Методы решения пределов. Неопределённости.
Порядок роста функции. Метод замены

Пример 4

Найти предел

Это более простой пример для самостоятельного решения. В предложенном примере снова неопределённость ( более высокого порядка роста, чем корень ).

Если «икс» стремится к «минус бесконечности»

Призрак «минус бесконечности» уже давно витал в этой статье. Рассмотрим пределы с многочленами, в которых . Принципы и методы решения будут точно такими же, что и в первой части урока, за исключением ряда нюансов.

Рассмотрим 4 фишки, которые потребуются для решения практических заданий:

1) Вычислим предел

Значение предела зависит только от слагаемого , поскольку оно обладает самым высоким порядком роста. Если , то бесконечно большое по модулю отрицательное число в ЧЁТНОЙ степени , в данном случае – в четвёртой, равно «плюс бесконечности»: . Константа («двойка») положительна , поэтому:

2) Вычислим предел

Здесь старшая степень опять чётная , поэтому: . Но перед расположился «минус» (отрицательная константа –1), следовательно:

3) Вычислим предел

Значение предела зависит только от . Как вы помните из школы, «минус» «выскакивает» из-под нечётной степени, поэтому бесконечно большое по модулю отрицательное число в НЕЧЁТНОЙ степени равно «минус бесконечности», в данном случае: .
Константа («четвёрка») положительна , значит:

4) Вычислим предел

Первый парень на деревне снова обладает нечётной степенью, кроме того, за пазухой отрицательная константа, а значит: Таким образом:
.

Пример 5

Найти предел

Используя вышеизложенные пункты, приходим к выводу, что здесь неопределённость . Числитель и знаменатель одного порядка роста, значит, в пределе получится конечное число. Узнаем ответ, отбросив всех мальков:

Решение тривиально:

Пример 6

Найти предел

Это пример для самостоятельного решения. Полное решение и ответ в конце урока.

А сейчас, пожалуй, самый тонкий из случаев:

Пример 7

Найти предел

Рассматривая старшие слагаемые, приходим к выводу, что здесь неопределённость . Числитель более высокого порядка роста, чем знаменатель, поэтому сразу можно сказать, что предел равен бесконечности. Но какой бесконечности, «плюс» или «минус»? Приём тот же – в числителе и знаменателе избавимся от мелочи:

Решаем:

Разделим числитель и знаменатель на

Пример 15

Найти предел

Это пример для самостоятельного решения. Примерный образец чистового оформления в конце урока.

Ещё пара занятных примеров на тему замены переменной:

Пример 16

Найти предел

При подстановке единицы в предел получается неопределённость . Замена переменной уже напрашивается, но сначала преобразуем тангенс по формуле . Действительно, зачем нам тангенс?

Заметьте, что , поэтому . Если не совсем понятно, посмотрите значения синуса в тригонометрической таблице . Таким образом, мы сразу избавляемся от множителя , кроме того, получаем более привычную неопределённость 0:0. Хорошо бы ещё и предел у нас стремился к нулю.

Проведем замену:

Если , то

Под косинусом у нас находится «икс», который тоже необходимо выразить через «тэ».
Из замены выражаем: .

Завершаем решение:

(1) Проводим подстановку

(2) Раскрываем скобки под косинусом.

(4) Чтобы организовать первый замечательный предел , искусственно домножаем числитель на и обратное число .

Задание для самостоятельного решения:

Пример 17

Найти предел

Полное решение и ответ в конце урока.

Это были несложные задачи в своём классе, на практике всё бывает хуже, и, помимо формул приведения , приходится использовать самые разные тригонометрические формулы , а также прочие ухищрения. В статье Сложные пределы я разобрал пару настоящих примеров =)

В канун праздника окончательно проясним ситуацию ещё с одной распространённой неопределённостью:

Устранение неопределённости «единица в степени бесконечность»

Данную неопределённость «обслуживает» второй замечательный предел , и во второй части того урока мы очень подробно рассмотрели стандартные примеры решений, которые в большинстве случаев встречаются на практике. Сейчас картина с экспонентами будет завершена, кроме того, заключительные задания урока будут посвящены пределам-«обманкам», в которых КАЖЕТСЯ, что необходимо применить 2-й замечательный предел, хотя это вовсе не так.

Недостаток двух рабочих формул 2-го замечательного предела состоит в том, что аргумент должен стремиться к «плюс бесконечности» либо к нулю. Но что делать, если аргумент стремится к другому числу?

На помощь приходит универсальная формула (которая на самом деле является следствием второго замечательного предела):

Неопределённость можно устранить по формуле:

Где-то вроде уже пояснял, что обозначают квадратные скобки. Ничего особенного, скобки как скобки. Обычно их используют, чтобы чётче выделить математическую запись.

Выделим существенные моменты формулы:

1) Речь идёт только о неопределённости и никакой другой .

2) Аргумент «икс» может стремиться к произвольному значению (а не только к нулю или ), в частности, к «минус бесконечности» либо к любому конечному числу.

С помощью данной формулы можно решить все примеры урока Замечательные пределы , которые относятся ко 2-му замечательному пределу. Например, вычислим предел :

В данном случае , и по формуле :

Правда, делать так не советую, в традициях всё-таки применять «обычное» оформление решения, если его можно применить. Однако с помощью формулы очень удобно выполнять проверку «классических» примеров на 2-й замечательный предел.

Для тех, кто хочет научиться находить пределы в данной статье мы расскажем об этом. Не будем углубляться в теорию, обычно её дают на лекциях преподаватели. Так что "скучная теория" должна быть у Вас законспектирована в тетрадках. Если этого нет, то почитать можно учебники взятые в библиотеке учебного заведения или на других интернет-ресурсах.

Итак, понятие предела достаточно важно в изучении курса высшей математики, особенно когда вы столкнетесь с интегральным исчислением и поймёте связь между пределом и интегралом. В текущем материале будут рассмотрены простые примеры, а также способы их решения.

Примеры решений

Пример 1
Вычислить а) $ \lim_{x \to 0} \frac{1}{x} $; б)$ \lim_{x \to \infty} \frac{1}{x} $
Решение

а) $$ \lim \limits_{x \to 0} \frac{1}{x} = \infty $$

б)$$ \lim_{x \to \infty} \frac{1}{x} = 0 $$

Нам часто присылают эти пределы с просьбой помочь решить. Мы решили их выделить отдельным примером и пояснить, что данные пределы необходимо просто запомнить, как правило.

Если не получается решить свою задачу, то присылайте её к нам. Мы предоставим подробное решение. Вы сможете ознакомиться с ходом вычисления и почерпнуть информацию. Это поможет своевременно получить зачёт у преподавателя!

Ответ
$$ \text{a)} \lim \limits_{x \to 0} \frac{1}{x} = \infty \text{ б)}\lim \limits_{x \to \infty} \frac{1}{x} = 0 $$

Что делать с неопределенностью вида: $ \bigg [\frac{0}{0} \bigg ] $

Пример 3
Решить $ \lim \limits_{x \to -1} \frac{x^2-1}{x+1} $
Решение

Как всегда начинаем с подстановки значения $ x $ в выражение, стоящее под знаком предела.

$$ \lim \limits_{x \to -1} \frac{x^2-1}{x+1} = \frac{(-1)^2-1}{-1+1}=\frac{0}{0} $$

Что теперь дальше? Что же должно получиться в итоге? Так как это неопределенность, то это ещё не ответ и продолжаем вычисление. Так как в числители у нас многочлен, то разложим его на множители, помощью знакомой всем формулы ещё со школьной скамьи $$ a^2-b^2=(a-b)(a+b) $$. Вспомнили? Отлично! Теперь вперед и с песней применять её :)

Получаем, что числитель $ x^2-1=(x-1)(x+1) $

Продолжаем решать учитывая вышеприведенное преобразование:

$$ \lim \limits_{x \to -1}\frac{x^2-1}{x+1} = \lim \limits_{x \to -1}\frac{(x-1)(x+1)}{x+1} = $$

$$ = \lim \limits_{x \to -1}(x-1)=-1-1=-2 $$

Ответ
$$ \lim \limits_{x \to -1} \frac{x^2-1}{x+1} = -2 $$

Устремим предел в последних двух примерах к бесконечности и рассмотрим неопределенность: $ \bigg [\frac{\infty}{\infty} \bigg ] $

Пример 5
Вычислить $ \lim \limits_{x \to \infty} \frac{x^2-1}{x+1} $
Решение

$ \lim \limits_{x \to \infty} \frac{x^2-1}{x+1} = \frac{\infty}{\infty} $

Что же делать? Как быть? Не стоит паниковать, потому что невозможное - возможно. Нужно вынести за скобки и в числителе и в знаменателе икс, а потом его сократить. После этого предел попытаться вычислить. Пробуем...

$$ \lim \limits_{x \to \infty} \frac{x^2-1}{x+1} =\lim \limits_{x \to \infty} \frac{x^2(1-\frac{1}{x^2})}{x(1+\frac{1}{x})} = $$

$$ = \lim \limits_{x \to \infty} \frac{x(1-\frac{1}{x^2})}{(1+\frac{1}{x})} = $$

Используя определение из примера 2 и подставляя в место х бесконечность получаем:

$$ = \frac{\infty(1-\frac{1}{\infty})}{(1+\frac{1}{\infty})} = \frac{\infty \cdot 1}{1+0} = \frac{\infty}{1} = \infty $$

Ответ
$$ \lim \limits_{x \to \infty} \frac{x^2-1}{x+1} = \infty $$

Алгоритм вычисления лимитов

Итак, давайте кратко подведем итог разобранным примерам и составим алгоритм решения пределов:

  1. Подставить точку х в выражение, следующее после знака предела. Если получается определенное число, либо бесконечность, то предел решен полностью. В противном случае имеем неопределенность: "ноль делить на ноль" или "бесконечность делить на бесконечность" и переходим к следующим пунктам инструкции.
  2. Чтобы устранить неопределенность "ноль делить на ноль" нужно разложить числитель и знаменатель на множители. Сократить подобные. Подставить точку х в выражение, стоящее под знаком предела.
  3. Если неопределенность "бесконечность делить на бесконечность", тогда выносим и в числителе, и в знаменателе x наибольшей степени. Сокращаем иксы. Подставляем значения икса из под предела в оставшееся выражение.

В этой статье Вы ознакомились с основами решения пределов, часто используемых в курсе Математического анализа. Конечно же это не все типы задач, предлагающихся экзаменаторами, а только простейшие пределы. В следующих статьях поговорим о других типах заданий, но сперва необходимо усвоить этот урок, чтобы двигаться далее. Обсудим, что делать, если есть корни, степени, изучим бесконечно малые эквивалентные функции, замечательные пределы, правило Лопиталя.

Если у Вас не получается самостоятельно решить пределы, то не паникуйте. Мы всегда рады помочь!

В данной теме мы рассмотрим все три перечисленные выше группы пределов с иррациональностями. Начнём с пределов, содержащих неопределенность вида $\frac{0}{0}$.

Раскрытие неопределенности $\frac{0}{0}$.

Схема решения стандартных примеров такого типа обычно состоит из двух шагов:

  • Избавляемся от иррациональности, вызвавшей неопределенность, домножая на так называемое "сопряжённое" выражение;
  • При необходимости раскладываем выражение в числителе или знаменателе (или и там и там) на множители;
  • Сокращаем множители, приводящие к неопределённости, и вычисляем искомое значение предела.

Термин "сопряжённое выражение", использованный выше, будет детально пояснён в примерах. Пока что останавливаться на нём подробно нет резона. Вообще, можно пойти иным путём, без использования сопряжённого выражения. Иногда от иррациональности может избавить удачно подобранная замена. Такие примеры редки в стандартных контрольных работах, поэтому на использование замены рассмотрим лишь один пример №6 (см. вторую часть данной темы).

Нам понадобится несколько формул, которые я запишу ниже:

\begin{equation} a^2-b^2=(a-b)\cdot(a+b) \end{equation} \begin{equation} a^3-b^3=(a-b)\cdot(a^2+ab+b^2) \end{equation} \begin{equation} a^3+b^3=(a+b)\cdot(a^2-ab+b^2) \end{equation} \begin{equation} a^4-b^4=(a-b)\cdot(a^3+a^2 b+ab^2+b^3)\end{equation}

Кроме того, предполагаем, что читатель знает формулы для решения квадратных уравнений. Если $x_1$ и $x_2$ - корни квадратного трёхчлена $ax^2+bx+c$, то разложить его на множители можно по следующей формуле:

\begin{equation} ax^2+bx+c=a\cdot(x-x_1)\cdot(x-x_2) \end{equation}

Формул (1)-(5) вполне хватит для решения стандартных задач, к которым мы сейчас и перейдём.

Пример №1

Найти $\lim_{x\to 3}\frac{\sqrt{7-x}-2}{x-3}$.

Так как $\lim_{x\to 3}(\sqrt{7-x}-2)=\sqrt{7-3}-2=\sqrt{4}-2=0$ и $\lim_{x\to 3} (x-3)=3-3=0$, то в заданном пределе мы имеем неопределённость вида $\frac{0}{0}$. Раскрыть эту неопределённость нам мешает разность $\sqrt{7-x}-2$. Для того, чтобы избавляться от подобных иррациональностей, применяют умножение на так называемое "сопряжённое выражение". Как действует такое умножение мы сейчас и рассмотрим. Умножим $\sqrt{7-x}-2$ на $\sqrt{7-x}+2$:

$$(\sqrt{7-x}-2)(\sqrt{7-x}+2)$$

Чтобы раскрыть скобки применим , подставив в правую часть упомянутой формулы $a=\sqrt{7-x}$, $b=2$:

$$(\sqrt{7-x}-2)(\sqrt{7-x}+2)=(\sqrt{7-x})^2-2^2=7-x-4=3-x.$$

Как видите, если умножить числитель на $\sqrt{7-x}+2$, то корень (т.е. иррациональность) в числителе исчезнет. Вот это выражение $\sqrt{7-x}+2$ и будет сопряжённым к выражению $\sqrt{7-x}-2$. Однако мы не вправе просто взять и умножить числитель на $\sqrt{7-x}+2$, ибо это изменит дробь $\frac{\sqrt{7-x}-2}{x-3}$, стоящую под пределом. Умножать нужно одовременно и числитель и знаменатель:

$$ \lim_{x\to 3}\frac{\sqrt{7-x}-2}{x-3}= \left|\frac{0}{0}\right|=\lim_{x\to 3}\frac{(\sqrt{7-x}-2)\cdot(\sqrt{7-x}+2)}{(x-3)\cdot(\sqrt{7-x}+2)}$$

Теперь вспомним, что $(\sqrt{7-x}-2)(\sqrt{7-x}+2)=3-x$ и раскроем скобки. А после раскрытия скобок и небольшого преобразования $3-x=-(x-3)$ сократим дробь на $x-3$:

$$ \lim_{x\to 3}\frac{(\sqrt{7-x}-2)\cdot(\sqrt{7-x}+2)}{(x-3)\cdot(\sqrt{7-x}+2)}= \lim_{x\to 3}\frac{3-x}{(x-3)\cdot(\sqrt{7-x}+2)}=\\ =\lim_{x\to 3}\frac{-(x-3)}{(x-3)\cdot(\sqrt{7-x}+2)}= \lim_{x\to 3}\frac{-1}{\sqrt{7-x}+2} $$

Неопределенность $\frac{0}{0}$ исчезла. Сейчас можно легко получить ответ данного примера:

$$ \lim_{x\to 3}\frac{-1}{\sqrt{7-x}+2}=\frac{-1}{\sqrt{7-3}+2}=-\frac{1}{\sqrt{4}+2}=-\frac{1}{4}.$$

Замечу, что сопряжённое выражение может менять свою структуру - в зависимости от того, какую именно иррациональность оно должно убрать. В примерах №4 и №5 (см. вторую часть данной темы) будет использован иной вид сопряжённого выражения.

Ответ : $\lim_{x\to 3}\frac{\sqrt{7-x}-2}{x-3}=-\frac{1}{4}$.

Пример №2

Найти $\lim_{x\to 2}\frac{3x^2-5x-2}{\sqrt{x^2+5}-\sqrt{7x^2-19}}$.

Так как $\lim_{x\to 2}(\sqrt{x^2+5}-\sqrt{7x^2-19})=\sqrt{2^2+5}-\sqrt{7\cdot 2^2-19}=3-3=0$ и $\lim_{x\to 2}(3x^2-5x-2)=3\cdot2^2-5\cdot 2-2=0$, то мы имеем дело с неопределённостью вида $\frac{0}{0}$. Избавимся от иррациональности в знаменателе данной дроби. Для этого доможим и числитель и знаменатель дроби $\frac{3x^2-5x-2}{\sqrt{x^2+5}-\sqrt{7x^2-19}}$ на выражение $\sqrt{x^2+5}+\sqrt{7x^2-19}$, сопряжённое к знаменателю:

$$ \lim_{x\to 2}\frac{3x^2-5x-2}{\sqrt{x^2+5}-\sqrt{7x^2-19}}=\left|\frac{0}{0}\right|= \lim_{x\to 2}\frac{(3x^2-5x-2)(\sqrt{x^2+5}+\sqrt{7x^2-19})}{(\sqrt{x^2+5}-\sqrt{7x^2-19})(\sqrt{x^2+5}+\sqrt{7x^2-19})} $$

Вновь, как и в примере №1, нужно использовать для раскрытия скобок. Подставив в правую часть упомянутой формулы $a=\sqrt{x^2+5}$, $b=\sqrt{7x^2-19}$, получим такое выражение для знаменателя:

$$ \left(\sqrt{x^2+5}-\sqrt{7x^2-19}\right)\left(\sqrt{x^2+5}+\sqrt{7x^2-19}\right)=\\ =\left(\sqrt{x^2+5}\right)^2-\left(\sqrt{7x^2-19}\right)^2=x^2+5-(7x^2-19)=-6x^2+24=-6\cdot(x^2-4) $$

Вернёмся к нашему пределу:

$$ \lim_{x\to 2}\frac{(3x^2-5x-2)(\sqrt{x^2+5}+\sqrt{7x^2-19})}{(\sqrt{x^2+5}-\sqrt{7x^2-19})(\sqrt{x^2+5}+\sqrt{7x^2-19})}= \lim_{x\to 2}\frac{(3x^2-5x-2)(\sqrt{x^2+5}+\sqrt{7x^2-19})}{-6\cdot(x^2-4)}=\\ =-\frac{1}{6}\cdot \lim_{x\to 2}\frac{(3x^2-5x-2)(\sqrt{x^2+5}+\sqrt{7x^2-19})}{x^2-4} $$

В примере №1 практически сразу после домножения на сопряжённое выражение произошло сокращение дроби. Здесь перед сокращением придётся разложить на множители выражения $3x^2-5x-2$ и $x^2-4$, а уж потом перейти к сокращению. Чтобы разложить на множители выражение $3x^2-5x-2$ нужно использовать . Для начала решим квадратное уравнение $3x^2-5x-2=0$:

$$ 3x^2-5x-2=0\\ \begin{aligned} & D=(-5)^2-4\cdot3\cdot(-2)=25+24=49;\\ & x_1=\frac{-(-5)-\sqrt{49}}{2\cdot3}=\frac{5-7}{6}=-\frac{2}{6}=-\frac{1}{3};\\ & x_2=\frac{-(-5)+\sqrt{49}}{2\cdot3}=\frac{5+7}{6}=\frac{12}{6}=2. \end{aligned} $$

Подставляя $x_1=-\frac{1}{3}$, $x_2=2$ в , будем иметь:

$$ 3x^2-5x-2=3\cdot\left(x-\left(-\frac{1}{3}\right)\right)(x-2)=3\cdot\left(x+\frac{1}{3}\right)(x-2)=\left(3\cdot x+3\cdot\frac{1}{3}\right)(x-2) =(3x+1)(x-2). $$

Теперь настал черёд разложить на множители выражение $x^2-4$. Воспользуемся , подставив в неё $a=x$, $b=2$:

$$ x^2-4=x^2-2^2=(x-2)(x+2) $$

Используем полученные результаты. Так как $x^2-4=(x-2)(x+2)$ и $3x^2-5x-2=(3x+1)(x-2)$, то:

$$ -\frac{1}{6}\cdot \lim_{x\to 2}\frac{(3x^2-5x-2)(\sqrt{x^2+5}+\sqrt{7x^2-19})}{x^2-4} =-\frac{1}{6}\cdot \lim_{x\to 2}\frac{(3x+1)(x-2)(\sqrt{x^2+5}+\sqrt{7x^2-19})}{(x-2)(x+2)} $$

Сокращая на скобку $x-2$ получим:

$$ -\frac{1}{6}\cdot \lim_{x\to 2}\frac{(3x+1)(x-2)(\sqrt{x^2+5}+\sqrt{7x^2-19})}{(x-2)(x+2)} =-\frac{1}{6}\cdot \lim_{x\to 2}\frac{(3x+1)(\sqrt{x^2+5}+\sqrt{7x^2-19})}{x+2}. $$

Всё! Неопределённость исчезла. Ещё один шаг и мы приходим к ответу:

$$ -\frac{1}{6}\cdot \lim_{x\to 2}\frac{(3x+1)(\sqrt{x^2+5}+\sqrt{7x^2-19})}{x+2}=\\ =-\frac{1}{6}\cdot\frac{(3\cdot 2+1)(\sqrt{2^2+5}+\sqrt{7\cdot 2^2-19})}{2+2}= -\frac{1}{6}\cdot\frac{7(3+3)}{4}=-\frac{7}{4}. $$

Ответ : $\lim_{x\to 2}\frac{3x^2-5x-2}{\sqrt{x^2+5}-\sqrt{7x^2-19}}=-\frac{7}{4}$.

В следующем примере рассмотрим случай, когда иррациональности будут присутствовать как в числителе, так и в знаменателе дроби.

Пример №3

Найти $\lim_{x\to 5}\frac{\sqrt{x+4}-\sqrt{x^2-16}}{\sqrt{x^2-3x+6}-\sqrt{5x-9}}$.

Так как $\lim_{x\to 5}(\sqrt{x+4}-\sqrt{x^2-16})=\sqrt{9}-\sqrt{9}=0$ и $\lim_{x\to 5}(\sqrt{x^2-3x+6}-\sqrt{5x-9})=\sqrt{16}-\sqrt{16}=0$, то мы имеем неопределённость вида $\frac{0}{0}$. Так как в данном случае корни наличествуют и в знаменателе, и в числителе, то дабы избавиться от неопределённости придется домножать сразу на две скобки. Во-первых, на выражение $\sqrt{x+4}+\sqrt{x^2-16}$, сопряжённое числителю. А во-вторых на выражение $\sqrt{x^2-3x+6}-\sqrt{5x-9}$, сопряжённое знаменателю.

$$ \lim_{x\to 5}\frac{\sqrt{x+4}-\sqrt{x^2-16}}{\sqrt{x^2-3x+6}-\sqrt{5x-9}}=\left|\frac{0}{0}\right|=\\ =\lim_{x\to 5}\frac{(\sqrt{x+4}-\sqrt{x^2-16})(\sqrt{x+4}+\sqrt{x^2-16})(\sqrt{x^2-3x+6}+\sqrt{5x-9})}{(\sqrt{x^2-3x+6}-\sqrt{5x-9})(\sqrt{x^2-3x+6}+\sqrt{5x-9})(\sqrt{x+4}+\sqrt{x^2-16})} $$ $$ -x^2+x+20=0;\\ \begin{aligned} & D=1^2-4\cdot(-1)\cdot 20=81;\\ & x_1=\frac{-1-\sqrt{81}}{-2}=\frac{-10}{-2}=5;\\ & x_2=\frac{-1+\sqrt{81}}{-2}=\frac{8}{-2}=-4. \end{aligned} \\ -x^2+x+20=-1\cdot(x-5)(x-(-4))=-(x-5)(x+4). $$

Для выражения $x^2-8x+15$ получим:

$$ x^2-8x+15=0;\\ \begin{aligned} & D=(-8)^2-4\cdot 1\cdot 15=4;\\ & x_1=\frac{-(-8)-\sqrt{4}}{2}=\frac{6}{2}=3;\\ & x_2=\frac{-(-8)+\sqrt{4}}{2}=\frac{10}{2}=5. \end{aligned}\\ x^2+8x+15=1\cdot(x-3)(x-5)=(x-3)(x-5). $$

Подставляя полученные разожения $-x^2+x+20=-(x-5)(x+4)$ и $x^2+8x+15=(x-3)(x-5)$ в рассматриваемый предел, будем иметь:

$$ \lim_{x\to 5}\frac{(-x^2+x+20)(\sqrt{x^2-3x+6}+\sqrt{5x-9})}{(x^2-8x+15)(\sqrt{x+4}+\sqrt{x^2-16})}= \lim_{x\to 5}\frac{-(x-5)(x+4)(\sqrt{x^2-3x+6}+\sqrt{5x-9})}{(x-3)(x-5)(\sqrt{x+4}+\sqrt{x^2-16})}=\\ =\lim_{x\to 5}\frac{-(x+4)(\sqrt{x^2-3x+6}+\sqrt{5x-9})}{(x-3)(\sqrt{x+4}+\sqrt{x^2-16})}= \frac{-(5+4)(\sqrt{5^2-3\cdot 5+6}+\sqrt{5\cdot 5-9})}{(5-3)(\sqrt{5+4}+\sqrt{5^2-16})}=-6. $$

Ответ : $\lim_{x\to 5}\frac{\sqrt{x+4}-\sqrt{x^2-16}}{\sqrt{x^2-3x+6}-\sqrt{5x-9}}=-6$.

В следующей (второй) части рассмотрим ещё пару примеров, в которых сопряжённое выражение будет иметь иной вид, нежели в предыдущих задачах. Главное, помните, что цель использования сопряжённого выражения - избавиться от иррациональности, вызывающей неопределённость.

Среди задач на решение пределов попадаются пределы с корнями. В результате подстановки значения $ x $ в функцию получаются неопределенности трёх видов:

  1. $ \bigg [\frac{0}{0} \bigg ] $
  2. $ \bigg [\frac{\infty}{\infty} \bigg ] $
  3. $ \bigg [\infty-\infty \bigg ] $

Перед тем, как приступить к решению определите тип своей задачи

Тип 1 $ \bigg [\frac{0}{0} \bigg ] $

Для того, чтобы раскрывать такие неопределенности необходимо домножить числитель и знаменатель дроби на сопряженное к выражению содержащему корень.

Пример 1
Найти предел с корнем $$ \lim \limits_{x \to 4} \frac{x-4}{4-\sqrt{x+12}} $$
Решение

Подставляем $ x \to 4 $ в подпределельную функцию:

$$ \lim \limits_{x \to 4} \frac{x-4}{4-\sqrt{x+12}} = \frac{0}{0} = $$

Получаем неопределенность $ [\frac{0}{0}] $. Домножим числитель и знаменатель на выражение сопряженное к нему, так как он содержит корень: $ 4+\sqrt{x+12} $

$$ = \lim \limits_{x \to 4} \frac{(x-4)(4+\sqrt{x+12})}{(4-\sqrt{x+12})(4+\sqrt{x+12})} = $$

Используя формулу разности квадратов $ (a-b)(a+b) = a^2-b^2 $ приведем предел к следующему виду:

$$ = \lim \limits_{x \to 4} \frac{(x-4)(4+\sqrt{x+12})}{16-(x+12)} = $$

Раскрываем скобки в знаменателе и упрощаем его:

$$ = \lim \limits_{x \to 4} \frac{(x-4)(4+\sqrt{x+12})}{4-x} = $$

Сокращам функцию в пределе на $ x-4 $, имеем:

$$ = -\lim \limits_{x \to 4} (4+\sqrt{x+12}) = -(4+\sqrt{4+12}) = -8 $$

Если не получается решить свою задачу, то присылайте её к нам. Мы предоставим подробное решение. Вы сможете ознакомиться с ходом вычисления и почерпнуть информацию. Это поможет своевременно получить зачёт у преподавателя!

Ответ
$$ \lim \limits_{x \to 4} \frac{x-4}{4-\sqrt{x+12}} = -8 $$

Тип 2 $ \bigg [\frac{\infty}{\infty} \bigg ] $

Пределы с корнем такого типа, когда $ x \to \infty $ вычислять нужно по-другому в отличии от предыдущего случая. Необходимо определить старшие степени выражений числителя и знаменателя. Затем вынести самую старшую из двух степеней за скобки и сократить.

Тип 3 $ \bigg [\infty-\infty \bigg ] $

Этот вид пределов часто попадается в дополнительных заданиях на экзамене. Ведь часто студенты не правильно вычисляют пределы такого типа. Как решать пределы с корнями данного вида? Всё просто. Необходимо умножить и разделить функцию, стоящую в пределе, на выражение сопряженное к ней.

Пример 3
Вычислить предел корня $$ \lim \limits_{x \to \infty} \sqrt{x^2-3x}-x $$
Решение

При $ x \to \infty $ в пределе видим:

$$ \lim \limits_{x \to \infty} \sqrt{x^2-3x}-x = [\infty - \infty] = $$

После домножения и разделения на сопряженное имеем предел:

$$ \lim \limits_{x \to \infty} \frac{(\sqrt{x^2-3x}-x)(\sqrt{x^2-3x}+x)}{\sqrt{x^2-3x}+x} = $$

Упростим числитель, используя формулу разности квадратов: $ (a-b)(a+b)=a^2-b^2 $

$$ = \lim \limits_{x \to \infty} \frac{(x^2-3x)-x^2}{\sqrt{x^2-3x}+x} = $$

После раскрытия скобок и упрощения получаем:

$$ \lim \limits_{x \to \infty} \frac{-3x}{\sqrt{x^2-3x}+x} = $$

$$ = \lim \limits_{x \to \infty} \frac{-3x}{x(\sqrt{1-\frac{3}{x}}+1)} = \lim \limits_{x \to \infty} \frac{-3}{\sqrt{1-\frac{3}{x}}+1} = $$

Снова подставляем $ x \to \infty $ в предел и вычисляем его:

$$ = \frac{-3}{\sqrt{1-0}+1} = -\frac{3}{2} $$

Ответ
$$ \lim \limits_{x \to \infty} \sqrt{x^2-3x}-x = -\frac{3}{2} $$

Этот математический калькулятор онлайн поможет вам если нужно вычислить предел функции . Программа решения пределов не просто даёт ответ задачи, она приводит подробное решение с пояснениями , т.е. отображает процесс вычисления предела.

Данная программа может быть полезна учащимся старших классов общеобразовательных школ при подготовке к контрольным работам и экзаменам, при проверке знаний перед ЕГЭ, родителям для контроля решения многих задач по математике и алгебре. А может быть вам слишком накладно нанимать репетитора или покупать новые учебники? Или вы просто хотите как можно быстрее сделать домашнее задание по математике или алгебре? В этом случае вы также можете воспользоваться нашими программами с подробным решением.

Таким образом вы можете проводить своё собственное обучение и/или обучение своих младших братьев или сестёр, при этом уровень образования в области решаемых задач повышается.

Введите выражение функции
Вычислить предел

Обнаружено что не загрузились некоторые скрипты, необходимые для решения этой задачи, и программа может не работать.
Возможно у вас включен AdBlock.
В этом случае отключите его и обновите страницу.

У вас в браузере отключено выполнение JavaScript.
Чтобы решение появилось нужно включить JavaScript.
Вот инструкции, как включить JavaScript в вашем браузере .

Т.к. желающих решить задачу очень много, ваш запрос поставлен в очередь.
Через несколько секунд решение появится ниже.
Пожалуйста подождите сек...


Если вы заметили ошибку в решении , то об этом вы можете написать в Форме обратной связи .
Не забудте указать какую задачу вы решаете и что вводите в поля .



Наши игры, головоломки, эмуляторы:

Немного теории.

Предел функции при х->х 0

Пусть функция f(x) определена на некотором множестве X и пусть точка \(x_0 \in X \) или \(x_0 \notin X \)

Возьмем из X последовательность точек, отличных от х 0:
x 1 , x 2 , x 3 , ..., x n , ... (1)
сходящуюся к х*. Значения функции в точках этой последовательности также образуют числовую последовательность
f(x 1), f(x 2), f(x 3), ..., f(x n), ... (2)
и можно ставить вопрос о существовании ее предела.

Определение . Число А называется пределом функции f(х) в точке х = х 0 (или при х -> x 0), если для любой сходящейся к x 0 последовательности (1) значений аргумента x, отличных от x 0 соответствующая последовательность (2) значений функции сходится к числу A.


$$ \lim_{x\to x_0}{ f(x)} = A $$

Функция f(x) может иметь в точке x 0 только один предел. Это следует из того, что последовательность
{f(x n)} имеет только один предел.

Существует другое определение предела функции.

Определение Число А называется пределом функции f(x) в точке х = x 0 , если для любого числа \(\varepsilon > 0 \) существует число \(\delta > 0 \) такое, что для всех \(x \in X, \; x \neq x_0 \), удовлетворяющих неравенству \(|x-x_0| Используя логические символы, это определение можно записать в виде
\((\forall \varepsilon > 0) (\exists \delta > 0) (\forall x \in X, \; x \neq x_0, \; |x-x_0| Отметим, что неравенства \(x \neq x_0, \; |x-x_0| Первое определение основано на понятии предела числовой последовательности, поэтому его часто называют определением «на языке последовательностей». Второе определение называют определением «на языке \(\varepsilon - \delta \)».
Эти два определения предела функции эквивалентны и можно использовать любое из них в зависимости от того, какое более удобно при решении той или иной задачи.

Заметим, что определение предела функции «на языке последовательностей» называют также определением предела функции по Гейне, а определение предела функции «на языке \(\varepsilon - \delta \)» - определением предела функции по Коши.

Предел функции при x->x 0 - и при x->x 0 +

В дальнейшем будут использованы понятия односторонних пределов функции, которые определяются следующим образом.

Определение Число А называется правым (левым) пределом функции f(x) в точке x 0 , если для любой сходящейся к x 0 последовательности (1), элементы x n которой больше (меньше) x 0 , соответствующая последовательность (2) сходится к А.

Символически это записывается так:
$$ \lim_{x \to x_0+} f(x) = A \; \left(\lim_{x \to x_0-} f(x) = A \right) $$

Можно дать равносильное определение односторонних пределов функции «на языке \(\varepsilon - \delta \)»:

Определение число А называется правым (левым) пределом функции f(х) в точке x 0 , если для любого \(\varepsilon > 0 \) существует \(\delta > 0 \) такое, что для всех x, удовлетворяющих неравенствам \(x_0 Символические записи:

\((\forall \varepsilon > 0) (\exists \delta > 0) (\forall x, \; x_0