Которые уже порядком поднадоели. И я чувствую, что настал момент, когда из стратегических запасов теории пора извлечь новые консервы. Нельзя ли разложить функцию в ряд как-нибудь по-другому? Например, выразить отрезок прямой линии через синусы и косинусы? Кажется невероятным, но такие, казалось бы, далекие друг от друга функции поддаются
«воссоединению». Помимо примелькавшихся степеней в теории и практике существуют и другие подходы к разложению функции в ряд.

На данном уроке мы познакомимся с тригонометрическим рядом Фурье, коснёмся вопроса его сходимости и суммы и, конечно же, разберём многочисленные примеры на разложение функций в ряд Фурье. Искренне хотелось назвать статью «Ряды Фурье для чайников», но это было бы лукавством, поскольку для решения задач потребуются знания других разделов математического анализа и некоторый практический опыт. Поэтому преамбула будет напоминать подготовку космонавтов =)

Во-первых, к изучению материалов страницы следует подойти в отличной форме. Выспавшимися, отдохнувшими и трезвыми. Без сильных эмоций по поводу сломанной лапы хомячка и навязчивых мыслей о тяготах жизни аквариумных рыбок. Ряд Фурье не сложен с точки зрения понимания, однако практические задания требуют просто повышенной концентрации внимания – в идеале следует полностью отрешиться от внешних раздражителей. Ситуация усугубляется тем, что не существует лёгкого способа проверки решения и ответа. Таким образом, если ваше самочувствие ниже среднего, то лучше заняться чем-нибудь попроще. Правда.

Во-вторых, перед полётом в космос необходимо изучить приборную панель космического корабля. Начнём со значений функций, которые должны щёлкаться на автомате:

При любом натуральном значении :

1) . И в самом деле, синусоида «прошивает» ось абсцисс через каждое «пи»:
. В случае отрицательных значений аргумента результат, само собой, будет таким же: .

2) . А вот это знали не все. Косинус «пи эн» представляет собой эквивалент «мигалки»:

Отрицательный аргумент дела не меняет: .

Пожалуй, достаточно.

И, в-третьих, уважаемый отряд космонавтов, необходимо уметь… интегрировать .
В частности, уверенно подводить функцию под знак дифференциала , интегрировать по частям и быть в ладах с формулой Ньютона-Лейбница . Начнём важные предполётные упражнения. Категорически не рекомендую пропускать, чтобы потом не плющило в невесомости:

Пример 1

Вычислить определённые интегралы

где принимает натуральные значения.

Решение : интегрирование проводится по переменной «икс» и на данном этапе дискретная переменная «эн» считается константой. Во всех интегралах подводим функцию под знак дифференциала :

Короткая версия решения, к которой хорошо бы пристреляться, выглядит так:

Привыкаем:

Четыре оставшихся пункта самостоятельно. Постарайтесь добросовестно отнестись к заданию и оформить интегралы коротким способом. Образцы решений в конце урока.

После КАЧЕСТВЕННОГО выполнения упражнений надеваем скафандры
и готовимся к старту!

Разложение функции в ряд Фурье на промежутке

Рассмотрим некоторую функцию , которая определена по крайне мере на промежутке (а, возможно, и на бОльшем промежутке). Если данная функция интегрируема на отрезке , то её можно разложить в тригонометрический ряд Фурье :
, где – так называемые коэффициенты Фурье .

При этом число называют периодом разложения , а число – полупериодом разложения .

Очевидно, что в общем случае ряд Фурье состоит из синусов и косинусов:

Действительно, распишем его подробно:

Нулевой член ряда принято записывать в виде .

Коэффициенты Фурье рассчитываются по следующим формулам:

Прекрасно понимаю, что начинающим изучать тему пока малопонятны новые термины: период разложения , полупериод , коэффициенты Фурье и др. Без паники, это не сравнимо с волнением перед выходом в открытый космос. Во всём разберёмся в ближайшем примере, перед выполнением которого логично задаться насущными практическими вопросами:

Что нужно сделать в нижеследующих заданиях?

Разложить функцию в ряд Фурье. Дополнительно нередко требуется изобразить график функции , график суммы ряда , частичной суммы и в случае изощрённых профессорский фантазий – сделать что-нибудь ещё.

Как разложить функцию в ряд Фурье?

По существу, нужно найти коэффициенты Фурье , то есть, составить и вычислить три определённых интеграла .

Пожалуйста, перепишите общий вид ряда Фурье и три рабочие формулы к себе в тетрадь. Я очень рад, что у некоторых посетителей сайта прямо на моих глазах осуществляется детская мечта стать космонавтом =)

Пример 2

Разложить функцию в ряд Фурье на промежутке . Построить график , график суммы ряда и частичной суммы .

Решение : первая часть задания состоит в разложении функции в ряд Фурье.

Начало стандартное, обязательно записываем, что:

В данной задаче период разложения , полупериод .

Разложим функцию в ряд Фурье на промежутке :

Используя соответствующие формулы, найдём коэффициенты Фурье . Теперь нужно составить и вычислить три определённых интеграла . Для удобства я буду нумеровать пункты:

1) Первый интеграл самый простой, однако и он уже требует глаз да глаз:

2) Используем вторую формулу:

Данный интеграл хорошо знаком и берётся он по частям :

При нахождении использован метод подведения функции под знак дифференциала .

В рассматриваемом задании сподручнее сразу использовать формулу интегрирования по частям в определённом интеграле :

Пара технических замечаний. Во-первых, после применения формулы всё выражение нужно заключить в большие скобки , так как перед исходным интегралом находится константа . Не теряем её ! Скобки можно раскрыть на любом дальнейшем шаге, я это сделал в самую последнюю очередь. В первом «куске» проявляем крайнюю аккуратность в подстановке, как видите, константа не при делах, и пределы интегрирования подставляются в произведение . Данное действие выделено квадратными скобками. Ну а интеграл второго «куска» формулы вам хорошо знаком из тренировочного задания;-)

И самое главное – предельная концентрация внимания!

3) Ищем третий коэффициент Фурье:

Получен родственник предыдущего интеграла, который тоже интегрируется по частям :

Этот экземпляр чуть сложнее, закомментирую дальнейшие действия пошагово:

(1) Выражение полностью заключаем в большие скобки . Не хотел показаться занудой, слишком уж часто теряют константу .

(2) В данном случае я немедленно раскрыл эти большие скобки. Особое внимание уделяем первому «куску»: константа курит в сторонке и не участвует в подстановке пределов интегрирования ( и ) в произведение . Ввиду загромождённости записи это действие снова целесообразно выделить квадратными скобками. Со вторым «куском» всё проще: здесь дробь появилась после раскрытия больших скобок, а константа – в результате интегрирования знакомого интеграла;-)

(3) В квадратных скобках проводим преобразования , а в правом интеграле – подстановку пределов интегрирования.

(4) Выносим «мигалку» из квадратных скобок: , после чего раскрываем внутренние скобки: .

(5) Сокращаем 1 и –1 в скобках, проводим окончательные упрощения.

Наконец-то найдены все три коэффициента Фурье:

Подставим их в формулу :

При этом не забываем разделить пополам. На последнем шаге константа («минус два»), не зависящая от «эн», вынесена за пределы суммы.

Таким образом, мы получили разложение функции в ряд Фурье на промежутке :

Изучим вопрос сходимости ряда Фурье. Я объясню теорию, в частности теорему Дирихле , буквально «на пальцах», поэтому если вам необходимы строгие формулировки, пожалуйста, обратитесь к учебнику по математическому анализу (например, 2-й том Бохана; или 3-й том Фихтенгольца, но в нём труднее) .

Во второй части задачи требуется изобразить график , график суммы ряда и график частичной суммы .

График функции представляет собой обычную прямую на плоскости , которая проведена чёрным пунктиром:

Разбираемся с суммой ряда . Как вы знаете, функциональные ряды сходятся к функциям. В нашем случае построенный ряд Фурье при любом значении «икс» сойдётся к функции , которая изображена красным цветом. Данная функция терпит разрывы 1-го рода в точках , но определена и в них (красные точки на чертеже)

Таким образом: . Легко видеть, что заметно отличается от исходной функции , именно поэтому в записи ставится значок «тильда», а не знак равенства.

Изучим алгоритм, по которому удобно строить сумму ряда.

На центральном интервале ряд Фурье сходится к самой функции (центральный красный отрезок совпадает с чёрным пунктиром линейной функции).

Теперь немного порассуждаем о природе рассматриваемого тригонометрического разложения. В ряд Фурье входят только периодические функции (константа, синусы и косинусы), поэтому сумма ряда тоже представляет собой периодическую функцию .

Что это значит в нашем конкретном примере? А это обозначает то, что сумма ряда – непременно периодична и красный отрезок интервала обязан бесконечно повторяться слева и справа.

Думаю, сейчас окончательно прояснился смысл фразы «период разложения ». Упрощённо говоря, через каждые ситуация вновь и вновь повторяется.

На практике обычно достаточно изобразить три периода разложения, как это сделано на чертеже. Ну и ещё «обрубки» соседних периодов – чтобы было понятно, что график продолжается.

Особый интерес представляют точки разрыва 1-го рода . В таких точках ряд Фурье сходится к изолированным значениям, которые расположены ровнёхонько посередине «скачка» разрыва (красные точки на чертеже). Как узнать ординату этих точек? Сначала найдём ординату «верхнего этажа»: для этого вычислим значение функции в крайней правой точке центрального периода разложения: . Чтобы вычислить ординату «нижнего этажа» проще всего взять крайнее левое значение этого же периода: . Ордината среднего значения – это среднее арифметическое суммы «верха и низа»: . Приятным является тот факт, что при построении чертежа вы сразу увидите, правильно или неправильно вычислена середина.

Построим частичную сумму ряда и заодно повторим смысл термина «сходимость». Мотив известен ещё из урока о сумме числового ряда . Распишем наше богатство подробно:

Чтобы составить частичную сумму необходимо записать нулевой + ещё два члена ряда. То есть,

На чертеже график функции изображен зелёным цветом, и, как видите, он достаточно плотно «обвивает» полную сумму . Если рассмотреть частичную сумму из пяти членов ряда , то график этой функции будет ещё точнее приближать красные линии, если сто членов – то «зелёный змий» фактически полностью сольётся с красными отрезками и т.д. Таким образом, ряд Фурье сходится к своей сумме .

Интересно отметить, что любая частичная сумма – это непрерывная функция , однако полная сумма ряда всё же разрывна.

На практике не так уж редко требуется построить и график частичной суммы. Как это сделать? В нашем случае необходимо рассмотреть функцию на отрезке , вычислить её значения на концах отрезка и в промежуточных точках (чем больше точек рассмотрите – тем точнее будет график). Затем следует отметить данные точки на чертеже и аккуратно изобразить график на периоде , после чего «растиражировать» его на соседние промежутки. А как иначе? Ведь приближение – это тоже периодическая функция… …чем-то мне её график напоминает ровный ритм сердца на дисплее медицинского прибора.

Выполнять построение, конечно, не сильно удобно, так как и приходится проявлять сверхаккуратность, выдерживая точность не меньше, чем до половины миллиметра. Впрочем, читателей, которые не в ладах с черчением, обрадую – в «реальной» задаче выполнять чертёж нужно далеко не всегда, где-то в 50% случаев требуется разложить функцию в ряд Фурье и всё.

После выполнения чертежа завершаем задание:

Ответ :

Во многих задачах функция терпит разрыв 1-го рода прямо на периоде разложения:

Пример 3

Разложить в ряд Фурье функцию , заданную на отрезке . Начертить график функции и полной суммы ряда.

Предложенная функция задана кусочным образом (причём, заметьте, только на отрезке ) и терпит разрыв 1-го рода в точке . Можно ли вычислить коэффициенты Фурье? Без проблем. И левая и правая части функции интегрируемы на своих промежутках, поэтому интегралы в каждой из трёх формул следует представить в виде суммы двух интегралов. Посмотрим, например, как это делается у нулевого коэффициента:

Второй интеграл оказался равным нулю, что убавило работы, но так бывает далеко не всегда.

Аналогично расписываются два других коэффициента Фурье.

Как изобразить сумму ряда? На левом интервале чертим отрезок прямой , а на интервале – отрезок прямой (жирно-жирно выделяем участок оси ). То есть, на промежутке разложения сумма ряда совпадает с функцией везде, кроме трёх «нехороших» точек. В точке разрыва функции ряд Фурье сойдётся к изолированному значению, которое располагается ровно посередине «скачка» разрыва. Его нетрудно увидеть и устно: левосторонний предел: , правосторонний предел: и, очевидно, что ордината средней точки равна 0,5.

В силу периодичности суммы , картинку необходимо «размножить» на соседние периоды, в частности изобразить то же самое на интервалах и . При этом, в точках ряд Фурье сойдётся к срединным значениям.

По сути-то ничего нового здесь нет.

Постарайтесь самостоятельно справиться с данной задачей. Примерный образец чистового оформления и чертёж в конце урока.

Разложение функции в ряд Фурье на произвольном периоде

Для произвольного периода разложения , где «эль» – любое положительное число, формулы ряда Фурье и коэффициентов Фурье отличаются немного усложнённым аргументом синуса и косинуса:

Если , то получаются формулы промежутка , с которых мы начинали.

Алгоритм и принципы решения задачи полностью сохраняются, но возрастает техническая сложность вычислений:

Пример 4

Разложить функцию в ряд Фурье и построить график суммы.

Решение : фактически аналог Примера №3 с разрывом 1-го рода в точке . В данной задаче период разложения , полупериод . Функция определена только на полуинтервале , но это не меняет дела – важно, что оба куска функции интегрируемы.

Разложим функцию в ряд Фурье:

Поскольку функция разрывна в начале координат, то каждый коэффициент Фурье очевидным образом следует записать в виде суммы двух интегралов:

1) Первый интеграл распишу максимально подробно:

2) Тщательным образом вглядываемся в поверхность Луны:

Второй интеграл берём по частям :

На что следует обратить пристальное внимание, после того, как мы звёздочкой открываем продолжение решения?

Во-первых, не теряем первый интеграл , где сразу же выполняем подведение под знак дифференциала . Во-вторых, не забываем злополучную константу перед большими скобками и не путаемся в знаках при использовании формулы . Большие скобки, всё-таки удобнее раскрывать сразу же на следующем шаге.

Остальное дело техники, затруднения может вызвать только недостаточный опыт решенияинтегралов.

Да, не зря именитые коллеги французского математика Фурье возмущались – как это тот посмел раскладывать функции в тригонометрические ряды?! =) К слову, наверное, всем интересен практический смысл рассматриваемого задания. Сам Фурье работал над математической моделью теплопроводности, а впоследствии ряд, названный его именем стал применяться для исследования многих периодических процессов, коих в окружающем мире видимо-невидимо. Сейчас, кстати, поймал себя на мысли, что не случайно сравнил график второго примера с периодическим ритмом сердца. Желающие могут ознакомиться с практическим применением преобразования Фурье в сторонних источниках. …Хотя лучше не надо – будет вспоминаться, как Первая Любовь =)

3) Учитывая неоднократно упоминавшиеся слабые звенья, разбираемся с третьим коэффициентом:

Интегрируем по частям:

Подставим найдённые коэффициенты Фурье в формулу , не забывая поделить нулевой коэффициент пополам:

Построим график суммы ряда. Кратко повторим порядок действий: на интервале строим прямую , а на интервале – прямую . При нулевом значении «икс» ставим точку посередине «скачка» разрыва и «тиражируем» график на соседние периоды:


На «стыках» периодов сумма также будет равна серединам «скачка» разрыва .

Готово. Напоминаю, что сама функция по условию определена только на полуинтервале и, очевидно, совпадает с суммой ряда на интервалах

Ответ :

Иногда кусочно-заданная функция бывает и непрерывна на периоде разложения. Простейший образец: . Решение (см. 2-й том Бохана) такое же, как и двух предыдущих примерах: несмотря на непрерывность функции в точке , каждый коэффициент Фурье выражается суммой двух интегралов.

На промежутке разложения точек разрыва 1-го рода и/или точек «стыка» графика может быть и больше (две, три и вообще любое конечное количество). Если функция интегрируема на каждой части, то она также разложима в ряд Фурье. Но из практического опыта такую жесть что-то не припоминаю. Тем не менее, встречаются более трудные задания, чем только что рассмотренное, и в конце статьи для всех желающих есть ссылки на ряды Фурье повышенной сложности.

А пока расслабимся, откинувшись в креслах и созерцая бескрайние звёздные просторы:

Пример 5

Разложить функцию в ряд Фурье на промежутке и построить график суммы ряда.

В данной задаче функция непрерывна на полуинтервале разложения, что упрощает решение. Всё очень похоже на Пример №2. С космического корабля никуда не деться – придётся решать =) Примерный образец оформления в конце урока, график прилагается.

Разложение в ряд Фурье чётных и нечётных функций

С чётными и нечётными функциями процесс решения задачи заметно упрощается. И вот почему. Вернёмся к разложению функции в ряд Фурье на периоде «два пи» и произвольном периоде «два эль» .

Предположим, что наша функция чётна. Общий же член ряда, как вы видите, содержит чётные косинусы и нечётные синусы. А если мы раскладываем ЧЁТНУЮ функцию, то зачем нам нечётные синусы?! Давайте обнулим ненужный коэффициент: .

Таким образом, чётная функция раскладывается в ряд Фурье только по косинусам :

Поскольку интегралы от чётных функций по симметричному относительно нуля отрезку интегрирования можно удваивать, то упрощаются и остальные коэффициенты Фурье.

Для промежутка :

Для произвольного промежутка:

К хрестоматийным примерам, которые есть практически в любом учебнике по матанализу, относятся разложения чётных функций . Кроме того, они неоднократно встречались и в моей личной практике:

Пример 6

Дана функция . Требуется:

1) разложить функцию в ряд Фурье с периодом , где – произвольное положительное число;

2) записать разложение на промежутке , построить функцию и график полной суммы ряда .

Решение : в первом пункте предлагается решить задачу в общем виде, и это очень удобно! Появится надобность – просто подставьте своё значение.

1) В данной задаче период разложения , полупериод . В ходе дальнейших действий, в частности при интегрировании, «эль» считается константой

Функция является чётной, а значит, раскладывается в ряд Фурье только по косинусам: .

Коэффициенты Фурье ищем по формулам . Обратите внимание на их безусловные преимущества. Во-первых, интегрирование проводится по положительному отрезку разложения, а значит, мы благополучно избавляемся от модуля , рассматривая из двух кусков только «икс». И, во-вторых, заметно упрощается интегрирование.

Два:

Интегрируем по частям:

Таким образом:
, при этом константу , которая не зависит от «эн», выносим за пределы суммы.

Ответ :

2) Запишем разложение на промежутке , для этого в общую формулу подставляем нужное значение полупериода :

Функции, разлагая их на компоненты. Переменные токи и напряжения, смещения, скорость и ускорение кривошипно-шатунных механизмов и акустические волны - это типичные практические примеры применения периодических функций в инженерных расчетах.

Разложение в ряд Фурье основывается на предположении, что все имеющие практическое значение функции в интервале -π ≤x≤ π можно выразить в виде сходящихся тригонометрических рядов (ряд считается сходящимся, если сходится последовательность частичных сумм, составленных из его членов):

Стандартная (=обычная) запись через сумму sinx и cosx

f(x)=a o + a 1 cosx+a 2 cos2x+a 3 cos3x+...+b 1 sinx+b 2 sin2x+b 3 sin3x+...,

где a o , a 1 ,a 2 ,...,b 1 ,b 2 ,.. - действительные константы, т.е.

Где для диапазона от -π до π коэффициенты ряда Фурье рассчитываются по формулам:

Коэффициенты a o ,a n и b n называются коэффициентами Фурье , и если их можно найти, то ряд (1) называется рядом Фурье, соответствующим функции f(x). Для ряда (1) член (a 1 cosx+b 1 sinx) называется первой или основной гармоникой,

Другой способ записи ряда - использование соотношения acosx+bsinx=csin(x+α)

f(x)=a o +c 1 sin(x+α 1)+c 2 sin(2x+α 2)+...+c n sin(nx+α n)

Где a o - константа, с 1 =(a 1 2 +b 1 2) 1/2 , с n =(a n 2 +b n 2) 1/2 - амплитуды различных компонент, а равен a n =arctg a n /b n .

Для ряда (1) член (a 1 cosx+b 1 sinx) или c 1 sin(x+α 1) называется первой или основной гармоникой, (a 2 cos2x+b 2 sin2x) или c 2 sin(2x+α 2) называется второй гармоникой и так далее.

Для точного представления сложного сигнала обычно требуется бесконечное количество членов. Однако во многих практических задачах достаточно рассмотреть только несколько первых членов.

Ряд Фурье непериодических функций с периодом 2π. Разложение непериодических функций в ряд Фурье.

Если функция f(x) непериодическая, значит, она не может быть разложена в ряд Фурье для всех значений х. Однако можно определить ряд Фурье, представляющий функцию в любом диапазоне шириной 2π.

Если задана непериодическая функция, можно составить новую функцию, выбирая значения f(x) в определенном диапазоне и повторяя их вне этого диапазона с интервалом 2π. Поскольку новая функция является периодической с периодом 2π, ее можно разложить в ряд Фурье для всех значений х. Например, функция f(x)=x не является периодической. Однако, если необходимо разложить ее в ряд Фурье на интервале от о до 2π, тогда вне этого интервала строится периодическая функция с периодом 2π (как показано на рис. ниже) .

Для непериодических функций, таких как f(x)=х, сумма ряда Фурье равна значению f(x) во всех точках заданного диапазона, но она не равна f(x) для точек вне диапазона. Для нахождения ряда Фурье непериодической функции в диапазоне 2π используется все таже формула коэффициентов Фурье.

Четные и нечетные функции.

Говорят, функция y=f(x) четная , если f(-x)=f(x) для всех значений х. Графики четных функций всегда симметричны относительно оси у (т.е. являются зеркально отраженными). Два примера четных функций: у=х 2 и у=cosx.

Говорят, что функция y=f(x) нечетная, если f(-x)=-f(x) для всех значений х. Графики нечетных функций всегда симметричны относительно начала координат.

Многие функции не являются ни четными, ни нечетными.

Разложение в ряд Фурье по косинусам.

Ряд Фурье четной периодической функции f(x) с периодом 2π содержит только члены с косинусами (т.е. не содержит членов с синусами) и может включать постоянный член. Следовательно,

где коэффициенты ряда Фурье,

Ряд Фурье нечетной периодической функции f(x) с периодом 2π содержит только члены с синусами (т.е. не содержит членов с косинусами).

Следовательно,

где коэффициенты ряда Фурье,

Ряд Фурье на полупериоде.

Если функция определена для диапазона, скажем от 0 до π, а не только от 0 до 2π, ее можно разложить в ряд только по синусам или тольо по косинусам. Полученный ряд Фурье называется рядом Фурье на полупериоде.

Если требуется получить разложение Фурье на полупериоде по косинусам функции f(x) в диапазоне от 0 до π, то необходимо составить четную периодическую функцию. На рис. ниже показана функция f(x)=х, построенная на интервале от х=0 до х=π. Поскольку четная функция симметрична относительно оси f(x), проводим линию АВ, как показано на рис. ниже. Если предположить, что за пределами рассмотренного интервала полученная треугольная форма является периодической с периодом 2π, то итоговый график имеет вид, показ. на рис. ниже. Поскольку требуется получить разложение Фурье по косинусам, как и ранее, вычисляем коэффициенты Фурье a o и a n

Если требуется получить функции f(x) в диапазоне от 0 до π, то необходимо составить нечетную периодическую функцию. На рис. ниже показана функция f(x)=x, построенная на интервале от от х=0 до х=π. Поскольку нечетная функция симметрична относительно начала координат, строим линию CD, как показано на рис. Если предположить, что за пределами рассмотренного интервала полученный пилообразный сигнал является периодическим с периодом 2π, то итоговый график имеет вид, показанный на рис. Поскольку требуется получить разложение Фурие на полупериоде по синусам, как и ранее, вычисляем коэффициент Фурье. b

Ряд Фурье для произвольного интервала.

Разложение периодической функции с периодом L.

Периодическая функция f(x) повторяется при увеличении х на L, т.е. f(x+L)=f(x). Переход от рассмотренных ранее функций с периодом 2π к функциям с периодом L довольно прост, поскольку его можно осуществить с помощью замены переменной.

Чтобы найти ряд Фурье функции f(x) в диапазоне -L/2≤x≤L/2, введем новую переменную u таким образом, чтобы функция f(x) имела период 2π относительно u. Если u=2πх/L, то х=-L/2 при u=-π и х=L/2 при u=π. Также пусть f(x)=f(Lu/2π)=F(u). Ряд Фурье F(u) имеет вид

Где коэффициенты ряда Фурье,

Однако чаще приведенную выше формулу приводят к зависимости от х. Поскольку u=2πх/L, значит, du=(2π/L)dx, а пределы интегрирования - от -L/2 до L/2 вместо - π до π. Следовательно, ряд Фурье для зависимости от х имеет вид

где в диапазоне от -L/2 до L/2 коэффициенты ряда Фурье,

(Пределы интегрирования могут быть заменены на любой интервал длиной L, например, от 0 до L)

Ряд Фурье на полупериоде для функций, заданных в интервале L≠2π.

Для подстановки u=πх/L интервал от х=0 до х=L соответствует интервалу от u=0 до u=π. Следовательно, функцию можно разложить в ряд только по косинусам или только по синусам, т.е. в ряд Фурье на полупериоде .

Разложение по косинусам в диапазоне от 0 до L имеет вид

Ряд Фурье периодических функций с периодом 2π.

Ряд Фурье позволяет изучать периодические функции, разлагая их на компоненты. Переменные токи и напряжения, смещения, скорость и ускорение кривошипно-шатунных механизмов и акустические волны - это типичные практические примеры применения периодических функций в инженерных расчетах.

Разложение в ряд Фурье основывается на предположении, что все имеющие практическое значение функции в интервале -π ≤x≤ π можно выразить в виде сходящихся тригонометрических рядов (ряд считается сходящимся, если сходится последовательность частичных сумм, составленных из его членов):

Стандартная (=обычная) запись через сумму sinx и cosx

f(x)=a o + a 1 cosx+a 2 cos2x+a 3 cos3x+...+b 1 sinx+b 2 sin2x+b 3 sin3x+...,

где a o , a 1 ,a 2 ,...,b 1 ,b 2 ,.. - действительные константы, т.е.

Где для диапазона от -π до π коэффициенты ряда Фурье рассчитываются по формулам:

Коэффициенты a o ,a n и b n называются коэффициентами Фурье , и если их можно найти, то ряд (1) называется рядом Фурье, соответствующим функции f(x). Для ряда (1) член (a 1 cosx+b 1 sinx) называется первой или основной гармоникой,

Другой способ записи ряда - использование соотношения acosx+bsinx=csin(x+α)

f(x)=a o +c 1 sin(x+α 1)+c 2 sin(2x+α 2)+...+c n sin(nx+α n)

Где a o - константа, с 1 =(a 1 2 +b 1 2) 1/2 , с n =(a n 2 +b n 2) 1/2 - амплитуды различных компонент, а равен a n =arctg a n /b n .

Для ряда (1) член (a 1 cosx+b 1 sinx) или c 1 sin(x+α 1) называется первой или основной гармоникой, (a 2 cos2x+b 2 sin2x) или c 2 sin(2x+α 2) называется второй гармоникой и так далее.

Для точного представления сложного сигнала обычно требуется бесконечное количество членов. Однако во многих практических задачах достаточно рассмотреть только несколько первых членов.

Ряд Фурье непериодических функций с периодом 2π.

Разложение непериодических функций.

Если функция f(x) непериодическая, значит, она не может быть разложена в ряд Фурье для всех значений х. Однако можно определить ряд Фурье, представляющий функцию в любом диапазоне шириной 2π.

Если задана непериодическая функция, можно составить новую функцию, выбирая значения f(x) в определенном диапазоне и повторяя их вне этого диапазона с интервалом 2π. Поскольку новая функция является периодической с периодом 2π, ее можно разложить в ряд Фурье для всех значений х. Например, функция f(x)=x не является периодической. Однако, если необходимо разложить ее в ряд Фурье на интервале от о до 2π, тогда вне этого интервала строится периодическая функция с периодом 2π (как показано на рис. ниже) .

Для непериодических функций, таких как f(x)=х, сумма ряда Фурье равна значению f(x) во всех точках заданного диапазона, но она не равна f(x) для точек вне диапазона. Для нахождения ряда Фурье непериодической функции в диапазоне 2π используется все таже формула коэффициентов Фурье.

Четные и нечетные функции.

Говорят, функция y=f(x) четная , если f(-x)=f(x) для всех значений х. Графики четных функций всегда симметричны относительно оси у (т.е. являются зеркально отраженными). Два примера четных функций: у=х 2 и у=cosx.

Говорят, что функция y=f(x) нечетная, если f(-x)=-f(x) для всех значений х. Графики нечетных функций всегда симметричны относительно начала координат.

Многие функции не являются ни четными, ни нечетными.

Разложение в ряд Фурье по косинусам.

Ряд Фурье четной периодической функции f(x) с периодом 2π содержит только члены с косинусами (т.е. не содержит членов с синусами) и может включать постоянный член. Следовательно,

где коэффициенты ряда Фурье,

Ряд Фурье нечетной периодической функции f(x) с периодом 2π содержит только члены с синусами (т.е. не содержит членов с косинусами).

Следовательно,

где коэффициенты ряда Фурье,

Ряд Фурье на полупериоде.

Если функция определена для диапазона, скажем от 0 до π, а не только от 0 до 2π, ее можно разложить в ряд только по синусам или тольо по косинусам. Полученный ряд Фурье называется рядом Фурье на полупериоде.

Если требуется получить разложение Фурье на полупериоде по косинусам функции f(x) в диапазоне от 0 до π, то необходимо составить четную периодическую функцию. На рис. ниже показана функция f(x)=х, построенная на интервале от х=0 до х=π. Поскольку четная функция симметрична относительно оси f(x), проводим линию АВ, как показано на рис. ниже. Если предположить, что за пределами рассмотренного интервала полученная треугольная форма является периодической с периодом 2π, то итоговый график имеет вид, показ. на рис. ниже. Поскольку требуется получить разложение Фурье по косинусам, как и ранее, вычисляем коэффициенты Фурье a o и a n

Если требуется получить разложение Фурье на полупериоде по синусам функции f(x) в диапазоне от 0 до π, то необходимо составить нечетную периодическую функцию. На рис. ниже показана функция f(x)=x, построенная на интервале от от х=0 до х=π. Поскольку нечетная функция симметрична относительно начала координат, строим линию CD, как показано на рис. Если предположить, что за пределами рассмотренного интервала полученный пилообразный сигнал является периодическим с периодом 2π, то итоговый график имеет вид, показанный на рис. Поскольку требуется получить разложение Фурие на полупериоде по синусам, как и ранее, вычисляем коэффициент Фурье. b

Ряд Фурье для произвольного интервала.

Разложение периодической функции с периодом L.

Периодическая функция f(x) повторяется при увеличении х на L, т.е. f(x+L)=f(x). Переход от рассмотренных ранее функций с периодом 2π к функциям с периодом L довольно прост, поскольку его можно осуществить с помощью замены переменной.

Чтобы найти ряд Фурье функции f(x) в диапазоне -L/2≤x≤L/2, введем новую переменную u таким образом, чтобы функция f(x) имела период 2π относительно u. Если u=2πх/L, то х=-L/2 при u=-π и х=L/2 при u=π. Также пусть f(x)=f(Lu/2π)=F(u). Ряд Фурье F(u) имеет вид

(Пределы интегрирования могут быть заменены на любой интервал длиной L, например, от 0 до L)

Ряд Фурье на полупериоде для функций, заданных в интервале L≠2π.

Для подстановки u=πх/L интервал от х=0 до х=L соответствует интервалу от u=0 до u=π. Следовательно, функцию можно разложить в ряд только по косинусам или только по синусам, т.е. в ряд Фурье на полупериоде .

Разложение по косинусам в диапазоне от 0 до L имеет вид

Как вставить математические формулы на сайт?

Если нужно когда-никогда добавлять одну-две математические формулы на веб-страницу, то проще всего сделать это, как описано в статье : математические формулы легко вставляются на сайт в виде картинок, которые автоматически генерирует Вольфрам Альфа. Кроме простоты, этот универсальный способ поможет улучшить видимость сайта в поисковых системах. Он работает давно (и, думаю, будет работать вечно), но морально уже устарел.

Если же вы постоянно используете математические формулы на своем сайте, то я рекомендую вам использовать MathJax - специальную библиотеку JavaScript, которая отображает математические обозначения в веб-браузерах с использованием разметки MathML, LaTeX или ASCIIMathML.

Есть два способа, как начать использовать MathJax: (1) при помощи простого кода можно быстро подключить к вашему сайту скрипт MathJax, который будет в нужный момент автоматически подгружаться с удаленного сервера (список серверов ); (2) закачать скрипт MathJax с удаленного сервера на свой сервер и подключить ко всем страницам своего сайта. Второй способ - более более сложный и долгий - позволит ускорить загрузку страниц вашего сайта, и если родительский сервер MathJax по каким-то причинам станет временно недоступен, это никак не повлияет на ваш собственный сайт. Несмотря на эти преимущества, я выбрал первый способ, как более простой, быстрый и не требующий технических навыков. Следуйте моему примеру, и уже через 5 минут вы сможете использовать все возможности MathJax на своем сайте.

Подключить скрипт библиотеки MathJax с удаленного сервера можно при помощи двух вариантов кода, взятого на главном сайте MathJax или же на странице документации :

Один из этих вариантов кода нужно скопировать и вставить в код вашей веб-станицы, желательно между тегами и или же сразу после тега . По первому варианту MathJax подгружается быстрее и меньше тормозит страницу. Зато второй вариант автоматически отслеживает и подгружает свежие версии MathJax. Если вставить первый код, то его нужно будет периодически обновлять. Если вставить второй код, то страницы будут загружаться медленнее, зато вам не нужно будет постоянно следить за обновлениями MathJax.

Подключить MathJax проще всего в Blogger или WordPress: в панели управления сайтом добавьте виджет, предназначенный для вставки стороннего кода JavaScript, скопируйте в него первый или второй вариант кода загрузки, представленного выше, и разместите виджет поближе к началу шаблона (кстати, это вовсе не обязательно, поскольку скрипт MathJax загружается асинхронно). Вот и все. Теперь изучите синтаксис разметки MathML, LaTeX и ASCIIMathML, и вы готовы вставлять математические формулы на веб-страницы своего сайта.

Любой фрактал строится по определенному правилу, которое последовательно применяется неограниченное количество раз. Каждый такой раз называется итерацией.

Итеративный алгоритм построения губки Менгера достаточно простой: исходный куб со стороной 1 делится плоскостями, параллельными его граням, на 27 равных кубов. Из него удаляются один центральный куб и 6 прилежащих к нему по граням кубов. Получается множество, состоящее из 20 оставшихся меньших кубов. Поступая так же с каждым из этих кубов, получим множество, состоящее уже из 400 меньших кубов. Продолжая этот процесс бесконечно, получим губку Менгера.

Транскрипт

1 МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РФ НОВОСИБИРСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ФИЗИЧЕСКИЙ ФАКУЛЬТЕТ Р. К. Бельхеева РЯДЫ ФУРЬЕ В ПРИМЕРАХ И ЗАДАЧАХ Учебное пособие Новосибирск 211

2 УДК ББК В161 Б44 Б44 Бельхеева Р. К. Ряды Фурье в примерах и задачах: Учебное пособие / Новосиб. гос. ун-т. Новосибирск, с. ISBN В учебном пособии излагаются основные сведения о рядах Фурье, приведены примеры на каждую изучаемую тему. Детально разобран пример применения метода Фурье к решению задачи о поперечных колебаниях струны. Приведен иллюстративный материал. Имеются задачи для самостоятельного решения. Предназначено для студентов и преподавателей физического факультета НГУ. Печатается по решению методической комиссии физического факультета НГУ. Рецензент д-р физ.-мат. наук. В. А. Александров Пособие подготовлено в рамках реализации Программы развития НИУ-НГУ на гг. ISBN c Новосибирский государственный университет, 211 c Бельхеева Р. К., 211

3 1. Разложение 2π-периодической функции в ряд Фурье Определение. Рядом Фурье функции f(x) называется функциональный ряд a 2 + (a n cosnx + b n sin nx), (1) где коэффициенты a n, b n вычисляются по формулам: a n = 1 π b n = 1 π f(x) cosnxdx, n =, 1,..., (2) f(x) sin nxdx, n = 1, 2,.... (3) Формулы (2) (3) называют формулами Эйлера Фурье. Тот факт, что функции f(x) соответствует ряд Фурье (1) записывают в виде формулы f(x) a 2 + (a n cosnx + b n sin nx) (4) и говорят, что правая часть формулы (4) является формальным рядом Фурье функции f(x). Другими словами, формула (4) означает только то, что коэффициенты a n, b n найдены по формулам (2), (3). 3

4 Определение. 2π-периодическая функция f(x) называется кусочно-гладкой, если в промежутке [, π] найдется конечное число точек = x < x 1 . Рассмотрим два условия: а) f(l x) = f(x); б) f(l + x) = f(x), x [, l/2]. С геометрической точки зрения условие (а) означает, что график функции f(x) симметричен относительно вертикальной прямой x = l/2, а условие (б) что график f(x) центрально симметричен относительно точки (l/2;) на оси абсцисс. Тогда справедливы следующие утверждения: 1) если функция f(x) четная и выполнено условие (а), то b 1 = b 2 = b 3 =... =, a 1 = a 3 = a 5 =... = ; 2) если функция f(x) четная и выполнено условие (б), то b 1 = b 2 = b 3 =... =, a = a 2 = a 4 =... = ; 3) если функция f(x) нечетная и выполнено условие (а), то a = a 1 = a 2 =... =, b 2 = b 4 = b 6 =... = ; 4) если функция f(x) нечетная и выполнено условие (б), то a = a 1 = a 2 =... =, b 1 = b 3 = b 5 =... =. ЗАДАЧИ В задачах 1 7 нарисуйте графики и найдите ряды Фурье для функций, { предполагая, что они имеют период 2π:, если < x a cosx + a2 В задачах найдите ряды Фурье в комплексной форме для функций. 26. f(x) = sgn x, π < x < π. 27. f(x) = ln(1 2a cosx + a 2), a < 1. 1 a cosx 28. f(x) = 1 2a cosx + a2, a < Докажите, что функция f, определенная в промежутке [, π], вещественнозначна, если и только если коэффициенты c n ее комплексного ряда Фурье связаны соотношениями c n = c n, n =, ±1, ±2, Докажите, что функция f, определенная в промежутке [, π], является четной (т. е. удовлетворяет соотношению f(x) = f(x)), если и только если коэффициенты c n ее комплексного ряда Фурье связаны соотношениями c n = c n, n = ±1, ±2, Докажите, что функция f, определенная в промежутке [, π], является нечетной (т. е. удовлетворяет соотношению f(x) = f(x)), если и только если коэффициенты c n ее комплексного ряда Фурье связаны соотношениями c n = c n, n =, ±1, ±2,.... Ответы 1 2π 24. a n a π a n i + e 2inx, где подразумевается, что слагаемое, соответствующее n =, пропущено. π n n= a n n cosnx. 28. a n cosnx. n= 46

47 5. Равенство Ляпунова Теорема (равенство Ляпунова). Пусть функция f: [, π] R такова, что f 2 (x) dx < +, и пусть a n, b n ее коэффициенты Фурье. Тогда справедливо равенство, a (a 2 n + b2 n) = 1 π называемое равенством Ляпунова. f 2 (x) dx, ПРИМЕР 13. Напишем равенство Ляпунова для функции { 1, если x < a, f(x) =, если a < x < π и найдем с его помощью суммы числовых рядов + sin 2 na n 2 и + Решение. Очевидно, 1 (2n 1) 2. 1 π f 2 (x) dx = 1 π a a dx = 2a π. Так как f(x) четная функция, то для всех n имеем b n =, a = 2 π f(x) dx = 2 π a dx = 2a π, 47

48 a n = 2 π f(x) cosnxdx = 2 π a cos nxdx = 2 sin na πn. Поэтому равенство Ляпунова для функции f(x) принимает вид: 2 a 2 π + 4 sin 2 na = 2a 2 π 2 n 2 π. Из последнего равенства для a π находим sin 2 na n 2 = a(π a) 2 Полагая a = π 2, получаем sin2 na = 1 при n = 2k 1 и sin 2 na = при n = 2k. Следовательно, k=1 1 (2k 1) 2 = = π2 8. ПРИМЕР 14. Напишем равенство Ляпунова для функции f(x) = x cosx, x [, π], и найдем с его помощью сумму числового ряда (4n 2 + 1) 2 (4n 2 1) 4. 1 π Решение. Прямые вычисления дают = π π f 2 (x) dx = 1 π x 2 cos 2 xdx = 1 π x sin 2xdx = π π x cos x = π x 21 + cos 2x dx = 2 π 1 4π cos 2xdx =

49 Поскольку f(x) четная функция, то для всех n имеем b n =, a n = 2 π = 1 π 1 = π(n + 1) = f(x) cosnxdx = 2 π 1 cos(n + 1)x π(n + 1) 2 x cosxcosnxdx = x (cos(n + 1)x + cos(n 1)x) dx = 1 π sin(n + 1)xdx sin(n 1)xdx = π(n 1) π π 1 + cos(n 1)x = π(n 1) 2 1 (= (1) (n+1) 1) 1 (+ (1) (n+1) 1) = π(n + 1) 2 π(n 1) 2 () = (1)(n+1) 1 1 π (n + 1) + 1 = 2 (n 1) 2 = 2 (1)(n+1) 1 n k π (n 2 1) = π (4k 2 1) 2, если n = 2k, 2, если n = 2k + 1. Коэффициент a 1 необходимо вычислить отдельно, поскольку в общей формуле при n = 1 знаменатель дроби обращается в ноль. = 1 π a 1 = 2 π f(x) cosxdx = 2 π x(1 + cos 2x)dx = π 2 1 2π 49 x cos 2 xdx = sin 2xdx = π 2.

50 Таким образом, равенство Ляпунова для функции f(x) имеет вид: 8 π + π (4n 2 + 1) 2 π 2 (4n 2 1) = π , откуда находим сумму числового ряда (4n 2 + 1) 2 (4n 2 1) = π π ЗАДАЧИ 32. Напишите равенство Ляпунова для функции { x f(x) = 2 πx, если x < π, x 2 πx, если π < x. 33. Напишите равенства Ляпунова для функций f(x) = cos ax и g(x) = sin ax, x [, π]. 34. Используя результат предыдущей задачи и предполагая, что a не является целым числом, выведите следующие классические разложения функций πctgaπ и (π/ sin aπ) 2 по рациональным функциям: πctgaπ = 1 a + + 2a a 2 n 2, (π) = sin aπ (a n) 2. n= 35. Выведите комплексную форму обобщенного равенства Ляпунова. 36. Покажите, что комплексная форма равенства Ляпунова справедлива не только для вещественнозначных функций, но и для комплекснозначных функций. 5

51 π (2n + 1) = π sin 2απ 2απ = 2sin2 απ α 2 π 2 Ответы + 4 sin2 απ π 2 α 2 (α 2 n 2) 2; sin 2απ 1 2απ = απ n 2 4sin2 π 2 (α 2 n 2) 2. 1 π 35. f(x)g(x) dx= c n d n, где c n коэффициент Фурье 2π функции f(x), а d n коэффициент Фурье функции g(x). 6. Дифференцирование рядов Фурье Пусть f: R R непрерывно дифференцируемая 2π-периодическая функция. Ее ряд Фурье имеет вид: f(x) = a 2 + (a n cos nx + b n sin nx). Производная f (x) этой функции будет непрерывной и 2π-периодической функцией, для которой можно записать формальный ряд Фурье: f (x) a 2 + (a n cos nx + b n sin nx), где a, a n, b n, n = 1, 2,... коэффициенты Фурье функции f (x). 51

52 Теорема (о почленном дифференцировании рядов Фурье). При сделанных выше предположениях справедливы равенства a =, a n = nb n, b n = na n, n 1. ПРИМЕР 15. Пусть кусочно-гладкая функция f(x) непрерывна в промежутке [, π]. Докажем, что при выполнении условия f(x)dx = имеет место неравенство 2 dx 2 dx, называемое неравенством Стеклова, и убедимся, что равенство в нем осуществляется лишь для функций вида f(x) = A cosx. Иными словами, неравенство Стеклова дает условия, при выполнении которых из малости производной (в среднеквадратичном) следует малость функции (в среднеквадратичном). Решение. Продолжим функцию f(x) на промежуток [, ] четным образом. Обозначим продолженную функцию тем же символом f(x). Тогда продолженная функция будет непрерывной и кусочно-гладкой на отрезке [, π]. Так как функция f(x) непрерывна, то f 2 (x) непрерывна на отрезке и 2 dx < +, следовательно, можно применить теорему Ляпунова, согласно которой имеет место равенство 1 π 2 dx = a () a 2 n + b 2 n. 52

53 Так как продолженная функция четная, то b n =, a = по условию. Следовательно, равенство Ляпунова принимает вид 1 π 2 dx = a 2 π n. (17) Убедимся, что для f (x) выполняется заключение теоремы о почленном дифференцировании ряда Фурье, то есть что a =, a n = nb n, b n = na n, n 1. Пусть производная f (x) претерпевает изломы в точках x 1, x 2,..., x N в промежутке [, π]. Обозначим x =, x N+1 = π. Разобьем промежуток интегрирования [, π] на N +1 промежуток (x, x 1),..., (x N, x N+1), на каждом из которых f(x) непрерывно дифференцируема. Тогда, используя свойство аддитивности интеграла, а затем интегрируя по частям, получим: b n = 1 π = 1 π = 1 π f (x) sin nxdx = 1 π N f(x) sin nx j= N f(x) sin nx j= x j+1 x j x j+1 x j n n π N j= x j+1 x j x j+1 x j f (x) sin nxdx = f(x) cosnxdx = f(x) cosnxdx = = 1 π [(f(x 1) sin nx 1 f(x) sin nx) + + (f(x 2) sinnx 2 f(x 1) sin nx 1)

54 + (f(x N+1) sin nx N+1 f(x N) sin nx N)] na n = = 1 π na n = = 1 π na n = na n. x j+1 a = 1 f (x)dx = 1 N f (x)dx = π π j= x j = 1 N x j+1 f(x) π = 1 (f(π) f()) =. x j π j= Последнее равенство имеет место в силу того, что функция f(x) была продолжена четным образом, а значит f(π) = f(). Аналогично получим a n = nb n. Мы показали, что теорема о почленном дифференцировании рядов Фурье для непрерывной кусочно-гладкой 2π-периодической функции, производная которой в промежутке [, π] претерпевает разрывы первого рода, верна. Значит f (x) a 2 + (a n cosnx + b n sin nx) = (na n)sin nx, так как a =, a n = nb n =, b n = na n, n = 1, 2,.... Поскольку 2 dx < +, то по равенству Ляпунова 1 π 2 dx = 54 n 2 a 2 n. (18)

55 Так как каждый член ряда в (18) больше или равен соответствующего члена ряда в (17), то 2 dx 2 dx. Вспоминая, что f(x) является четным продолжением исходной функции, имеем 2 dx 2 dx. Что и доказывает равенство Стеклова. Теперь исследуем для каких функций в неравенстве Стеклова имеет место равенство. Если хоть для одного n 2, коэффициент a n отличен от нуля, то a 2 n < na 2 n. Следовательно, равенство a 2 n = n 2 a 2 n возможно только если a n = для n 2. При этом a 1 = A может быть произвольным. Значит в неравенстве Стеклова равенство достигается только на функциях вида f(x) = A cosx. Отметим, что условие πa = f(x)dx = (19) существенно для выполнения неравенства Стеклова, ведь если условие (19) нарушено, то неравенство примет вид: a a 2 n n 2 a 2 n, а это не может быть верно при произвольном a. 55

56 ЗАДАЧИ 37. Пусть кусочно-гладкая функция f(x) непрерывна в промежутке [, π]. Докажите, что при выполнении условия f() = f(π) = имеет место неравенство 2 dx 2 dx, также называемое неравенством Стеклова, и убедитесь, что равенство в нем имеет место лишь для функций вида f(x) = B sin x. 38. Пусть функция f непрерывна в промежутке [, π] и имеет в нем (за исключением разве лишь конечного числа точек) производную f (x), интегрируемую с квадратом. Докажите, что если при этом выполнены условия f() = f(π) и f(x) dx =, то имеет место неравенство 2 dx 2 dx, называемое неравенством Виртингера, причем равенство в нем имеет место лишь для функций вида f(x) = A cosx + B sin x. 56

57 7. Применение рядов Фурье для решения дифференциальных уравнений в частных производных При изучении реального объекта (явления природы, производственного процесса, системы управления и т. д.) существенными оказываются два фактора: уровень накопленных знаний об исследуемом объекте и степень развития математического аппарата. На современном этапе научных исследований выработалась следующая цепочка: явление физическая модель математическая модель. Физическая постановка (модель) задачи состоит в следующем: выявляются условия развития процесса и главные факторы на него влияющие. Математическая постановка (модель) заключается в описании выбранных в физической постановке факторов и условий в виде системы уравнений (алгебраических, дифференциальных, интегральных и др.). Задача называется корректно поставленной, если в определенном функциональном пространстве решение задачи существует, единственно и непрерывно зависит от начальных и граничных условий. Математическая модель не бывает тождественна рассматриваемому объекту, а является его приближенным описанием Вывод уравнения свободных малых поперечных колебаний струны Будем следовать учебнику . Пусть концы струны закреплены, а сама струна туго натянута. Если вывести струну из положения равновесия (например, оттянуть или ударить по ней), то струна начнет 57

58 колебаться. Будем предполагать, что все точки струны движутся перпендикулярно ее положению равновесия (поперечные колебания), причем в каждый момент времени струна лежит в одной и той же плоскости. Возьмем в этой плоскости систему прямоугольных координат xou. Тогда, если в начальный момент времени t = струна располагалась вдоль оси Ox, то u будет означать отклонение струны от положения равновесия, то есть, положению точки струны с абсциссой x в произвольный момент времени t соответствует значение функции u(x, t). При каждом фиксированном значении t график функции u(x, t) представляет форму колеблющейся струны в момент времени t (рис. 32). При постоянном значении x функция u(x, t) дает закон движения точки с абсциссой x вдоль прямой, параллельной оси Ou, производная u t скорость этого движения, а вторая производная 2 u t 2 ускорение. Рис. 32. Силы, приложенные к бесконечно малому участку струны Составим уравнение, которому должна удовлетворять функция u(x, t). Для этого сделаем еще несколько упрощающих предположений. Будем считать струну абсолютно гиб- 58

59 кой, то есть будем считать, что струна не сопротивляется изгибу; это означает, что напряжения, возникающие в струне, всегда направлены по касательным к ее мгновенному профилю. Струна предполагается упругой и подчиняющейся закону Гука; это означает, что изменение величины силы натяжения пропорционально изменению длины струны. Примем, что струна однородна; это означает, что ее линейная плотность ρ постоянна. Внешними силами мы пренебрегаем. Это и означает, что мы рассматриваем свободные колебания. Мы будем изучать только малые колебания струны. Если обозначить через ϕ(x, t) угол между осью абсцисс и касательной к струне в точке с абсциссой x в момент времени t, то условие малости колебаний заключается в том, что величиной ϕ 2 (x, t) можно пренебрегать по сравнению с ϕ(x, t), т. е. ϕ 2. Так как угол ϕ мал, то cosϕ 1, ϕ sin ϕ tg ϕ u следовательно, величиной (u x x,) 2 также можно пренебрегать. Отсюда сразу следует, что в процессе колебания можем пренебречь изменением длины любого участка струны. Действительно, длина кусочка струны M 1 M 2, проектирующаяся в промежуток оси абсцисс, где x 2 = x 1 + x, равна l = x 2 x () 2 u dx x. x Покажем, что при наших предположениях величина силы натяжения T будет постоянной вдоль всей струны. Возьмем для этого какой либо участок струны M 1 M 2 (рис. 32) в момент времени t и заменим действие отброшенных участ- 59

60 ков силами натяжений T 1 и T 2. Так как по условию все точки струны движутся параллельно оси Ou и внешние силы отсутствуют, то сумма проекций сил натяжения на ось Ox должна равняться нулю: T 1 cosϕ(x 1, t) + T 2 cosϕ(x 2, t) =. Отсюда в силу малости углов ϕ 1 = ϕ(x 1, t) и ϕ 2 = ϕ(x 2, t) заключаем, что T 1 = T 2. Обозначим общее значение T 1 = T 2 через T. Теперь вычислим сумму проекций F u этих же сил на ось Ou: F u = T sin ϕ(x 2, t) T sin ϕ(x 1, t). (2) Так как для малых углов sin ϕ(x, t) tg ϕ(x, t), а tg ϕ(x, t) u(x, t)/ x, то уравнение (2) можно переписать так F u T (tg ϕ(x 2, t) tg ϕ(x 1, t)) (u T x (x 2, t) u) x (x 1, t) x x T 2 u x 2(x 1, t) x. Так как точка x 1 выбрана произвольно, то F u T 2 u x2(x, t) x. После того как найдены все силы, действующие на участок M 1 M 2, применим к нему второй закон Ньютона, согласно которому произведение массы на ускорение равно сумме всех действующих сил. Масса кусочка струны M 1 M 2 равна m = ρ l ρ x, а ускорение равно 2 u(x, t). Уравнение t 2 Ньютона принимает вид: 2 u t (x, t) x = u 2 α2 2 x2(x, t) x, где α 2 = T ρ постоянное положительное число. 6

61 Сокращая на x, получим 2 u t (x, t) = u 2 α2 2 x2(x, t). (21) В результате мы получили линейное однородное дифференциальное уравнение с частными производными второго порядка с постоянными коэффициентами. Его называют уравнением колебаний струны или одномерным волновым уравнением. Уравнение (21) по сути является переформулировкой закона Ньютона и описывает движение струны. Но в физической постановке задачи присутствовали требования о том, что концы струны закреплены и положение струны в какойто момент времени известно. Уравнениями эти условия будем записывать так: а) будем считать, что концы струны закреплены в точках x = и x = l, т. е. будем считать, что для всех t выполнены соотношения u(, t) =, u(l, t) = ; (22) б) будем считать, что в момент времени t = положение струны совпадает с графиком функции f(x), т. е. будем считать, что для всех x [, l] выполнено равенство u(x,) = f(x); (23) в) будем считать, что в момент времени t = точке струны с абсциссой x придана скорость g(x), т. е. будем считать, что u (x,) = g(x). (24) t Соотношения (22) называются граничными условиями, а соотношения (23) и (24) называются начальными условиями. Математическая модель свободных малых поперечных 61

62 колебаний струны заключается в том, что надо решить уравнение (21) с граничными условиями (22) и начальными условиями (23) и (24) Решение уравнения свободных малых поперечных колебаний струны методом Фурье Решения уравнения (21) в области x l, < t . Подставляя (25) в (21), получим: X T = α 2 X T, (26) или T (t) α 2 T(t) = X (x) X(x). (27) Говорят, что произошло разделение переменных. Так как x и t не зависят друг от друга, то левая часть в (27) не зависит от x, а правая от t и общая величина этих отношений 62

63 должна быть постоянной, которую обозначим через λ: T (t) α 2 T(t) = X (x) X(x) = λ. Отсюда получаем два обыкновенных дифференциальных уравнения: X (x) λx(x) =, (28) T (t) α 2 λt(t) =. (29) При этом граничные условия (22) примут вид X()T(t) = и X(l)T(t) =. Поскольку они должны выполняться для всех t, t >, то X() = X(l) =. (3) Найдем решения уравнения (28), удовлетворяющего граничным условиям (3). Рассмотрим три случая. Случай 1: λ >. Обозначим λ = β 2. Уравнение (28) принимает вид X (x) β 2 X(x) =. Его характеристическое уравнение k 2 β 2 = имеет корни k = ±β. Следовательно, общее решение уравнения (28) имеет вид X(x) = C e βx + De βx. Мы должны подобрать постоянные C и D так, чтобы соблюдались граничные условия (3), т. е. X() = C + D =, X(l) = C e βl + De βl =. Поскольку β, то эта система уравнений имеет единственное решение C = D =. Следовательно, X(x) и 63

64 u(x, t). Тем самым, в случае 1 мы получили тривиальное решение, которое далее рассматривать не будем. Случай 2: λ =. Тогда уравнение (28) принимает вид X (x) = и его решение, очевидно, задается формулой: X(x) = C x+d. Подставляя это решение в граничные условия (3), получим X() = D = и X(l) = Cl =, значит, C = D =. Следовательно, X(x) и u(x, t), и мы опять получили тривиальное решение. Случай 3: λ