) весьма мала (~5∙10–4 Вт/м2 и сильно меняется с изменением уровня солнечной активности. В ультрафиолетовой области на длинах волн от 200 до 400 нм спектр Солнца также описывается законами излучения абсолютно черного тела.

В ультрафиолетовой области спектра с длинами волн короче 200 нм интенсивность непрерывного спектра резко падает и появляются эмиссионные линии. Наиболее интенсивна из них водородная линия лаймановской серии (λ = 121,5 нм). При ширине этой линии около 0,1 нм ей соответствует плотность потока излучения около 5∙10–3 Вт/м2. Интенсивность излучения в линии приблизительно в 100 раз меньше. Заметны также яркие эмиссионные линии различных атомов, важнейшие линии принадлежат Si I (λ = 181 нм), Mg II и Mg I, O II, O III, C III и другие.

Коротковолновое ультрафиолетовое излучение Солнца возникает вблизи фотосферы. Рентгеновское излучение исходит из хромосферы (T ~ 104 К), расположенной над фотосферой, и короны (T ~ 106 К) – внешней оболочки Солнца. Радиоизлучение на метровых волнах возникает в короне, на сантиметровых – в хромосфере.

Поток солнечной радиации, приходящийся на 1 м2 площади земной границы атмосферы, составляет 1350 Вт. Эту величину называют солнечной постоянной .

Интенсивность прямой солнечной радиации измеряют актинометром . Принцип действия его основан на использовании нагревания зачерченных поверхностей тел, происходящего от солнечной радиации. В термоэлектрическом актинометре Савинова – Янишевского приемной часть радиации является тонкий, зачерченный с наружной стороны диск 1. К диску с электрической изоляцией припаяны спаи термоэлементов 2, другие спаи 3 прикреплены к медному кольцу внутри корпуса и затенены. Под действием солнечной радиации возникает электрический ток в термобатарее, сила которого прямо пропорциональна потоку радиации.

⇐ Предыдущая1234

Дата публикования: 2015-01-25; Прочитано: 958 | Нарушение авторского права страницы

studopedia.org — Студопедия.Орг — 2014-2018 год.(0.001 с)…

Спектр солнечного света и цветовое зрение

© 1993-2018 «Технолуч». Все права защищены. При использовании материалов сайта ссылка обязательна.

Согласно теории цветового зрения Юнга-Гемгольца (1821-1894) ощущение любого цвета можно получить смешиванием спектрально чистых излучений красного, зеленого и синего цвета. Эта теория хорошо согласуется с наблюдаемыми фактами и предполагает, что в глазу есть только три типа светочувствительных приемников. Они отличаются друг от друга областями спектральной чувствительности. Красный свет воздействует преимущественно на приемники первого типа, зеленый — второго, синий — третьего. Сложением излучений таких трех цветов в различных пропорциях можно получить любую комбинацию возбуждения всех трех типов светочувствительных элементов, а значит и ощущение любого цвета. Если все рецепторы возбуждены в одинаковой степени, мы имеем ощущение белого цвета, если рецепторы не возбуждены — черного. По этой причине, накладывающиеся области красного, зеленого и синего цвета выглядят как белое пятно.

Наложение красного и синего цвета дает фиолетовый цвет, зеленого и синего — бирюзовый, красного и зеленого — желтый.

Приведенный график показывает относительную спектральную чувствительность глаза к излучениям различных длин волн (так называемая кривая видности). Кривая видности красного цвета соответствует чувствительности глаза при дневном свете, а синяя — при сумеречном свете. Максимальная чувствительность глаза при дневном свете достигается на длине волны 555 нм, а при сумеречном свете — на длине волны 510 нм. Максимальная чувствительность глаза в обоих случаях принимается за единицу. Отличие между этими двумя кривыми видности объясняется тем, что дневной и сумеречный свет воспринимаются различными рецепторами глаза (палочками при сумеречном свете и колбочками при дневном свете). При этом палочки обеспечивают чёрно-белое зрение и обладают очень высокой чувствительностью. Колбочки же позволяют человеку различать цвета, но их чувствительность гораздо ниже. В темноте работают только палочки — именно поэтому ночью воспринимаемое изображение серое.

Как мы можем видеть из кривой видности, глаз способен воспринимать свет на длинах волн примерно от 400 нм до 760 нм. В условиях адаптации к темноте глаз может также немного видеть инфракрасный свет с длиной волны до 950 нм и ультрафиолетовый свет с длиной волны не меньше 300 нм. Границы частотного диапазона видимого света, а также сама форма кривой видности человеческого глаза были сформированы в процессе длительной эволюции, приспособившись к условиям освещения земных предметов солнечным светом, а также к условиям сумеречного и ночного освещения. Действительно, было бы биологически нецелесообразно, если бы глаз обладал способностью принимать излучение с длинами волн короче 290 нм, так как из-за наличия озонового слоя в атмосфере земли, поглощающего ультрафиолетовые лучи, спектр солнечного излучения вблизи поверхности Земли практически обрывается на длине волны 290 нм. С другой стороны, из-за теплового излучения самого глаза, его высокая чувствительность к инфракрасному излучению сделала бы невозможной работу глаза в условиях солнечного освещения.

Ультрафиолетовое излучение, невидимое для глаза, воздействует, тем не менее, на кожу. Под действием ультрафиолета, который присутствует в солнечном свете, в коже вырабатывается особый пигмент, интенсивно отражающий эту часть солнечного спектра. При этом кожа приобретает характерный оттенок, известный как загар, а вероятность её ожога сильно уменьшается. Почему же нельзя загореть через оконное стекло? Дело в том, что обычное оконное стекло не пропускает ультрафиолетовых лучей и, следовательно, солнечный свет, прошедший через стекло, не может вызвать загар. Загореть можно только через кварцевое стекло, прозрачное для ультрафиолета.

Спектр оптического пропускания синтетического кварцевого стекла Suprasil 300, оптического стекла BK 7 и обычного стекла. Спектр видимого света лежит примерно в пределах от 400 нм до 800 нм.

В отличие от обычного стекла, которое состоит из смеси различных компонент, кварцевое стекло состоит только из оксида кремния, а количество примесей других химических элементов чрезвычайно мало. Это приводит к тому, что кварцевое стекло обладает чрезвычайно широким спектром пропускания и малым поглощением света (обычное оконное стекло поглощает столько же света, сколько и кварцевое стекло толщиной в 100 метров). Это обуславливает широкое применение кварцевого стекла в оптике. Если позволяют средства, вы можете застеклить на даче одно из окон кварцевым стеклом и загорать зимой.

Спектральный состав солнечной радиации меняется в зависимости от высоты Солнца над горизонтом.

По международной классификации выделяют:

1. Инфракрасное излучение – 760-2600 (3000) нм

2. Видимое излучение – 400-760 нм

3. Ультрафиолетовое излучение – на границе с атмосферой 400-100 нм, на поверхности земли – 400-290 нм

Все виды излучений отличаются друг от друга длиной волны (частотой колебаний) и энергией кванта. Чем меньше длина волны, тем больше энергия кванта и тем соответственно более выражено биологическое действие данного излучения.

Спектральный состав солнечного света

Следовательно, наибольшей биологической активностью характеризуется ультрафиолетовое излучение.

Инфракрасное излучение составляет большую часть солнечного спектра (до 50%). Ультрафиолетовые лучи занимают 5% спектра на границе с атмосферой и 1% УФ-излучения достигает поверхности земли. Коротковолновая часть УФ-излучения (менее 300 нм) задерживается озоновым слоем Земли.

Реакция организма на действие солнечного света является результатом действия всех частей спектра. Солнечную радиацию воспринимают кожа и глаза. В основе физиологического действия солнечных лучей лежат различные фотохимические реакции, возникновение которых зависит от длины волны и энергии поглощенных квантов действующего излучения.

Инфракрасное излучение

Инфракрасное излучение образуется всяким телом, температура которого выше абсолютного нуля. Чем больше оно нагрето, то есть чем выше его температура, тем выше интенсивность излучения. Инфракрасное излучение проникает сквозь атмосферу, воду, почву, одежду, оконные стекла.

Коэффициент поглощения инфракрасных лучей связан с длиной волны, которая обусловливает глубину проникновения.

По длине волны инфракрасное излучение подразделяется на :

1.длинноволновое (свыше 1400 нм) — задерживается поверхностными слоями кожи и проникает на глубину до 3 мм, в результате ускоряется обмен веществ, усиливается кровоток, рост клеток и регенерация тканей, но в больших дозах может вызывать чувство жжения.

2. средневолновое (длина волны 1000 – 1400 нм)

3. коротковолновое (длина волны от 760 до 1000 нм) обладает большой проникающей способностью. Проникает на глубину 4-5 см, 14% лучей в пределах длин волн 1000-1400 нм — на глубину 3-4 см.

ИК-излучение оказывает :

1. тепловое действие — воздействуя на молекулы и атомы веществ, усиливая их колебательные движения, ИК-излучение приводит к повышению температуры биосубстрата.

2. фотохимическое действие – связано с поглощением энергии тканями и клетками, что ведет к активизации ферментных процессов и, как следствие, к ускорению обмена веществ, образованию БАВ, усилению процессов регенерации, иммуногенеза.

ИК-излучение оказывает местное и общее воздействие.

При локальном воздействии на ткани ИФ-излучение несколько ускоряет биохимические реакции, ферментативные и иммунобиологические процессы, рост клеток и регенерацию тканей, кровоток, усиливает биологическое действие УФ-лучей.

Общее действие проявляется противовоспалительным, болеутоляющим, общетонизирующим эффектами. Эти эффекты широко используются в физиотерапии — с помощью использования искусственных источников ИК-излучения для лечения заболеваний воспалительного характера с целью уменьшения болевого синдрома при ревматизме, остеохондрозе и т.д.

3. влияет на климат и микроклимат. Вследствие неравномерного нагревания земной поверхности и испарения воды происходит движение воздуха и водных масс, формирование циклонов и антициклонов, теплых и холодных течений, разнообразие климатических зон, погодных условий, которые опосредованно влияют на человека.

При оптимальной интенсивности ИК-излучение вызывает приятное тепловое ощущение.

Отрицательное воздействие ИК-излучения связано с тепловым эффектом, так как возможно перегревание организма с развитием теплового или солнечного удара.

Видимое излучение

Видимое излучение воздействует на кожу (проникает на глубину 2,5 см) и глаза. Кожа неодинаково поглощает видимые лучи. Красные лучи проникают на глубину 2,5 см в количестве 20%, фиолетовые до 1%.

Биологическое действие :

1. вызывает световое ощущение. Связано с фотохимическим действием, которое проявляется в возбуждении молекул зрительных пигментов сетчатки глаза. В результате в сетчатке возникают электрические импульсы, вызывающие ощущение света. Таким образом, видимые лучи имеют информационное значение (информация об объеме, цвете, форме и т.д.)

2. оказывает благоприятное действие на организм, стимулирует его жизнедеятельность, улучшает общее самочувствие, эмоциональное настроение, повышает работоспособность. Плохое освещение отрицательно сказывается на функции зрительного анализатора, в результате чего быстро развивается утомление.

3. усиливает обмен веществ, иммунологическую реактивность, улучшает деятельность других анализаторов, активизирует процессы возбуждения в коре головного мозга.

4. тепловое действие – около 50% общей тепловой энергии солнечного спектра приходится на видимое излучение.

5. оздоровление окружающей среды

6. психогенное значение. Видимое излучение способно создавать гамму цветов, которые оказывают различное действие на человека. Отношение к цветам очень индивидуальное и каждый цвет вызывает у человека определенные ощущения (голубой – чувство прохлады, успокаивающее действие, зеленый – спокойствие, надежность, ярко-желтый – раздражение, красный – возбуждение, фиолетовый и синий – угнетают и способствуют засыпанию, синий способен усиливать состояние депрессии).

7. интенсивность и цвет видимого света на протяжении суток меняется, что имеет сигнальный характер и определяет суточный биологический ритм активности человека, служит источником рефлекторной и условнорефлекторной деятельности.

В процессе эволюции человек стал вести активный образ жизни в светлый период суток. Видимый свет влияет на режим сна и бодрствования, а, следовательно, и на физиологические функции организма (регуляция температуры тела, уровня гормонов и т. д.). Сейчас существует понятие синдрома «световое голодание», которое характеризуется снижением работоспособности, эмоциональной нестабильностью, повышенным аппетитом и потребностью во сне. Такой синдром возникает у людей в осенне-зимний период, при проживании за Полярным кругом, у работающих в ночную смену и т.д.

Биологическое действие различных участков спектра солнечного излучения

Ионизирующее излучение. Это излучение включает космические лучи, а также естественную и искусственную радиоактивность. На поверхности Земли эта форма воздействия на организмы связана главным образом с естественным радиоактивным фоном, а в наше время – и с резким возрастанием уровня радиоактивности техногенного происхождения.

Биологическое действие радиации осуществляется, в основном, на субклеточном уровне (ядра, митохондрии, микросомы) Установлена зависимость этого действия от дозы облучения: при малых дозировках повреждающий эффект может сменяться стимулирующим. Известно влияние ионизирующей радиации на генетический аппарат (мутагенный эффект).

Ультрафиолетовые лучи. Наиболее коротковолновая (200-280 нм) зона этой части спектра («ультрафиолет С») активно абсорбируется кожей; она является опасной для живых организмов, но практическим полностью поглощается озоновым экраном. Следующая зона – УФ-В, с длиной волны 280-320 нм – наиболее опасная часть спектра УФ, обладающая канцерогенным действием. УФ-В активирует некоторые микроорганизмы, в то время как другие длины волн УФ губительны для микробов. Большая часть зоны УФ-В также поглощается озоновым экраном.

До поверхности Земли доходят лишь лучи с длиной волны примерно от 300 нм. Эта часть спектра обладает большой энергией и оказывает на живые организмы главным образом химическое действие. В частности, УФ –лучи стимулируют процессы клеточного синтеза.

Под действием этих лучей в организме синтезируется витамин Д, регулирующий обмен кальция и фосфора, а соответственно нормальный рост и развитие скелета. Особенно велико значение этого витамина для растущего организма. Поэтому многие млекопитающие, выводящие детенышей в норах, регулярно (чаще по утрам) выносят их на освещенные солнцем места. «Солнечное купание» свойственно и многим птицам; основная роль этой формы поведения – нормализация обмена, синтез витамина Д и регуляция продукции меланина. Действие УФ зависит от дозы: слишком сильное облучение вредно для организма. Особенно неустойчивы к коротковолновой радиации активно делящиеся клетки. Как приспособление к экранированию организма от передозировки УФ у многих видов, в том числе и у человека, формируются темные пигменты, поглощающие эти лучи. Такова природа загара у человека. У лягушек и некоторых других амфибий и рыб откладываемые на поверхности воды икринки имеют пигментированный верхний полюс. У пустынных грызунов отмечена пигментация мошонки. У сусликов обнаружены пигментированные мозговые оболочки.

УФ-радиация составляет около 5-10% суммарной радиации, достигающей поверхности Земли.

Видимый свет. Эта часть спектра составляет около 40-50% солнечной энергии, достигающей Земли. Для животных видимая часть спектра связана, прежде всего, с ориентированием в окружающей среде. Зрительная ориентация свойственна большинству дневных животных и используется как источник сложной информации о внешних условиях. Эффективность восприятия зрительных сигналов очень различна: от простых светочувствительных клеток, в которых световые воздействия на зрительные пигменты фотохимически трансформируются в нервный импульс, до сложно устроенных глаз, способных к восприятию объемных образов в цветовом варианте. У ряда птиц зрительное восприятие распространяется на часть ультрафиолетовой зоны спектра. Многие животные воспринимают как видимый свет ближнюю область инфракрасного излучения.

Впрочем, и многие ночные виды ориентируются с участием органов зрения, поскольку абсолютная темнота в сфере обитания животных встречается редко. Ослабление интенсивности света вызывает адаптивные перестройки органов зрения (совы, козодои, некоторые ночные млекопитающие).

Обитание в условиях полной темноты, как правило, связано с редукцией органов зрения. Это, в частности, свойственно видам, обитающим в пещерах, а также многим почвенным животным. У почвенных животных часто сохраняются светочувствительные органы, хотя и в редуцированном виде. Они используются для получения информации о выходе на освещенную поверхность.

В океане интенсивность освещения падает с глубиной. Параллельно изменяется и спектральный состав: глубже всего проникает его коротковолновая часть – синие и голубые лучи. Освещенность на мелководье мало отличается от суши, и обитающие здесь рыбы имеют в сетчатке большой процент колбочек, чувствительных к красному цвету. У рыб, обитающих в зеленой воде прибрежной зоны, таких колбочек нет, отсутствуют у них и оранжево-чувствительные клетки. Среди глубоководных рыб большинство имеют в сетчатке лишь один тип палочек, чувствительных к синему цвету.

Известно, что на глубине 800-950 м интенсивность света составляет около 1 % полдневного освещения на поверхности.

Этого еще достаточно для светоощущения. Дальнейшее увеличение глубины связано у одних видов с редукцией органов зрения, а у других – с развитием гипертрофированных глаз, способных воспринимать очень слабый свет. Последнее в значительной степени определяется наличием на больших глубинах светящихся организмов. Некоторые из них способных создавать освещение выше порога световой чувствительности животных. Голубое свечение (длина волны 400-500 нм) соответствует «настройке» органов зрения глубоководных животных. Биологическое свечение используют и рыбы, образуя симбиотические связи со светящимися микроорганизмами и формируя специальные органы, свет которых используется для подманивания добычи, взаимного опознавания, различения полов и т.п.

Свет как фактор фотосинтеза. В процессе фотосинтеза свет выступает как источник энергии, которая используется пигментной системой (хлорофилл, в некоторых случаях – его аналоги). В результате происходит расщепление молекулы воды с выделением газообразного кислорода, а энергия, полученная фотохимической системой, утилизируется для преобразования диоксида углерода в углеводы:

6СО2 + 12Н2О хлорофилл С6Н12О6 + 6О2 + 6Н2О

Способность использовать лучистую энергию у хлорофилла и у зрительных пигментов животных очень близка; поэтому в спектре солнечного излучения область фотосинтетически активной радиации (ФАР) практически совпадает с диапазоном видимой части спектра с длиной волны порядка 400-700 нм. Некоторые бактерии, имеющие бактериохлорофиллы, способны поглощать свет в длинноволновой части спектра (максимум в области 800-100 нм).

Зеленый лист поглощает в среднем 75 % падающей на него лучистой энергии. Но коэффициент использования ее на фотосинтез невысок: около 10 % при низкой освещенности и лишь 1-2 % — при высокой. Остальная энергия переходит в тепловую, которая затрачивается на транспирацию и другие процессы.

Наиболее важные внешние факторы, влияющие на уровень фотосинтеза, это – температура, свет, диоксид углерода и кислород. На уровне самого растения на этот процесс влияют содержание хлорофилла и воды, особенности анатомии листа, концентрация ферментов.

Зависимость фотосинтеза от температуры характеризуется кривой, на которой выделяются точки (зоны) максимума, оптимума и минимума. Минимальная температура, при которой возможен фотосинтез, видоспецифична и отражает приспособленность вида к температурным условиям среды. У многих видов она совпадает с температурой замерзания тканевых жидкостей (-1, -2°С), но у наиболее холодолюбивых форм опускается до -5…-7°С. Максимальная температура фотосинтеза в среднем на 10-12°С ниже точки тепловой смерти. Температурный максимум фотосинтеза выше у южных растений. Оптимальной температурной зоной для фотосинтеза принято считать тепловые условия, при которых фотосинтез достигает 90% своей максимальной величины; эта зона зависит от освещенности: повышается при ее увеличении и снижается в условиях затенения. Поэтому при низкой освещенности фотосинтез идет активнее при более низких температурах, а при высокой интенсивность этого процесса увеличивается с повышением температуры.

Освещенность в своем влиянии на фотосинтез характеризуется так называемой кривой насыщения: вначале с повышением освещенности кривая потребления СО2резко идет вверх, затем – по достижении определенного порога освещенности – нарастание фотосинтеза снижается, кривая приобретает форму гиперболы. В этой зависимости хорошо прослеживаются закономерности экологического плана: у тенелюбивых растений насыщение наступает при меньшей освещенности, чем у светолюбивых. В темноте кривые ассимиляции переходят на нулевой уровень: выделение СО2 при дыхании не компенсируется его потреблением для фотосинтеза. Минимальное освещение, при котором поглощение диоксида углерода для фотосинтеза равно выделению его при дыхании, называют точкой компенсации ; у светолюбивых растений она располагается выше, чем у тенелюбивых. Кроме того, положение этой точки зависит от концентрации СО2 и от температуры.

Диоксид углерода в процессе фотосинтеза выступает как ресурс для синтеза углеводов. Норма содержания СО2 в атмосфере составляет 0,57 мг/л. Повышение концентрации ведет к усилению фотосинтеза, но лишь до известных пределов; при концентрации 5-10% (против нормальной – 0,03 %) фотосинтез ингибируется. В сочетании с реакцией на другие факторы колебания концентрации СО2 определяет поддержание нормального уровня фотосинтеза в разнообразных природных условиях. Такие колебания обусловлены суточным ритмом фотосинтеза, закономерными изменениями интенсивности почвенного дыхания и некоторыми другими факторами. Например, суточные колебания СО2 в густых растительных сообществах могут достигать 25 % от средних величин.

Вода, тоже участвующая в процессах фотосинтеза редко его лимитирует. Однако непрямым путем недостаток воды (в частности, сезонный) может быть ограничителем. Например, в западной Австралии некоторые виды растений во время засухи снижают фотосинтез на 2/3 по сравнению с весенним периодом.

Биологические ритмы

Специфическое значение светового фактора заключается в том, что закономерная динамика условий освещения играет важную роль в регуляции периодических явлений в жизни растений и животных.

С самого возникновения жизни на Земле она осуществлялась в условиях ритмически меняющейся среды . Закономерная смена дня и ночи, регулярно повторяющиеся сезонные изменения комплекса факторов – все это требовало приспособления со стороны живых организмов. В процессе эволюции выработалось наиболее кардинальная форма такого приспособления: согласованность ритмов биологической активности различных живых форм с масштабами суточной и сезонной цикличности комплекса условий среды. Ритмичность общих проявлений жизнедеятельности и ее отдельных форм свойственна всем живым существам. В основе ее лежит специфика биохимических и физиологических реакций составляющих сущность жизни и имеющих ритмичный характер. Длительность ритмов отдельных процессов, идущих на суборганизменном уровне, очень различна: от долей секунды (например, активность нейрона) до нескольких часов (секреторная деятельность желез) и даже более.

Суточные ритмы. Суточная периодичность свойственна большинству видов растений и животных. Имеются формы с дневной или ночной активностью; у некоторых видов вспышки активности проявляются спонтанно, независимо от времени суток, некоторым животным присуще проявление активности в сумеречное время. Время открытия и закрытия цветков у высших растений, начала или окончания бодрствования (или, наоборот, сна) у животных видоспецифично и отличается большим постоянством в своем соотношении с суточным ходом освещенности.

Общий характер активности животных определяется такими условиями:

1) тип питания;

2) взаимоотношения с хищниками и конкурентами;

3) суточные изменения комплекса абиотических факторов и т.д.

Так, суточная активность пойкилотермных животных во многом определяется режимом температуры среды; у амфибий – сочетанием температуры и влажности. Среди грызунов виды, поедающие грубые, богатые клетчаткой корма, отличаются, как правило, круглосуточной активностью. Семеноядные формы, употребляющие более концентрированную пищу, приурочивают время ее добывания к ночному периоду, когда слабее воздействие хищников. Особенно ярко это выражено у представителей открытых пространств степей и пустынь.

Циклические изменения общего уровня жизнедеятельности на протяжении суток связаны с ритмами физиологических процессов. Активный период характеризуется большими энергозатратами и соответственно повышенной активностью комплекса физиологических реакций.

Солнечная радиация

Но суточные колебания метаболизма не являются только прямым следствием повышения общей активности, так как существуют закономерные изменения уровня обмена веществ и в покое.

Режим освещенности выступает в роли сигнального фактора, который определяет время начала и окончания активности. У дневных животных утреннее нарастание освещенности по достижении определенного порога стимулирует начало активной деятельности.

У ночных видов начало активности коррелирует с определенной степенью снижения освещенности, а утреннее повышение ее определяет окончание активного периода.

Пороговые величины освещенности определяют время начала и окончания активности. На протяжении активной части суток интенсивность деятельности животных обычно имеет пульсирующий, фазовый характер. Так, воробьиные птицы в период размножения наиболее активны в утренние часы, затем их активность снижается и вновь повышается вечером. Неравномерное проявление активность свойственно очень многим видам животных.

Циркадианные ритмы. Сигнальная, синхронизирующая роль фотопериода отчетливо проявляется в условиях эксперимента, когда на фоне неизменной освещенности (чаще всего – при содержании в темноте) у подопытных организмов проявляется суточный ритм, свойственный данному виду в естественной обстановке. Например, в норме некоторые растения опускают листья или складывают их на ночь и расправляют днем. После помещения в полную темноту в эксперименте эти растения сохраняли суточный ритм движения листьев. В опытах было показано также, что этот цикл складывания и распрямления листьев составляет не точно сутки, а несколько меньше – 22-22,5 час.

В основе суточных ритмов жизнедеятельности лежат наследственно закрепленные эндогенные циклы физиологических процессов с периодом, близким к 24 час. Циклические процессы такого рода называются циркадианными или циркадными (от лат. circa – около, dies – день) ритмами. В наиболее «чистом» виде циркадианные ритмы выявляются лишь при содержании животных в строго постоянных условиях, то есть без контроля со стороны меняющихся факторов среды. Выявленные таким образом, они показывают высокую степень автономности. В то же время эти свободно текущие эндогенные ритмы легко синхронизируются какими-либо внешними датчиками времени (изменения освещенности, температуры и т.д.).

Характерная особенность циркадианных ритмов – некоторое несовпадение их периода с полными астрономическими сутками .

Определенное влияние на характер циркадианных ритмов оказывают различные условия освещения. Увеличение интенсивности непрерывного освещения вызывает у ночных видов уменьшение общей активности, некоторое удлинение цикла и укорочение его активной части; при уменьшении освещенности наблюдаются сдвиги противоположного характера. Дневные животные соответственно демонстрируют обратные реакции.

Сезонные ритмы. Большинство организмов, обитающих в условиях сезонной смены климатических режимов, характеризуются наличием периодических сезонных процессов, охватывающих комплекс физиологических систем и обеспечивающих биологически значимые изменения форм деятельности. У растений это связано с сезонным характером репродукции, определенными сроками образования семян, формированием клубней и других форм запасания питательных веществ перед наступлением зимы и т.д. Эти процессы имеют эндогенный, генетически запрограммированный характер; конкретные погодные условия только модифицируют их протекание. Установлена важная роль фотопериода в регуляции сезонных периодических явлений у растений.

У большинства животных различные физиологические и биологические процессы также проявляются сезонно: размножение, линька, спячка, миграции и т.д. Эволюционно сезонность этих явлений возникла как приспособление к циклическим изменениям климатических условий. Закономерная повторяемость сезонных состояний формируется в результате взаимодействия врожденных эндогенных сезонных циклов с информацией о состоянии внешних условий. Эти взаимодействия синхронизируют проявления эндогенной программы с периодами благоприятного для данной формы деятельности сочетания факторов среды и обеспечивают адаптацию организма к сезонному состоянию внешних условий.

Цирканнуальные ритмы. Эндогенные биологические циклы с окологодовой периодичностью называются цирканнуальными или цирканными ритмами (от лат. circa – около, annus – год). Как и циркадианные, они основываются на системе свободного отсчета времени по принципу биологических часов. В природных условиях эта система находится под контролем внешних факторов-синхронизаторов, среди которых у нетропических животных главная роль принадлежит фотопериоду.

Проявления цирканнуальных ритмов может быть достаточно сложным, но в любом случае в них заложен механизм свободнотекущей временной программы и контроль со стороны естественного режима освещения.

В искусственных условиях, полностью исключающих действие внешних датчиков времени, обнаружено, что собственный ход цирканнуального ритма чаще всего бывает несколько меньше астрономического года. Так, две славки – садовая и черноголовка в возрасте 6 недель были помещены в условия постоянного фотопериода (10 час. света и 14 час. темноты) и содержались в этих условиях соответственно 10 и 8 лет. Периоды линек у этих птиц регулярно повторялись с периодичностью 9,4-9,7 мес. Аналогичные опыты с другими птицами дали сходные результаты.

Фотосъемка происходит как при естественном дневном свете, так и при источниках искусственного света: лампах накаливания, газоразрядных импульсных лампах, лампах-вспышках и др. Все эти источники сильно отличаются друг от друга по спектральному составу света, На выбор источника света влияют не только конкретные условия съемки, но и светотехнические характеристики источников. Если при съемке на черно-белой пленке прежде всего обращается внимание на интенсивность светового потока источника света и в меньшей степени на его спектральный состав, то при съемке на цветной пленке решающее значение имеет спектральный состав света. От спектрального состава зависит передача тональных цветов при съемке на черно-белой пленке и натуральных - при съемке цветной, выбор цвето-чувствительного материала и светофильтров.

При изменении цветности источника света изменяется и шкала тонов, которыми передаются цвета объекта. Спектральный состав света, его цветовая температура должны быть сбалансированы с цветочувствительностью негативного материала. Только в этом случае возможна правильная цветопередача.

Дневной свет относится к группе температурных ис точников света.

Земная поверхность и все, что на ней находится, освещаются либо смешанным, суммарным светом (суммарной радиацией) прямого солнечного и рассеянного излучения, идущего от небосвода и облаков, либо в пасмурную погоду, когда солнце закрыто облаками, рассеянным светом неба. Места, куда не проникает прямой солнечный свет, освещаются только рассеянным светом неба (рис. 6).

И з табл. 3 видно, как изменяется спектральный состав солнечного излучения в зависимости от высоты солнца.

Особенно быстро солнце поднимается в утренние и опускается в вечерние часы. Ориентировочные изменения цветовых температур на протяжении дня и в зависимости от состояния неба приведены в табл. 4.

Но закономерность колебаний спектрального состава и интенсивности излучений дневного света то и дело нарушается из-за происходящих в атмосфере изменений метеорологических условий (облачность, высота, степень и плотность которой весьма неустойчивы, влажность и запыленность воздуха, дымка, туман и др.). Эти случайные переменные факторы находятся в такой тесной связи и так взаимно переплетаются, что учесть влияние каждого из них весьма затруднительно.

Когда солнце поднимается над горизонтом или заходит, оно выглядит красным шаром с цветовой температурой около 1800 К. В это время на пути к земле солнечные лучи пронизывают, воздушную оболочку, окружающую нашу планету, и проходят самый длинный путь в атмосфере. Длина пути солнечных лучей в атмосфере имеет большое значение, особенно для коротковолновой части спектра. В потоке лучей солнца, прошедших самый длинный путь в толще воздуха, отсутствуют сине-фиолетовые лучи: они отфильтровываются слоем воздуха, который, изменяя спектральный состав солнечного света, действует как желтый фильтр переменной плотности. При частичной облачности, когда солнце просвечивает сквозь облака или находится в дымке, коротковолновая часть радиации также ослабевает.

Солнечная радиация в результате многократных отражений молекулами газов, входящих в состав воздуха, претерпевает молекулярное рассеивание. Видимый цвет воздушного слоя над землей, цвет неба и объясняются сильным молекулярным рассеиванием коротковолновой части солнечной радиации. Молекулярное рассеивание является причиной возникновения воздушной голубой дымки.

В результате рассеивания атмосферой части солнечного света само небо становится источником света (вторичным) с ясно выраженным цветом. В спектре голубого неба наблюдается значительное преобладание синих и фиолетовых цветов, содержатся и все остальные цвета, но в значительно меньшей степени (рис. 6, кривая 3).

Рассеянный свет неба также испытывает сильные колебания цветовой температуры в зависимости от того, исходит ли свет от синего безоблачного неба или от неба, затянутого дымкой или облаками.

В воздухе постоянно находятся во взвешенном состоянии в различных количествах механические примеси - мутящие частицы (воздух в толстых слоях можно рассматривать как мутную среду): пылинки, поднимаемые восходящими "потоками воздуха и ветром, мелкие капли воды, водяные пары, которые способствуют возникновению дымки. Количество их с высотой убывает - они не поднимаются выше 1000 м. Когда размеры мутящих частиц становятся соизмеримыми с длинноволновыми световыми волнами или даже начинают превышать их длину, возникает аэрозольное рассеивание, при котором отражаются лучи всего спектра. При этом, отраженный свет становится белым и, как следствие, небо приобретает белесоватый цвет. Разбеливанию неба способствует и повышенная влажность воздуха, которая является причиной образования дымки, белой с голубым оттенком.

При появлении облаков к свету неба примешивается еще и белый свет, отраженный от облаков. Крупные капли воды, из которых состоят облака, рассеивают лучи всего спектра.

Вблизи крупных городов из-за большой запыленности самых нижних слоев воздуха, появления в них испарений, дыма и пыли небо у горизонта окрашивается в серый или белый цвет разных оттенков.

По мере того как солнце поднимается все выше и путь лучей в атмосфере становится короче, радиация из красной, красноватой через желтую переходит в желтоватую. Одновременно изменяет свой цвет и небо. Голубоватое вначале, оно вблизи солнца при восходе и заходе окрашивается в красноватые тона и по мере подъема солнца переходит в голубое. Если воздух прозрачный, небо приобретает синий цвет.

Вскоре после восхода солнца и незадолго до его захода цветовая температура поднимается до 3000-3200К, что дает возможность съемки на цветной пленке типа ЛН. Примерно через час после восхода при высоте солнца цветовая температура его поднимается до 3500 К. Радиация в это время состоит из половины красных, одной четверти желтых лучей, а оставшаяся четверть приходится на зеленые, синие и фиолетовые. Тени, начиная от самых длинных, быстро уменьшаются, а при высоте солнца 15° становятся почти равными четырехкратной длине предмета. Во второй половине дня, когда солнце опускается ниже 13-15q, а также по мере дальнейшего движения к горизонту и ослабления сине-фиолетовых лучей радиация приобретает ясно выраженные оттенки от желтого к красному. Становятся длиннее и тени, Горизонтальные поверхности в это время освещаются главным образом небосводом и под влиянием увеличивающегося действия рассеянного света неба синеют, а вертикальные - в большей степени освещаются желтым светом солнца.

Путь, проходимый его лучами в атмосфере, сильно укорачивается и большая часть коротковолнового излучения достигает земной поверхности. Суммарный свет солнца и неба при безоблачном небе стабилизируется, становится белым и почти не изменяется с высотой солнца в это время суток.

Это наилучшее время для съемки, особенно на цветной пленке ДС, сбалансированной для цветовой температуры 5600-5800 К. Если даже некоторые изменения в цветовой температуре света в это время и происходят, то для черно-белой съемки они вообще не имеют значения, а для цветной не столь значительны, чтобы заметно ухудшить цветопередачу. Изменение цветовой температуры дневного света в течение дня показано на рис. 7.

Которого она упала

А знание высоты солнца над горизонтом позволяет определить цветовую температуру дневного света.

Для каждого времени года и дня можно найти длину тени с помощью несложного прибора - указателя (индикатора) тени. На картоне укрепляется стерженек или булавка определенной длины, например I см. Из точки крепления, как из центра, наносятся полуокружности (рис. 8) радиусами, равными 0,5-6-кратной высоте выступающего стержня. При горизонтальном положении картона тень от стержня и укажет высоту солнца.

(в Киеве до 63°). С приближением солнца к зениту свет приобретает заметный синеватый оттенок, цветовая температура поднимается до 6000-7000 К. Это время (для Киева 11.00- 13.00) не подходит для фотосъемок и по художественным соображениям.

Солнце является эффективным источником инфракрасного излучения. Освещенность, создаваемая инфракрасной частью излучения солнца, зависит от положения солнца на небе и степени прозрачности атмосферы. В табл. 6 приведено в процентах излучение ультрафиолетового и инфракрасного участков солнечного потока на протяжении дня для прозрачной атмосферы. Излучение солнечного потока в пределах от 3 до 70 принято за 100%.

Из таблицы видно, что с подъемом солнца интенсивность инфракрасного излучения заметно ослабевает.

Лампы накаливания также относятся к группе температурных источников света. Простота и удобство пользования обеспечили им наибольшее распространение при фото- и киносъемке. Существуют различные типы электрических ламп накаливания. Это и бытовые осветительные лампы накаливания разной мощности, фотолампы, зеркальные, у которых часть колбы параболоидной формы покрыта зеркальным слоем алюминия, прожекторные (ПЖ), кинопрожекторные (КПЖ), проекционные. В последние годы широко используются галогенные (йодно-кварцевые) лампы.

В бытовых лампах максимум излучения находится в инфракрасной области спектра, в видимой области преобладают желто-красные лучи. Как видно из спектральной характеристики (см. рис. 6), излучение лампы накаливания в красной области спектра превосходит излучение в сине-фиолетовой в 5-6 раз. Поэтому цветопередача на черно-белой пленке при свете ламп накаливания резко отличается от цветопередачи при дневном свете.

При номинальном напряжении ПО, 127 и 220В у маломощных ламп накаливания (50-200 Вт) цветовая температура света, излучаемого вольфрамовой нитью, равна 2600-2800 К, у более мощных (500 и 1000 Вт) - около 3000 К, У еще более мощных (свыше 1000 Вт) цветовая температура превышает 3000 К. Маломощные бытовые лампы, обладающие низкой цветовой температурой, не пригодны для цветной съемки.

У зеркальных ламп накаливания (ЗК) цветовая температура 2800-3000К, у предназначенных для цветной съемки - 3200-3300 К. Цветовая температура прожекторных ламп (ПЖ) колеблется от 3000 К у ламп мощностью 500 Вт до 3200 К У ламп мощностью 5000-10 000 Вт. Предназначенные для цветных съемок лампы КГЩ и ПЖК обладают одинаковой цветовой температурой для всех мощностей. С увеличением температуры накала вольфрамовой нити лампы повышается ее цветовая температура.

Фотолампы, предназначенные для фотосъемки, от обычных отличаются тем, что горят при повышенном напряжении, с большим перекалом. Благодаря этому значительно не только увеличивается сила света, но и повышается цветовая температура. По сравнению с фотолампами свет бытовых ламп заметно краснее.

Постоянство цветовой температуры ламп накаливания зависит от постоянства подводимого к лампе напряжения. Колебания напряжения изменяют температуру накала вольфрамовой нити и, следовательно, цветовую температуру излучения.

При съемке на черно-белой пленке постоянство цветовой температуры ламп накаливания не столь существенно, как на цветной. На обратимой цветной пленке отклонение от нормальной цветовой температуры на 50-100К уже заметно. Колебания цветовой температуры в зависимости от изменения напряжения приведены на рис. 9. Номинальное напряжение принято за 100%. Например, при снижении напряжения до 90% от номинального цветовая температура снижается до 96% от исходной. Такое снижение напряжения уменьшает цветовую температуру лампы с 3200 до 3072 К.

В процессе горения в результате распыления нити ее поверхность уменьшается и на внутренней стороне колбы образуется пленка. В излучении такой лампы всегда больше красных лучей, чем в новой такого же типа.

2.1. Современная модель природы света

Физическое тело, температура которого выше абсолютного нуля, излучает в окружающее пространство энергию излучения, а само тело называется излучателем. Энергию излучают как естественные излучатели (Солнце, звезды, биоорганизмы) за счет проходящих в них различных физических процессов, так и искус­ственные излучатели за счет приложенной к ним тепловой, элект­рической, механической и других видов энергии, вызывающих на­грев физического тела.

Энергия излучается в окружающее пространство в виде эле­ментарных частиц – фотонов, каждый из которых обладает кван­том энергии. Рассмотрим на рис 1.2.1 упрощенную схему излучения энергии.

Рис. 1.2.1 – Упрощённая схема излучения лучистой энергии.

Известно, что атом вещества состоит из ядра и электронов, связанных между собой электромагнитными силами. Электроны находятся на опре­деленных энергетических уровнях. Самый ближний к ядру уровень, на котором находятся электроны при спокойном состоянии атома, на­зывается основным (О ), соответствующим минимальной доли энер­гии. Остальные уровни, наиболее удаленные от ядра – возбужден­ные (В ). Для перехода электронов с основного уровня на возбуж­денные нужно сообщить электронам и всему атому в целом до­полнительную энергию (W ). Поглощая приложенную энергию, атом приходит в возбужденное состояние и электроны удаляются от ядра атома на более высокие энергетические уровни (возбуж­денные уровни). Чем больше приложенная энергия, тем на более высокий уровень удаляются электроны. Но это состояние неустой­чивое, и в силу электромагнитных притяжений электроны стре­мятся вернуться на основной уровень. При переходе электронов с одного энергетического уровня на другой выделяется минималь­ная порция лучистой энергии W ф =Q квант , переносимая фото­ном.

Фотон обладает конечной массой и скоростью и существует только в движении. Поглощая энергию, атом поглощает фотоны, которые перестают существовать, а их энергия передается атому. При излучении энергии атом создает фотон и его энергия форми­руется атомом. Фотоны излучаются в пространство и поглощаются телами отдельными порциями, т. е. дискретно и эта дискретность определяет частоту излучений. Движение фотонов в пространстве происходит в форме волн гармонических синусои­дальных электромагнитных колебаний, которые характеризуются рядом величин (рис.1.2.2):

Длина волны, определяющая расстояние между двумя точками, находящимися в одной фазе волнового колебания. Длина волны обозначается λ и измеряется в метрах (м ). Для световых излучений длины волн обычно приводятся в нанометрах (нм ). Нано­метр является удобной международной единицей и он эквивален­тен миллимикрону. В таблице 1.2.1 показана взаимосвязь различных единиц длины и их можно легко переводить друг в друга.

Таблица 1.2.1.

Частота, определяющая число волновых колебаний в единицу времени. Частота обозначается ν и измеряется в герцах (Гц ).

Период колебаний, определяющий время, за которое проис­ходит полное волновое колебание. Период обозначается Т и изме­ряется в секундах (с ).

Период является величиной, обратной часто­те:

Т=1/ν , с (1.2.1)

Частота колебаний и длина волны электромагнитных излучений связаны между собой такими соотношениями:

ν = С о /λ , Гц или λ= С о / ν , м , (1.2.2)

где С о – скорость распространения электромагнитных волн любой длины в вакууме, является величиной постоянной и равна скорос­ти распространения света 2,9979·10 8 ≈ 3·10 8 м/с .

Рис.1.2.2. Схема синусоидальных колебаний с различными длинами волн, где λ 2 >λ 1 , определяющими Т 1 – период, время движения фотона от т. 1 до т. 3 и Т 2 – период, время движения фотона от т. 1 до т. 4; по оси ординат Y~W.

Энергия фотона – квант, согласно формулы Планка, зависит от частоты электро­магнитных колебаний:

W ф =h ·ν , Дж ,(1.2.3)

где h = 6,626·10 -34 Дж·с – постоянный коэффициент, выведенный физиком М. Планком и названный постоянной Планка .

Физическая природа всех видов электромагнитных излучений единая, т. е, во всех случаях энергия распространяется в виде элект­ромагнитных волн разной длины, которым соответствуют элект­ромагнитные колебания разных частот. В простой электромагнитной волне со­держатся электрическая и магнитная волны, перпендикулярные друг другу, но совершающие колебания в одной фазе (Рис.1.2.3).

Рис.1.2.3 – Модульное изображение простой электромагнитной волны (а ) и вид пакета волн (вдоль оси z ), совпадающих по фазе (б ).

Они ко­леблются в направлении, перпендикулярном оси z , которая на­зывается вектором распространения волны. Скорость света от­носится к скорости прохождения света в направлении распро­странения (направление z ). Электрическая и магнитная волны также часто описываются векторами. Вектор электрического по­ля волны взаимодействует с электрическими полями в атомах, и поэтому он очень важен для последующего изложения материала.

Cледуя волновой модели, интенсивность потока света можно определить квадратом амплитуды а электрического вектора (рис.1.2.3), т. е.

I =ka 2 , (1.2.4)

где k – постоянная величина. Поэтому, чем больше амплитуда волны, тем интенсивнее излучение. Однако в корпускулярной теории света амплитуда не имеет значения, так как модель основыва­ется на понятии фотонов. Следовательно, необходим другой путь описания интенсивности света. В корпускулярной модели интен­сивность света пропорциональна числу фотонов, приходящихся на единицу объема светового потока, или, иными словами, про­порциональна «фотонной плотности». Можно показать, что оба понятия интенсивности – плотность и амплитуда – согласуются друг с другом и уравнение (1.2.4) справедливо независимо от ис­пользуемой световой модели. Об интенсивности света можно го­ворить как о потоке фотонов или об амплитуде волны. Оба понятия используются в зависимости от их применения.

Магнитный вектор электромагнитного излучения не представляет здесь такого интереса, как электрический век­тор, поскольку только электрический вектор может взаимодей­ствовать с электронами и электрическими полями в атоме или молекуле. Это взаимодействие электрического вектора вызыва­ет отражение, преломление и пропускание волны, а также цвет, химические реакции и нагревание в большинстве веществ. Все эти явления будут рассматриваться в других разделах книги.

Выражение hv часто используется в описании химиче­ских реакций для того, чтобы указать, что для их протекания необходим фотон электромагнитного излучения. Например, важ­ная для человеческого зрения реакция включает вызванную све­том изомеризацию витамина А, содержащегося в сетчатке глаза. Величина hv характеризует энергию света и не нарушает баланса масс химической реакции.

2.2. Лучистая энергия и лучистый поток.

Энергию, излучаемую в области оптического спектра излучений, называют лучистой энергией или энергией излучения и обозначают W е (можно также встретить обозначение энергии буквой Q ). Если энергия переносится всей совокупностью длин волн, входящих в состав излучения, то она называется интегральной и измеряется в тех же единицах,что и другие виды энергии (джоуль, электрон-вольт ).

Общая мощность, переносимая электромагнитным излучением независимо от его спектрального состава, в светотехнике получила название поток излучения или лучистый поток, обозначается F e и измеряется в ваттах (Вт ):

F e = W e /t , Вт . (1.2.5)

2.3. Спектральный состав оптических излучений.

Общий спектр электромагнитных излучений можно разделить на ряд основных областей:

1. Область космических излучений.

2. Область гамма-излучений.

3. Область рентгеновских излучений.

4. Область оптического спектра излучений.

5. Радиоволновая область.

6. Ультразвуковая и звуковая область.

7. Силовая область.

Область оптических излучений соответствует электромагнитным волнам с длиной волны от 1 нм до 1мм и её можно разделить на три области: ультрафиолетовую (УФ), видимую и инфракрасную (ИК).

Ультрафиолетовая область оптического излучения лежит в пределах 1…380 нм . Международная комиссия по освещению (МКО) предложила следующее деление УФ-излучений с длинами волн от 100 нм до 400 нм : УФ-А – 315…400 нм ; УФ-В – 280…315 нм ; УФ-С –100…280 нм .

Видимое излучение (свет), попадая на сетчатую оболочку глаза, в результате осознанного превращения энергии внешнего раздражителя вызывает зрительное ощущение. Диапазон длин волн монохроматичеких составляющих данного излучения соответствует 380…780 нм .

Длины волн монохроматических составляющих инфракрасного излучения больше длин волн видимого излучения (но не более 1 мм ). МКО предложила следующее деление области ИК-излучений: ИК-А – 780…1400 нм ; ИК-В – 1400…3000 нм ; ИК-С – 3000 нм (3 Мкм )…10 6 нм (1 мм ).

Именно эти три области оптических излучений представляют наибольший интерес для светотехники. Но практически все электромагнитные излучения в той или иной степени воздействуют на атомы и молекулы различных веществ. В таблице 1.2.2 обобщены те явления, которые происходят в молекулах при воздействии на них электромагнитных излучений различных длин волн.

Таблица 1.2.2.

Все энергии электромагнитного излучения, которые одновременно облучают Землю, воспроизводят только небесные явления. Однако в земных условиях, если необходимо воспроизвести излучение в широком диапазоне энергий, необходимо обладать несколькими источниками энергии; например, явление, при котором возника­ет рентгеновское излучение, не возбуждает одновременно радио­волн и наоборот. Следует отметить, что явления, перечислен­ные в табл. 1.2.2 в качестве примера реакций молекул при воз­действии на вещество различных энергетических зон, часто удоб­но использовать для того, чтобы воспроизводить эту энергию. Так, видимый свет будет вызывать низкоэнергетические элек­тронные возбуждения в валентной оболочке атома, однако он может быть воспроизведен электронным снятием возбуждения в валентной оболочке атома при его переходе с высших уров­ней вниз в основное состояние.

Вид электромагнитной волны с самой низкой энергией встре­чается в генераторах, используемых для получения электрического тока. В Украине частота промышленного электрического переменного тока стандартизована и равна 50 Гц . Такая частота воспроизводит длину волны 6·10 6 м . Так называемый звуковой и ультразвуковой диапазон электромагнитного излучения используется в аудио- и ультразвуковой технике.

Радиоволны являются электромагнитными волнами с наи­меньшей энергией, которые могут оказывать непосредственное воздействие на отдельные атомы. Однако энергия этих волн на­столько мала, что она может только передвигать целые молеку­лы на короткое расстояние в пространстве (трансляция) и пе­реориентировать некоторые ядра по отношению к другим яд­рам в молекулах. Последний эффект лежит в основе спектроско­пического метода ядерного магнитного резонанса. Энергии, со­ответствующие микроволновой области, заставляют молекулы газа вращаться вокруг их центров масс и также меняют взаим­ную ориентацию электронов. Первый эффект составляет основу микроволновой спектроскопии, используемой для изучения мо­лекулярных вращений, второй – основу электронной спиновой резонансной спектроскопии, применяемой при изучении состоя­ния неспаренных электронов в химических системах.

Энергии, соответствующие инфракрасной области, вступают в резонанс с колебаниями атомов в химических связях. Этот эффект используется в инфракрасной спектроскопии. Энергии видимой и ультрафиолетовой областей могут вызывать возбуж­дение электронов в атомах и молекулах с их переводом из ниж­них энергетических состояний в верхние. Так как энергия лучей возрастает, возбуждаемые электроны переходят в новое состоя­ние с более стабильных энергетических уровней. Видимая аб­сорбционная спектроскопия имеет дело с возбуждением элект­ронов наиболее удаленных оболочек атомов и молекул, в то время как ультрафиолетовая абсорбционная спектроскопия – с возбуждениями электронов более высоких энергий как с уда­ленных, так и с внутренних оболочек. Рентгеновское излучение вызывает возбуждения электронов во внутренних электронных оболочках, поскольку имеет длину волны, которая близка к размерам самих атомов. Атомы могут вызывать дифракцию рентгеновских лучей. Возбуждение лежит в основе рентгено-спектрального флуоресцентного анализа и спектроскопии рент­геновских фотоэлектронов (ESCA), в то время как дифрак­ция используется для идентификации кристаллической решетки и определения кристаллической структуры. Гамма-лучи пригод­ны для применения электромагнитного излучения с наибольшей энергией. Они вызывают возбуждение ядер с их переводом из нижних энергетических состояний в высшие и лежат в основе мёссбауэровской спектроскопии.

Большая часть диапазона энергий электромагнитного излу­чения имеет важные применения в физике, химии и биологии.

Однако, что касается произведений искусства и светотехнических материалов, то наибольшее значение имеют средние энергии (ультрафиолетовая, видимая и инфракрасная) в связи с тем, что именно они воздействуют на них. Если последовально расположить ультрафилетовую, видимую и инфракрасную область излучений, то получим более подробную их классификацию (Рис.1.2.4).

Рис.1.2.4 – Развёрнутая область спектра электромагнитных излучений.

Мощное ультрафиолетовое и инфракрасное излучение оказывают на человека вредное воздействие: ульт­рафиолетовое вызывает ожоги кожи и глаз, а инфракрасное затрудняет работу из-за большого количества выделяемого тепла.

2.4. Ультрафиолетовое излучение.

В электромагнитном спектре излучений область ультрафиолета занимает промежуточное положение между видимым светом и лучами Рентгена.

Ультрафиолетовое излучение было открыто И. В. Риттером в 1801 г., который в своих опытах использовал солнечный свет, стеклянную призму и пластинку, покрытую хлоридом серебра. Галогены серебра чувствительны к УФ-излучению. Риттер обнаружил, что пластинка темнела вначале вне фиолетового края спектра, затем в фиолетовой области и в конце концов в синей области, что служило доказательством существования из­лучения с длинами волн короче, чем у фиолетовых лучей. Эта область длин волн, невидимых глазом, и была названа ультрафиолето­вой. В настоящее время ультрафиолетовый диапазон опреде­ляется приблизительно как область длин волн 1–400 нм . Для удобства эта область иногда подразделяется на более мелкие участки.

Диапазон 1–180 нм получил название вакуумного ультрафиолета вследствие того, что такое излучение пропуска­ется только вакуумом. Эта коротковолновая часть ультрафиолетового излучения особенно с длинами волн короче 120 нм, практически полностью поглощается всеми известными материалами и средами, включая воздух.
Диапазон 180–280 нм называется ко­ротковолновым или дальним ультрафиолетом (далекая область ультрафиолетового спектра). В этом диапазоне излучения про­пускают кварц и фотографический желатин. Излучения в дальней областиобладают свойством озонировать воздух и
убивать бактерии. Эта же область ультрафиолетового излучения используется в газосветных люминесцентных источниках света для получения яркой флуоресценции светящихся составов, которыми покрыты трубки (с внутренней стороны) люминесцентных ламп.

Диапазон длин волн 280–300 нм известен как средний ультрафиолет. Эти излучения характеризуется способностью вызывать покраснение и загар человеческой кожи, а также благотворным воздействием (в определенных дозах) на рост и развитие животных и растений.

Диапазон 300–400 нм называют длин­новолновым или ближним ультрафиолетом (ближняя область ультрафиолетового спектра) и именно эти излучения пропускает обычное стекло. За исключением солнца и ртутных газоразрядных трубок, ультрафиолетовое излучение нельзя получить с помощью источников, обычно используемых для создания видимого света. Ближняя к видимому спектру область ультрафиолетового излучения (320–400 нм )содержит лучи, широко применяемые для люминесцентного анализа, а также для возбуждения светящихся веществ при люминесцентной фотографии и киносъемке.

Важной особенностью ультрафиолетовых лучей, отличающих их
от лучей Рентгена и других, более коротковолновых излучений, является то, что они преломляются на границе раздела сред с различной плотностью и отражаются от зеркальных поверхностей. Это дает возможность фокусировать их с помощью объектива, сделанного из пропускающих ультрафиолетовые лучи материалов (флюорит, кварцевое стекло, в определенной мере – оптическое стекло), и получать действительное ультрафиолетовое невидимое изображение, которое можно зафиксировать на фотопленке и таким образом сделать видимым.

Наиболее мощным естественным источником ультрафиолетового излучения является солнце. Однако земной поверхности достигают только ультрафиолетовые лучи с длиной волны не менее 290 нм. Более коротковолновые ультрафиолетовые лучи полностью поглощаются озоном, содержащимся в относительно большом количестве в стратосфере. Спектральное распределение ультрафиолетового излучения зависит от высоты солнца над горизонтом. Чем ближе солнце к горизонту, тем меньше в солнечном свете ультрафиолетовых лучей. При высоте солнца 1° над горизонтом в составе солнечной радиации, достигающей поверхности земли, не содержится излучений с длинами волн короче 420 нм, то есть ультрафиолетовые лучи в спектре излучения восходящего и заходящего солнца полностью отсутствуют.

Основными же искусственными источниками ультрафиолетового излучения во всех участках ультрафиолетовой области спектра являются ртутные лампы высокого давления и ртутные лампы сверхвысокого давления.

Излучение в диапазоне длин волн 200–400 нм является пре­обладающим, оно вызывает фотохимические реакции и разрыв связей во многих органических соединениях. Однако в этих фотохимических реакциях есть и положитель­ная сторона. Художникам известно, что, подвергая свежеокрашенный предмет воздействию дневного света, они ускоряют сушку и окисление масел, и что это необходимо сделать, прежде чем покрывать его лаком. Ультрафиолетовое излучение можно использовать при исследовании пленок кра­сок и лаков для доказательства внесенных исправлений. Под действием ультрафиолетового излучения органические соедине­ния часто оказывают воздействие на флуоресценцию друг дру­га. Например, смола мастикового дерева и даммаровая смола в старом лаке дают желто-зеленую флуоресценцию, интенсив­ность которой может с течением времени меняться. Свежий ис­кусственный лак не флуоресцирует. Воск флуоресцирует ярко-белым, а шеллак – оранжевым светом. С увеличением срока службы интенсивность флуоресценции автомобильных красок часто имеет тенденцию к возрастанию. При ультрафиолетовом освещении недавние исправления на картинах выглядят пурпур­ными или черными. Однако с годами они становятся серее, в то время как не покрытые лаком участки темной краски имеют глубокий пурпурно-коричневый цвет. При ультрафиолетовом ос­вещении становятся явными покрытые бурыми («лисьими») пятнами повреждения на бумаге, так же как изменения и под­чистки на старой бумаге. Такие материалы, как минералы, кос­ти и зубы, флуоресцируют при воздействии ультрафиолетового излучения. Искусственные драгоценности, которые выглядят точ­но так же, как настоящие при дневном свете, могут показаться совершенно другими при ультрафиолетовом освещении. Вместе с тем ультрафиолетовое излучение очень вредно для многих произведений изобразительного искусства.

Мощное ультрафиолетовое излучение оказывают на человека вредное воздействие и вызывает ожоги кожи и глаз.

Нужно отметить, что деление ультрафиолетового спектра на перечисленные области условно, так как свойства ультрафиолетовых лучей, характерные для одной области спектра, присущи частично и соседним областям, хотя и в меньшей степени.

2.5. Видимое излучение.

Практически все представители животного мира обладают способностью что-то «видеть». Человеческий глаз реагирует только на крошечную часть диапазона электромагнитных излучений. Именно эта область и называется видимой . Принято, что для человеческого глаза диапазон видимых длин волн занимает промежуток от 380 до 780 нм . Однако не для всех животных и насекомых эта область является видимой. Например, пчёлы могут видеть в ближней ультрафиолетовой области. Это даёт им возможность ощутить различия в цветах, недоступных человеческому зрению. Реакция человеческого гла­за и мозга на разные длины волн и интенсивность света различается в диапазоне 380 – 780 нм и это дает ощущения, которые называются цветом, текстурой, прозрачностью и т. д. Белый свет можно создать смесью всей последовательности монохроматических излучений видимой части спектра, т.е. смесью отдельных цветов (Рис. 1.2.5). Что касается человеческого глаза, то возможна такая комбинация отдельных монохроматических излучений, когда только создаётся впечатление бе­лого света, хотя он может и не быть таким по спектральному составу.

Рис. 1.2.5 – Разложение «белого» видимого света на спектральные составляющие с различными длинами волн от красного (К) до фиолетового (Ф).

Цвет и его происхождение занимали воображение многих ве­ликих естествоиспытателей. Однако лишь И.Ньютону удалось раз­работать основы теории цвета. В 1672 г. Ньютон экспе­риментально показал, что проходящий через стеклянную приз­му пучок белого света разлагается в спектр, состоящий из боль­шого числа цветов (от красного до фиолетового), которые в местах перехода посте­пенно меняются один на другой. Эти цвета являются составля­ющими, а не видоизменениями белого света. Рис. 1.2.5 иллюстри­рует это хорошо знакомое свойство прозрачных материалов и света. Объяснение экспериментальных наблюдений Ньютона с призмой заключается в том факте, что свет всех длин волн про­ходит с одной и той же скоростью только в пустоте – вакууме. Однако в любой другой среде свет разных длин волн распространяется с разной скоростью. В результате этого может проис­ходить разделение волн. Разложение средой белого света на разные цвета, или, что равнозначно, на разные длины волн, на­зывается дисперсией. Тем самым удобно подразделить видимый диапазон в соответствии с различной реакцией на цвет, вызван­ной в человеческом глазе, на семь интервалов, простирающих­ся от самой длинной до самой короткой длины волны. Эти ин­тервалы соответствуют красному, оранжевому, желтому, зеле­ному, голубому, синему и фиолетовому цвету.

Поскольку при разложении призмой видимого (белого) света в непрерыв­ный спектр в последнем цвета плавно переходят один в другой, то точно определить границы каждого цвета и связать их с определенной длиной волны затруднительно. Но приблизительно они выглядят так:

фиолетовый – 380…440 нм ;

синий – 440…480 нм ;

голубой – 480…510нм ;

зеленый – 510…550 нм ;

желто-зеленый – 550…575 нм ;

желтый – 575…585 нм ;

оранжевый – 585…620 нм ;

красный – 620…780 нм .

Электромагнитные излучения с длиной волны более 700 нм и менее 400 нм практически уже не воспринимаются глазом и поэтому достаточно часто в популярной литературе именно в этом диапазоне задают пределы видимых излучений, что не соответствует действительному положению.

Случай нормальной дисперсии представлен на рис. 1.2.5. Он наблюдается для бесцветной прозрачной среды. Этот вид дис­персии называется нормальной в связи с тем, что красный свет (наибольшая длина волны) имеет самую высокую скорость и наименьшую дисперсию, а фиолетовый свет (са­мая короткая длина волны) имеет самую низкую скорость и наибольшую дисперсию. Между красным и фиолетовым после­довательно размещаются другие цвета. Более точно – дисперсия видимого света с длиной волны изменяется прибли­зительно по закону 1/λ 3 . По этой причине самые короткие дли­ны волн обладают наибольшей дисперсией (1/λ 3 возрастает) и большой степенью ее изменения при малых вариациях (функ­ция 1/λ 3 нелинейна по λ) по сравнению с длинными волнами. Следует упомянуть, что иной тип разделения света по длинам волн, называемый аномальной дисперсией, наблюдается в цвет­ной среде. В области спектра, в которой происходит поглощение света, при аномальной дисперсии самые длинные волны имеют большую дисперсию по сравнению с короткими. Следователь­но, последовательность цветов в соответствии с рис. 1.2.5 не со­блюдается. Видимый свет может также вызвать многие химические реакции.

Подробно механизм восприятия видимых излучений изложен в §4.

2.6. Инфракрасное излучение.

Инфракрасные лучи – невидимые, они не воспринимаются человеческим глазом. Обнаружить их присутствие и действие можно лишь различными косвенными способами. Существование излучения за красной областью видимого спектра было открыто ещё в 1800 г. Уильямом Гершелем. Он заметил, что помещенный в спектр солнечного света зачерненный термометр обнаруживает значительное повышение температуры. Этот эксперимент раскрыл, что в природе существуют невидимые волны, с длиной волны больше, чем красные, и это излучение стало известно под названием инфракрасного. Разумеется, воздействия инфракрасного излучения было известно с давних времен. Ведь инфракрасное излучение, выз­ванное пламенем костра, было одним из явлений, оказавших наиболь­шее влияние на развитие человечества. Ближние инфракрасные лучи, прилегающие к длинноволновому окончанию видимой части спектра, могут быть зарегистрированы фотографическим способом. Инфракрасная фотография используется начиная с 1925 года, когда были получены сенсибилизаторы, очувствляющие фотографическую эмульсию к инфракрасной области спектра. Диапазон энергии инфракрасного излучения занимает ши­рокую область, начиная с низкоэнергетической стороны видимого спектра, т.е. реально инфракрасная область лежит за пределами красной части видимого спектра, начиная с λ= 760 нм (темно-красная линия калия), и распространяется далее, в сторону увеличения длин волн. Область от λ=760 нм до λ=3500 нм является областью практических применений инфракрасных излучений.

Существуют различные способы получения изображения в инфракрасных лучах: с помощью электронно-оптических преобразователей, способы, основанные на свойствах инфракрасных лучей гасить фосфоресценцию, водействовать на фотографический слой и оказывать тепловое действие.

Исходя из теории фотохимических реакций, можно предположить, что фотография в инфракрасных лучах, основанная на сенсибилизации фотографических материалов, вряд ли осуществима в лучах с длиной волны более 2000 нм.

Инфракрасное излучение вызывает тепловые эффекты, ко­торые могут механическим или химическим путем изменять ма­териалы, в то время как фотохимические механизмы редко при­водят к таким изменениям. При воздействии инфракрасного излучения на дерево, стекло и керамику в них происходят та­кие механические изменения, как сжатие, растрескивание и суш­ка. Не стоит упоминать о тех огромных повреждениях, которые может вызвать инфракрасное излучение на предметах из воска. Если происходят химические изменения, то обычно они являют­ся косвенным результатом инфракрасного излучения. Если хи­мическая реакция уже протекает, то независимо от того, мед­ленная она или быстрая, тепло от воздействия инфракрасного излучения всегда будет ускорять реакцию. Пожелтение пленок природного лака может быть прямым результатом воздействия инфракрасного излучения. Однако пленки искусственного лака обычно не чувствительны к инфракрасному излучению.

Инфра­красное излучение используется в инфракрасной фотографии, которая является важным методом проведения исследо­ваний произведений искусства в музеях, художественных галереях. В ряде случаев инфракрасные лучи могут про­никать сквозь зрительно непрозрачные лаки и тонкие пленки краски и с помощью электронно-оптических преобразователей, термовизионной аппаратуры, а также инфракрас­ной фотографии выявлять подкрашивание, рисунки или подправ­ленные участки. Т.е. инфракрасное излучение можно использовать для просмотра изображений через непрозрачные пленки поскольку оно является более длинноволновым по сравнению с видимым из­лучением. При этом в пленке лака инфракрасное излуче­ние рассеивается маленькими частицами значительно меньше, чем видимый свет. Поэтому инфракрасные лучи могут проникать сквозь верхние слои и преодолевать их непрозрач­ность. Становится возможным наблюдать детали рисунка в слое крас­ки, которая потемнела от старого лака и грязи. Иногда таким способом можно обнаружить подделки, поскольку нижний слой краски отличается от того, что находится на поверхности.

Фотографический способ фиксации изображения, образованного инфракрасными лучами, основан на некоторых свойствах инфракрасных излучений:

1. Инфракрасные лучи менее подвержены рассеянию в атмосфере, как и вообще в мутных средах. Они лучше проходят сквозь воздушную дымку и легкий туман по сравнению с лучами видимого света. Это дает возможность производить съемку объектов, находящихся на большом удалении, преодолевая воздушную дымку.

2. Поглощение и отражение инфракрасных лучей иное, чем лучей видимой области спектра. Поэтому многие объекты, кажущиеся по окраске и яркости одинаковыми в видимом свете, на фотографическом снимке, полученном в инфракрасных лучах, отличаются совершенно другим распределением тонов. Это позволяет обнаружить много интересных и важных особенностей снятого объекта. Например, хлорофилл, содержащийся в живой зелени листвы и травы, сильно поглощает коротковолновые видимые лучи и отражает большую часть инфракрасных лучей. Кроме того, поглощая ультрафио-
летовые лучи, хлорофилл флуоресцирует в инфракрасной области. Вследствие этого на фотографиях, сделанных на инфрахроматической пленке с применением красного светофильтра, зелень выходит неестественно белой, а голубое небо –темным. Многие краски, кажущиеся на глаз очень яркими, из-за почти полного поглощения ими инфракрасных лучей получаются на инфрахроматической пленке почти черными.

3. Инфракрасные лучи способны проникать через непрозрачные для видимого света среды. Кожа человека, тонкие слои дерева, эбонита, темные оболочки насекомых и растений и др. прозрачны для инфракрасных лучей.
Кровеносные сосуды хорошо видны через кожу, которая прозрачна для инфракрасных лучей.

4. Поскольку инфракрасные лучи невидимые, то съемка при освещении только инфракрасным светом, по существу, является съемкой в темноте. Такая фото- или киносъемка бывает необходима случаях, требующих темновой адаптации глаз, а также при всевозможных психологических исследованиях.

В настоящее время киносъемка в инфракрасных лучах применяется как в научной кинематографии, так и в производстве кинофильмов для решения некоторых изобразительных задач, для съемки «днем под ночь», для создания комбинированных кадров на фоне инфраэкрана – метод «блуждающей маски» и др.

Мощное инфракрасное излучение некоторых моделей осветительных приборов затрудняет работу персонала съёмочной группы из-за большого количества выделяемого тепла.

2.7.Виды спектров

Спектры источников света получаются при разложении их излучения по длинам волн (l ) спектральными приборами и ха­рактеризуются функцией распределения энергии испускаемо­го света в зависимости от длины волны. Излучение лучистого потока по спектру излучений может происходить с одной длиной волны, с несколькими длинами волн, а также непрерывно по отдельным участкам или по всей области оптического спектра излучений.

Монохроматическое (от греч. mόnos – один, единый и chrốma – цвет) излучение – это излучение с одной частотой или длиной волны. Излучение в интервале длин волн до 10 нм называется однородным. Совокупность монохроматических или однородных излуче­ний образует спектр .

Различают сплошные (непрерывные), полосатые, линейчатые и смешанные спектры. Сплошными (непрерывными) спектрами называются такие, в которых монохроматические составляющие заполняют без разрывов интервал длин волн, в пределах которого происходит излучение. Такой спектр ха­рактерен для ламп накаливания (рис.1.2.6) и других тепловых излучателей.

Рис. 1.2.6 – Сплошной спектр ламп накаливания

Рис. 1.2.7 – Линейчатый спектр из монохроматических излучений

Рис. 1.2.8 - Смешанный спектр люминесцентной лампы KinoFlo КF55

Рис. 1.2.9 - Сложный спектр люминесцентной лампы KinoFlo Green

Линейчатые спектры состоят из отдельных, не примыкающих друг к другу монохромати­ческих излучений (рис. 1.2.7), а смешанные содержат комбинацию спектров (рис.1.2.8). В полосатых спектрах монохромати­ческие составляющие образуют дискретные группы (полосы) в виде множества близко расположенных линий. Этот вид излучений ещё называют сложным (рис.1.2.9). Полосатые, линейчатые и смешанные спектры характерны для дуговых и газоразрядных источников света.

Из всего спектра излучений источников света только видимый свет, воздействуя на светочувствительные элементы глаза, вызыва­ет зрительное ощущение. Однородные, монохроматические видимые излучения, попадая в глаз, вызывают ощущение света определенного цвета.

Система световых величин

Нечеткое представление о тех или иных световых величинах часто является причиной серьезных ошибок, которые допускают специалисты при проектировании и эксплуатации светотехнических комплексов.

Знание световых величин необходимо студентам и профессионалам, работающим на теле-, видео- или киностудиях, и даже любителям, снимающим домашнее видео. Это поможет правильно ориентироваться в изобилии источников света, светофильтров, осветительных приборов, разобраться с функциями видеокамер, связанными со светочувствительностью, контрастностью и цветовоспроизведением.

Поскольку световые величины, являющихся численной характеристикой световых излучений, происходят от энергетических фотометрических величин, то их целесооб­разно рассматривать в совокупности, основываясь на первичнос­ти последних. Фотометрическими называют такие величины и единицы, которые характеризуют оптическое излучение. Термин "фотометрия" образован из двух греческих слов: "фос" - свет и" метрео" - измеряю, и означает световые изме­рения. Различают энергетические фотометрические и редуцированные фотометрические системы величин.

Энергетические величины – характеризуют излучение безотносительно к его воздействию на какой-либо приемник излучения. Такие энергетические величины как лучистая энергия (W e ) и лучистый поток (F e ) были рассмотрены в предыдущем разделе.Они выражаются в единицах, образованных на основе единицы энергии (Джоуль ), a в их обозначениях используется дополнительный индекс «е » (W e , F e , I e , Е e , L e ).

Редуцированные, или эффективные фотометрические величины характеризуют излучение, падающее на заданный селективный приемник излучения. Если в качестве такого приемника служит глаз человека, то полученные величины называют "световыми" , а их совокупность - "системой световых величин". В буквенных обозначенияхсветовых величин можно встретить индекс «v».

Схема формирования системы световых величин на основе энегетических представлена на рис. 1.3.1.


Рис. 1.3.1 – Схема формирования системы световых величин

Каждая из световых величин величин имеет свою энергетическую первооснову, из которой они получены:

· Световой поток F ( F v v )– первооснова лучистый поток (поток излучения) F e (Ф e )

· Сила света I (I v ) – энергетическая сила излучения (сила излучения) I e

· Освещенность Е (E v ) – энергетическая освещенность (облученность) Е e

· Яркость L (L v )– энергетическая яркость L e

Эти и другие основные энергетические и световые величины сведены в таблицу в конце раздела. Ниже будут подробно рассмотрены основные световые величины, используемые в практике телеоператора.


Похожая информация.


спектральный анализ - метод определения химического состава вещества по его спектру. Спектр – это разложение света на составные части, лучи разных цветов.
Метод исследования химического состава различных веществ по их линейчатым спектрам испускания или поглощения называют спектральным анализом. Для спектрального анализа требуется ничтожное количество вещества. Быстрота и чувствительность сделали этот метод незаменимым как в лабораториях, так и в астрофизике. Так как каждый химический элемент таблицы Менделеева излучает характерный только для него линейчатый спектр испускания и поглощения, то это дает возможность исследовать химический состав вещества. Впервые его попробовали сделать физики Кирхгоф и Бунзен в 1859 году, соорудив спектроскоп. Свет пропускался в него через узкую щель, прорезанную с одного края подзорной трубы (эта труба с щелью называется коллиматор). Из коллиматора лучи падали на призму, накрытую ящиком, оклеенным изнутри черной бумагой. Призма отклоняла в сторону лучи, которые шли из щели.
Получался спектр. После этого завесили окно шторой и поставили у щели коллиматора зажженную горелку. В пламя свечи вводили поочередно кусочки различных веществ, и смотрели через вторую подзорную трубу на получающийся спектр. Оказывалось, что раскаленные пары каждого элемента давали лучи строго определенного цвета, и призма отклоняла эти лучи на строго определенное место, и ни один цвет поэтому не мог замаскировать другой. Это позволило сделать вывод, что найден радикально новый способ химического анализа – по спектру вещества. В 1861 Кирхгоф доказал на основе этого открытия присутствие в хромосфере Солнца ряда элементов, положив начало астрофизике.

Виды спектров

- Непрерывные спектры.

Солнечный спектр или спектр дугового фонаря является непрерывным. Это означает, что в спектре представлены волны всех длин. В спектре нет разрывов, и на экране спектрографа можно видеть сплошную разноцветную полосу.

-Линейчатые спектры.

Внесем в бледное пламя газовой горелки кусочек асбеста, смоченного раствором обыкновенной поваренной соли. При наблюдении пламени в спектроскоп на фоне едва различимого непрерывного спектра пламени вспыхнет ярко желтая линия. Эту желтую линию дают пары натрия, которые образуются при расщеплении молекул поваренной соли в пламени. На спектроскопе также можно увидеть частокол цветных линий различной яркости, разделенных широкими темными полосами. Такие спектры называются линейчатыми . Наличие линейчатого спектра означает, что вещество излучает свет только вполне определенных длин волн (точнее, в определенных очень узких спектральных интервалах). Каждая из линий имеет конечную ширину.

Линейчатые спектры дают все вещества в газообразном атомарном (но не молекулярном) состоянии. В этом случае свет излучают атомы, которые практически не взаимодействуют друг с другом. Это самый фундаментальный, основной тип спектров.

Изолированные атомы данного химического элемента излучают строго определенные длины волн.

Обычно для наблюдения линейчатых спектров используют свечение паров вещества в пламени или свечение газового разряда в трубке, наполненной исследуемым газом.

-Полосатые спектры.

Полосатый спектр состоит из отдельных полос, разделенных темными промежутками. С помощью очень хорошего спектрального аппарата можно обнаружить, что каждая полоса представляет собой совокупность большого числа очень тесно расположенных линий. В отличие от линейчатых спектров полосатые спектры создаются не атомами, а молекулами, не связанными или слабо связанными друг с другом.
Для наблюдения молекулярных спектров так же, как и для наблюдения линейчатых спектров, обычно используют свечение паров в пламени или свечение газового разряда.
Спектры поглощения.

Все вещества, атомы которых находятся в возбужденном состоянии, излучают световые волны, энергия которых определенным образом распределена по длинам волн. Поглощение света веществом также зависит от длины волны. Так, красное стекло пропускает волны, соответствующие красному свету (l»8·10 -5 см), и поглощает все остальные.

Если пропускать белый свет сквозь холодный, неизлучающий газ, то на фоне непрерывного спектра источника появляются темные линии. Газ поглощает наиболее интенсивно свет как раз тех длин волн, которые он испускает в сильно нагретом состоянии. Темные линии на фоне непрерывного спектра - это линии поглощения, образующие в совокупности спектр поглощения.

Существуют непрерывные, линейчатые и полосатые спектры излучения и столько же видов спектров поглощения.

Цвет - качественная субъективная характеристика электромагнитного излучения оптического диапазона, определяемая на основании возникающего физиологического зрительного ощущения и зависящая от ряда физических, физиологических и психологических факторов.

Ощущение, которое возникает в мозгу человека после того, как световые излучения различного спектрального состава, отразившиеся от окрашенных поверхностей, попадают на сетчатку глаза. Аналогичное действие оказывают световые излучения, непосредственно испускаемые светящимися телами. Цвет характеризуется светлотой, цветовым тоном и насыщенностью.

В Англии основными цветами долго считали красный, жёлтый и синий, лишь в 1860 г. Максвелл ввел аддитивную систему RGB (красный, зелёный, синий). Эта система в настоящее время доминирует в системах цветовоспроизведения для мониторов и телевизоров. В 1931 CIE разработала цветовую систему XYZ, называемую также «нормальная цветовая система». В 1951 г. Энди Мюллер предложил субтрактивную систему CMYK (сине-зелёный, пурпурный, жёлтый, чёрный), которая имела преимущества в полиграфии и цветной фотографии, и потому быстро «прижилась».

Живая природа не может существовать без света, так как солнечная радиация, достигающая поверхности Земли, является практически единственным источником энергии для поддержания теплового баланса планеты, создания органических веществ фототрофными организмами биосферы, что в итоге обеспечивает формирование среды, способной удовлетворить жизненные потребности всех живых существ.
Световой режим любого местообитания зависит от его географической широты, высоты над уровнем моря, состояния атмосферы, растительности, сезона и времени суток, солнечной активности и т. д. Поэтому разнообразие световых условий на нашей планете чрезвычайно велико: от таких сильно освещенных территорий, как высокогорья, пустыни, степи, до сумеречного освещения в водных глубинах и пещерах.

Биологическое действие солнечного света зависит от его спектрального состава, продолжительности, интенсивности, суточной и сезонной периодичности.

Солнечная радиация представляет собой электромагнитное излучение в широком диапазоне волн, составляющих непрерывный спектр от 290 до 3 000 нм. Ультрафиолетовые лучи (УФЛ) короче 290 им, губительные для живых организмов, поглощаются слоем озона и до Земли не доходят. Земли достигают главным образом инфракрасные (около 50% суммарной радиации) и видимые (45%) лучи спектра. На долю УФЛ, имеющих длину волны 290-380 нм, приходится 5% лучистой энергии. Длинноволновые УФЛ, обладающие большой энергией фотонов, отличаются высокой химической активностью. В небольших дозах они оказывают мощное бактерицидное действие, способствуют синтезу у растений некоторых витаминов, пигментов, а у животных и человека - витамина D; кроме того, у человека они вызывают загар, который является защитной реакцией кожи. Инфракрасные лучи длиной волны более 710 нм оказывают тепловое действие.

В экологическом отношении наибольшую значимость представляет видимая область спектра (390-710 нм), или фотосинтетически активная радиация(ФАР), которая поглощается пигментами хлоропластов и тем самым имеет решающее значение в жизни растений. Видимый свет нужен зеленым растениям для образования хлорофилла, формирования структуры хлоропластов; он регулирует работу устьичного аппарата, влияет на газообмен и транспирацию, стимулирует биосинтез белков и нуклеиновых кислот, повышает активность ряда светочувствительных ферментов. Свет влияет также на деление и растяжение клеток, ростовые процессы и на развитие растений, определяет сроки цветения и плодоношения, оказывает формообразующее воздействие.
Свет с разной частотой излучения (и разного цвета в видимом диапазоне) по-разному влияет на рост, развитие растений и фотосинтез. В основном растения поглощают синий и красный цвет, а зеленый отражают или пропускают. В результате зеленый свет используется листьями наименее эффективно. Именно поэтому листья растений, в основном, зеленого цвета. Зависимость поглощения и усвоения энергии растениями от длины волны светового излучения называют энергетическим спектром фотосинтетической активной радиации (излучения). По сути, фотосинтетическое активное излучение - это поток энергии определенного спектра, обычно мощность излучения

Поглощаемая растениями энергия света расходуется на фотосинтез, фотоморфогинез, синтез хлорофилла, а часть энергии идет на нагрев и переизлучение. Активность этих процессов зависит от длины волны по-разному. Изменяя составляющие излучения синей, зеленой и красной части спектра, можно влиять на прорастание, рост или торможение разных биологических процессов и стадий фотосинтеза. Исследования показали, что ФАР – излучение оказывает влияние не только на растения, но и значительно замедляет развитие патогенных грибков и бактерий на облучаемых растениях.

Все растения по-разному воспринимают разные длины волн в спектре ФАР. Это связано с разным поглощением разных типов пигментов в листьях. Основные пигменты листьев - хлорофиллы a и b, поглощают свет синего и красного диапазонов, каротиноиды поглощают свет синего диапазона. Обобщение данных поглощения света листьями разных культур позволило рассчитать специалистам Конструкторского бюро «Оптимум» эффективную спектральную кривую поглощения «среднего» зеленого листа и спектры для основных агропромышленных культур (томатов, огурцов, перцев).