Призма - это одна из объемных фигур, свойства которой изучают в школе в курсе пространственной геометрии. В данной статье рассмотрим конкретную призму - шестиугольную. Что это за фигура, как найти объем правильной шестиугольной призмы и площадь ее поверхности? Ответы на эти вопросы содержатся в статье.

Фигура призма

Предположим, что мы имеем произвольный многоугольник с числом сторон n, который находится в некоторой плоскости. К каждой вершине этого многоугольника построим вектор, который не будет лежать в плоскости многоугольника. С помощью этой операции мы получим n одинаковых векторов, вершины которых образуют многоугольник, в точности равный исходному. Фигура, ограниченная двумя одинаковыми многоугольниками и параллельными линиями, соединяющими их вершины, называется призмой.

Гранями призмы являются два основания, представленные многоугольниками с n сторонами, и боковые n поверхностей-параллелограммов. Количество ребер Р фигуры связано с числом ее вершин В и граней Г формулой Эйлера:

Для многоугольника с n сторонами получаем n + 2 грани и 2 * n вершин. Тогда количество ребер будет равно:

Р = В + Г - 2 = 2 * n + n + 2 - 2 = 3 * n

Самой простой призмой является треугольная, то есть основанием у нее является треугольник.

Классификация призм достаточно разнообразна. Так, они могут быть правильными и неправильными, прямоугольными и косоугольными, выпуклыми и вогнутыми.

Шестиугольная призма

Эта статья посвящена вопросу объема правильной шестиугольной призмы. Сначала познакомимся ближе с этой фигурой.

Как следует из названия, основание шестиугольной призмы является многоугольником с шестью сторонами и шестью углами. В общем случае таких многоугольников можно составить великое множество, однако для практики и для решения геометрических задач важен один единственный случай - правильный шестиугольник. У него все стороны равны между собой, а каждый из 6 углов составляет 120 o . Построить этот многоугольник можно легко, если разделить окружность на 6 равных частей тремя диаметрами (они должны пересекаться под углами 60 o).

Правильная шестиугольная призма предполагает не только наличие правильного многоугольника в ее основании, но и тот факт, что все боковые стороны фигуры должны являться прямоугольниками. Это возможно только в случае, если боковые грани будут перпендикулярны шестиугольным основаниям.

Правильная шестиугольная призма - это достаточно совершенная фигура, которая встречается в быту и природе. Стоит только вспомнить о форме пчелиных сот или о шестигранном гаечном ключе. В области нанотехнологий также часто встречаются шестиугольные призмы. Например, кристаллические решетки ГПУ и C32, которые реализуются при определенных условиях в титане и цирконии, а также решетка графита имеют форму шестиугольных призм.

Площадь поверхности шестиугольной призмы

Перейдем теперь непосредственно к вопросу вычисления площади и объема призмы. Сначала рассчитаем площадь поверхности этой фигуры.

Площадь поверхности любой призмы вычисляется с помощью следующего равенства:

То есть искомая площадь S равна сумме площадей двух оснований S o и площади боковой поверхности S b . Для определения величины S o можно поступить двумя способами:

  • Вычислить ее самостоятельно. Для этого шестиугольник разбивается на 6 равносторонних треугольников. Зная, что площадь одного треугольника равна половине произведения высоты на основание (длину стороны шестиугольника), можно найти площадь рассматриваемого многоугольника.
  • Воспользоваться известной формулой. Она приведена ниже:

S n = n / 4 * a 2 * ctg(pi / n)

Здесь a - длина стороны правильного многоугольника, имеющего n вершин.

Очевидно, что оба способа приводят к одному результату. Для правильного шестиугольника площадь равна:

S o = S 6 = 3 * √3 * a 2 / 2

Площадь боковой поверхности найти просто, для этого следует умножить основание каждого прямоугольника a на высоту призмы h, полученное значение умножить на число таких прямоугольников, то есть на 6. В итоге:

Пользуясь формулой для полной площади поверхности, для правильной шестиугольной призмы получаем:

S = 3 * √3 * a 2 + 6 * a * h = 3 * a * (√3 * a + 2 * h)

Как найти объем призмы?

Объем - это физическая величина, которая отражает область пространства, занимаемую объектом. Для призмы рассчитать эту величину можно по следующей формуле:

Это выражение дает ответ на вопрос о том, как найти объем призмы произвольной формы, то есть необходимо площадь основания S o умножить на высоту фигуры h (расстояние между основаниями).

Заметим, что приведенное выражение справедливо для любой призмы, включая вогнутые и косоугольные фигуры, образованные неправильными многоугольниками в основании.

Формула объема призмы шестиугольной правильной

На данный момент мы рассмотрели все необходимые теоретические выкладки, чтобы получить выражение для объема рассматриваемой призмы. Для этого достаточно площадь основания умножить на длину бокового ребра, которая является высотой фигуры. В итоге шестиугольной призмы примет вид:

V = 3 * √3 * a 2 * h / 2

Таким образом, расчет объема рассматриваемой призмы предполагает знание всего двух величин: длины стороны ее основания и высоты. Эти две величины однозначно определяют объем фигуры.

Сравнение объемов и цилиндра

Выше было сказано, что основание шестиугольной призмы может быть легко построено с использованием окружности. Также известно, что если увеличивать число сторон правильного многоугольника, то его форма будет приближаться к окружности. В связи с этим представляет интерес рассчитать, на сколько объем правильной шестиугольной призмы отличается от этого значения для цилиндра.

Для ответа на поставленный вопрос необходимо вычислить длину стороны шестиугольника, вписанного в окружность. Можно легко показать, что она равна радиусу. Обозначим радиус окружности буквой R. Предположим, что высота цилиндра и призмы равна некоторому значению h. Тогда объем призмы равен следующему значению:

V p = 3 * √3 * R 2 * h / 2

Объем цилиндра определяется по той же формуле, что и объем для произвольной призмы. Учитывая, что площадь круга равна pi * R 2 , для объема цилиндра имеем:

Найдем отношение объемов этих фигур:

V p / V с = 3 * √3 * R 2 * h / 2 / (pi * R 2 * h) = 3 * √3 / (2 * pi)

Число "пи" равно 3,1416. Подставляя его, получаем:

Таким образом, объем правильной шестиугольной призмы составляет около 83 % от объема цилиндра, в который она вписана.

Линии второго порядка.
Эллипс и его каноническое уравнение. Окружность

После основательной проработки прямых на плоскости продолжаем изучать геометрию двухмерного мира. Ставки удваиваются, и я приглашаю вас посетить живописную галерею эллипсов, гипербол, парабол, которые являются типичными представителями линий второго порядка . Экскурсия уже началась, и сначала краткая информация обо всей экспозиции на разных этажах музея:

Понятие алгебраической линии и её порядка

Линию на плоскости называют алгебраической , если в аффинной системе координат её уравнение имеет вид , где – многочлен, состоящий из слагаемых вида ( – действительное число, – целые неотрицательные числа).

Как видите, уравнение алгебраической линии не содержит синусов, косинусов, логарифмов и прочего функционального бомонда. Только «иксы» и «игреки» в целых неотрицательных степенях.

Порядок линии равен максимальному значению входящих в него слагаемых.

По соответствующей теореме, понятие алгебраической линии, а также её порядок не зависят от выбора аффинной системы координат , поэтому для лёгкости бытия считаем, что все последующие выкладки имеют место быть в декартовых координатах .

Общее уравнение линии второго порядка имеет вид , где – произвольные действительные числа ( принято записывать с множителем-«двойкой») , причём коэффициенты не равны одновременно нулю.

Если , то уравнение упрощается до , и если коэффициенты одновременно не равны нулю, то это в точности общее уравнение «плоской» прямой , которая представляет собой линию первого порядка .

Многие поняли смысл новых терминов, но, тем не менее, в целях 100%-го усвоения материала сунем пальцы в розетку. Чтобы определить порядок линии, нужно перебрать все слагаемые её уравнения и у каждого из них найти сумму степеней входящих переменных.

Например:

слагаемое содержит «икс» в 1-й степени;
слагаемое содержит «игрек» в 1-й степени;
в слагаемом переменные отсутствуют, поэтому сумма их степеней равна нулю.

Теперь разберёмся, почему уравнение задаёт линию второго порядка:

слагаемое содержит «икс» во 2-й степени;
у слагаемого сумма степеней переменных: 1 + 1 = 2;
слагаемое содержит «игрек» во 2-й степени;
все остальные слагаемые – меньшей степени.

Максимальное значение: 2

Если к нашему уравнению дополнительно приплюсовать, скажем, , то оно уже будет определять линию третьего порядка . Очевидно, что общий вид уравнения линии 3-го порядка содержит «полный комплект» слагаемых, сумма степеней переменных в которых равна трём:
, где коэффициенты не равны одновременно нулю.

В том случае, если добавить одно или несколько подходящих слагаемых, которые содержат , то речь уже зайдёт о линии 4-го порядка , и т.д.

С алгебраическими линиями 3-го, 4-го и более высоких порядков нам придется столкнуться ещё не раз, в частности, при знакомстве с полярной системой координат .

Однако вернёмся к общему уравнению и вспомним его простейшие школьные вариации. В качестве примеров напрашивается парабола , уравнение которой легко привести к общему виду , и гипербола с эквивалентным уравнением . Однако не всё так гладко….

Существенный недостаток общего уравнения состоит в том, что почти всегда не понятно, какую линию оно задаёт. Даже в простейшем случае не сразу сообразишь, что это гипербола. Такие расклады хороши только на маскараде, поэтому в курсе аналитической геометрии рассматривается типовая задача приведения уравнения линии 2-го порядка к каноническому виду .

Что такое канонический вид уравнения?

Это общепринятый стандартный вид уравнения, когда в считанные секунды становится ясно, какой геометрический объект оно определяет. Кроме того, канонический вид очень удобен для решения многих практических заданий. Так, например, по каноническому уравнению «плоской» прямой , во-первых, сразу понятно, что это прямая, а во-вторых – элементарно просматривается принадлежащая ей точка и направляющий вектор .

Очевидно, что любая линия 1-го порядка представляет собой прямую. На втором же этаже нас ждёт уже не вахтёр, а гораздо более разнообразная компания из девяти статуй:

Классификация линий второго порядка

С помощью специального комплекса действий любое уравнение линии второго порядка приводится к одному из следующих видов:

( и – положительные действительные числа)

1) – каноническое уравнение эллипса;

2) – каноническое уравнение гиперболы;

3) – каноническое уравнение параболы;

4) – мнимый эллипс;

5) – пара пересекающихся прямых;

6) – пара мнимых пересекающихся прямых (с единственной действительной точкой пересечения в начале координат);

7) – пара параллельных прямых;

8) – пара мнимых параллельных прямых;

9) – пара совпавших прямых.

У ряда читателей может сложиться впечатление неполноты списка. Например, в пункте № 7 уравнение задаёт пару прямых , параллельных оси , и возникает вопрос: а где же уравнение , определяющее прямые , параллельные оси ординат? Ответ: оно не считается каноническим . Прямые представляют собой тот же самый стандартный случай , повёрнутый на 90 градусов, и дополнительная запись в классификации избыточна, поскольку не несёт ничего принципиально нового.

Таким образом, существует девять и только девять различных видов линий 2-го порядка, но на практике наиболее часто встречаются эллипс, гипербола и парабола .

Сначала рассмотрим эллипс. Как обычно, я акцентирую внимание на тех моментах, которые имеют большое значение для решения задач, и если вам необходим подробный вывод формул, доказательства теорем, пожалуйста, обратитесь, например, к учебнику Базылева/Атанасяна либо Александрова.

Эллипс и его каноническое уравнение

Правописание… пожалуйста, не повторяйте ошибок некоторых пользователей Яндекса, которых интересует «как построить эллибз», «отличие элипса от овала» и «эксцентриситет элебса».

Каноническое уравнение эллипса имеет вид , где – положительные действительные числа, причём . Само определение эллипса я сформулирую позже, а пока самое время отдохнуть от говорильни и решить распространённую задачу:

Как построить эллипс?

Да, вот взять его и просто начертить. Задание встречается часто, и значительная часть студентов не совсем грамотно справляются с чертежом:

Пример 1

Построить эллипс, заданный уравнением

Решение : сначала приведём уравнение к каноническому виду:

Зачем приводить? Одно из преимуществ канонического уравнения заключается в том, что оно позволяет моментально определить вершины эллипса , которые находятся в точках . Легко заметить, что координаты каждой из этих точек удовлетворяют уравнению .

В данном случае :


Отрезок называют большой осью эллипса;
отрезок малой осью ;
число называют большой полуосью эллипса;
число малой полуосью .
в нашем примере: .

Чтобы быстро представить, как выглядит тот или иной эллипс достаточно посмотреть на значения «а» и «бэ» его канонического уравнения.

Всё ладно, складно и красиво, но есть один нюанс: я выполнил чертёж с помощью программы . И вы можете выполнить чертёж с помощью какого-либо приложения. Однако в суровой действительности на столе лежит клетчатый листок бумаги, и на наших руках водят хороводы мыши. Люди с художественным талантом, конечно, могут поспорить, но мыши есть и у вас тоже (правда, поменьше). Таки не зря человечество изобрело линейку, циркуль, транспортир и другие нехитрые приспособления для черчения.

По этой причине нам вряд ли удастся аккуратно начертить эллипс, зная одни вершины. Ещё куда ни шло, если эллипс небольшой, например, с полуосями . Как вариант, можно уменьшить масштаб и, соответственно, размеры чертежа. Но в общем случае крайне желательно найти дополнительные точки.

Существует два подхода к построению эллипса – геометрический и алгебраический. Построение с помощью циркуля и линейки мне не нравится по причине не самого короткого алгоритма и существенной загроможденности чертежа. В случае крайней необходимости, пожалуйста, обратитесь к учебнику, а в реальности же гораздо рациональнее воспользоваться средствами алгебры. Из уравнения эллипса на черновике быстренько выражаем:

Далее уравнение распадается на две функции:
– определяет верхнюю дугу эллипса;
– определяет нижнюю дугу эллипса.

Заданный каноническим уравнением эллипс симметричен относительно координатных осей, а также относительно начала координат . И это отлично – симметрия почти всегда предвестник халявы. Очевидно, что достаточно разобраться с 1-й координатной четвертью, поэтому нам потребуется функция . Напрашивается нахождение дополнительных точек с абсциссами . Настукаем три смс-ки на калькуляторе:

Безусловно, приятно и то, что если допущена серьёзная ошибка в вычислениях, то это сразу выяснится в ходе построения.

Отметим на чертеже точки (красный цвет), симметричные точки на остальных дугах (синий цвет) и аккуратно соединим линией всю компанию:


Первоначальный набросок лучше прочертить тонко-тонко, и только потом придать нажим карандашу. В результате должен получиться вполне достойный эллипс. Кстати, не желаете ли узнать, что это за кривая?

Определение эллипса. Фокусы эллипса и эксцентриситет эллипса

Эллипс – это частный случай овала. Слово «овал» не следует понимать в обывательском смысле («ребёнок нарисовал овал» и т.п.). Это математический термин, имеющий развёрнутую формулировку. Целью данного урока не является рассмотрение теории овалов и различных их видов, которым практически не уделяется внимания в стандартном курсе аналитической геометрии. И, в соответствии с более актуальными потребностями, мы сразу переходим к строгому определению эллипса:

Эллипс – это множество всех точек плоскости, сумма расстояний до каждой из которых от двух данных точек , называемых фокусами эллипса, – есть величина постоянная, численно равная длине большой оси этого эллипса: .
При этом расстояния между фокусами меньше данного значения: .

Сейчас станет всё понятнее:

Представьте, что синяя точка «ездит» по эллипсу. Так вот, какую бы точку эллипса мы ни взяли, сумма длин отрезков всегда будет одной и той же:

Убедимся, что в нашем примере значение суммы действительно равно восьми. Мысленно поместите точку «эм» в правую вершину эллипса, тогда: , что и требовалось проверить.

На определении эллипса основан ещё один способ его вычерчивания. Высшая математика, порой, причина напряжения и стресса, поэтому самое время провести очередной сеанс разгрузки. Пожалуйста, возьмите ватман либо большой лист картона и приколотите его к столу двумя гвоздиками. Это будут фокусы . К торчащим шляпкам гвоздей привяжите зелёную нитку и до упора оттяните её карандашом. Гриф карандаша окажется в некоторой точке , которая принадлежит эллипсу. Теперь начинайте вести карандаш по листу бумаги, сохраняя зелёную нить сильно натянутой. Продолжайте процесс до тех пор, пока не вернётесь в исходную точку… отлично… чертёж можно сдать на проверку врачу преподавателю =)

Как найти фокусы эллипса?

В приведённом примере я изобразил «готовенькие» точки фокуса, и сейчас мы научимся добывать их из недр геометрии.

Если эллипс задан каноническим уравнением , то его фокусы имеют координаты , где – это расстояние от каждого из фокусов до центра симметрии эллипса .

Вычисления проще пареной репы:

! Со значением «цэ» нельзя отождествлять конкретные координаты фокусов! Повторюсь, что – это РАССТОЯНИЕ от каждого из фокусов до центра (который в общем случае не обязан располагаться именно в начале координат).
И, следовательно, расстояние между фокусами тоже нельзя привязывать к каноническому положению эллипса. Иными словами, эллипс можно перенести в другое место и значение останется неизменным, в то время как фокусы, естественно, поменяют свои координаты. Пожалуйста, учитывайте данный момент в ходе дальнейшего изучения темы.

Эксцентриситет эллипса и его геометрический смысл

Эксцентриситетом эллипса называют отношение , которое может принимать значения в пределах .

В нашем случае:

Выясним, как форма эллипса зависит от его эксцентриситета. Для этого зафиксируем левую и правую вершины рассматриваемого эллипса, то есть, значение большой полуоси будет оставаться постоянным. Тогда формула эксцентриситета примет вид: .

Начнём приближать значение эксцентриситета к единице. Это возможно только в том случае, если . Что это значит? …вспоминаем про фокусы . Это значит, что фокусы эллипса будут «разъезжаться» по оси абсцисс к боковым вершинам. И, поскольку «зелёные отрезки не резиновые», то эллипс неизбежно начнёт сплющиваться, превращаясь всё в более и более тонкую сосиску, нанизанную на ось .

Таким образом, чем ближе значение эксцентриситета эллипса к единице, тем эллипс более продолговат .

Теперь смоделируем противоположный процесс: фокусы эллипса пошли навстречу друг другу, приближаясь к центру. Это означает, что значение «цэ» становится всё меньше и, соответственно, эксцентриситет стремится к нулю: .
При этом «зелёным отрезкам» будет, наоборот – «становиться тесно» и они начнут «выталкивать» линию эллипса вверх и вниз.

Таким образом, чем ближе значение эксцентриситета к нулю, тем эллипс больше похож на … смотрим предельный случай , когда фокусы успешно воссоединились в начале координат:

Окружность – это частный случай эллипса

Действительно, в случае равенства полуосей каноническое уравнение эллипса принимает вид , который рефлекторно преобразуется к – хорошо известному из школы уравнению окружности с центром в начале координат радиуса «а».

На практике чаще используют запись с «говорящей» буквой «эр»: . Радиусом называют длину отрезка , при этом каждая точка окружности удалена от центра на расстояние радиуса.

Заметьте, что определение эллипса остаётся полностью корректным: фокусы совпали , и сумма длин совпавших отрезков для каждой точки окружности – есть величина постоянная. Так как расстояние между фокусами , то эксцентриситет любой окружности равен нулю .

Строится окружность легко и быстро, достаточно вооружиться циркулем. Тем не менее, иногда бывает нужно выяснить координаты некоторых её точек, в этом случае идём знакомым путём – приводим уравнение к бодрому матановскому виду:

– функция верхней полуокружности;
– функция нижней полуокружности.

После чего находим нужные значения, дифференцируем , интегрируем и делаем другие хорошие вещи.

Статья, конечно, носит справочный характер, но как на свете без любви прожить? Творческое задание для самостоятельного решения

Пример 2

Составить каноническое уравнение эллипса, если известен один из его фокусов и малая полуось (центр находится в начале координат). Найти вершины, дополнительные точки и изобразить линию на чертеже. Вычислить эксцентриситет.

Решение и чертёж в конце урока

Добавим экшена:

Поворот и параллельный перенос эллипса

Вернёмся к каноническому уравнению эллипса , а именно, к условию , загадка которого терзает пытливые умы ещё со времён первого упоминания о данной кривой. Вот мы рассмотрели эллипс , но разве на практике не может встретиться уравнение ? Ведь здесь , однако, это вроде бы как тоже эллипс!

Подобное уравнение нечасто, но действительно попадается. И оно действительно определяет эллипс. Развеем мистику:

В результате построения получен наш родной эллипс, повёрнутый на 90 градусов. То есть, – это неканоническая запись эллипса . Запись! – уравнение не задаёт какой-то другой эллипс, поскольку на оси не существует точек (фокусов), которые бы удовлетворяли определению эллипса.

Определение 7.1. Множество всех точек на плоскости, для которых сумма расстояний до двух фиксированных точек F 1 и F 2 есть заданная постоянная величина, называют эллипсом.

Определение эллипса дает следующий способ его геометрического построения. Фиксируем на плоскости две точки F 1 и F 2 , а неотрицательную постоянную величину обозначим через 2а. Пусть расстояние между точками F 1 и F 2 равно 2c. Представим себе, что нерастяжимая нить длиной 2а закреплена в точках F 1 и F 2 , например, при помощи двух иголок. Ясно, что это возможно лишь при а ≥ с. Натянув нить карандашом, начертим линию, которая и будет эллипсом (рис. 7.1).

Итак, описываемое множество не пусто, если а ≥ с. При а = с эллипс представляет собой отрезок с концами F 1 и F 2 , а при с = 0, т.е. если указанные в определении эллипса фиксированные точки совпадают, он является окружностью радиуса а. Отбрасывая эти вырожденные случаи, будем далее предполать, как правило, что а > с > 0.

Фиксированные точки F 1 и F 2 в определении 7.1 эллипса (см. рис. 7.1) называют фокусами эллипса , расстояние между ними, обозначенное через 2c, - фокальным расстоянием , а отрезки F 1 M и F 2 M, соединяющие произвольную точку M на эллипсе с его фокусами, - фокальными радиусами .

Вид эллипса полностью определяется фокальным расстоянием |F 1 F 2 | = 2с и параметром a, а его положение на плоскости - парой точек F 1 и F 2 .

Из определения эллипса следует, что он симметричен относительно прямой, проходящей через фокусы F 1 и F 2 , а также относительно прямой, которая делит отрезок F 1 F 2 пополам и перпендикулярна ему (рис. 7.2, а). Эти прямые называют осями эллипса . Точка O их пересечения является центром симметрии эллипса, и ее называют центром эллипса , а точки пересечения эллипса с осями симметрии (точки A, B, C и D на рис. 7.2, а) - вершинами эллипса .


Число a называют большой полуосью эллипса , а b = √(a 2 - c 2) - его малой полуосью . Нетрудно заметить, что при c > 0 большая полуось a равна расстоянию от центра эллипса до тех его вершин, которые находятся на одной оси с фокусами эллипса (вершины A и B на рис. 7.2, а), а малая полуось b равна расстоянию от центра эллипса до двух других его вершин (вершины C и D на рис. 7.2, а).

Уравнение эллипса. Рассмотрим на плоскости некоторый эллипс с фокусами в точках F 1 и F 2 , большой осью 2a. Пусть 2c - фокальное расстояние, 2c = |F 1 F 2 |

Выберем прямоугольную систему координат Oxy на плоскости так, чтобы ее начало совпало с центром эллипса, а фокусы находились на оси абсцисс (рис. 7.2, б). Такую систему координат называют канонической для рассматриваемого эллипса, а соответствующие переменные - каноническими .

В выбранной системе координат фокусы имеют координаты F 1 (c;0), F 2 (-c;0). Используя формулу расстояния между точками, запишем условие |F 1 M| + |F 2 M| = 2a в координатах:

√((x - c) 2 + y 2) + √((x + c) 2 + y 2) = 2a. (7.2)

Это уравнение неудобно, так как в нем присутствуют два квадратных радикала. Поэтому преобразуем его. Перенесем в уравнении (7.2) второй радикал в правую часть и возведем в квадрат:

(x - c) 2 + y 2 = 4a 2 - 4a√((x + c) 2 + y 2) + (x + c) 2 + y 2 .

После раскрытия скобок и приведения подобных слагаемых получаем

√((x + c) 2 + y 2) = a + εx

где ε = c/a. Повторяем операцию возведения в квадрат, чтобы убрать и второй радикал: (x + c) 2 + y 2 = a 2 + 2εax + ε 2 x 2 , или, учитывая значение введенного параметра ε, (a 2 - c 2) x 2 /a 2 + y 2 = a 2 - c 2 . Так как a 2 - c 2 = b 2 > 0, то

x 2 /a 2 + y 2 /b 2 = 1, a > b > 0. (7.4)

Уравнению (7.4) удовлетворяют координаты всех точек, лежащих на эллипсе. Но при выводе этого уравнения использовались неэквивалентные преобразования исходного уравнения (7.2) - два возведения в квадрат, убирающие квадратные радикалы. Возведение уравнения в квадрат является эквивалентным преобразованием, если в обеих его частях стоят величины с одинаковым знаком, но мы этого в своих преобразованиях не проверяли.

Мы можем не проверять эквивалентность преобразований, если учтем следующее. Пара точек F 1 и F 2 , |F 1 F 2 | = 2c, на плоскости определяет семейство эллипсов с фокусами в этих точках. Каждая точка плоскости, кроме точек отрезка F 1 F 2 , принадлежит какому-нибудь эллипсу указанного семейства. При этом никакие два эллипса не пересекаются, так как сумма фокальных радиусов однозначно определяет конкретный эллипс. Итак, описанное семейство эллипсов без пересечений покрывает всю плоскость, кроме точек отрезка F 1 F 2 . Рассмотрим множество точек, координаты которых удовлетворяют уравнению (7.4) с данным значением параметра a. Может ли это множество распределяться между несколькими эллипсами? Часть точек множества принадлежит эллипсу с большой полуосью a. Пусть в этом множестве есть точка, лежащая на эллипсе с большой полуосью а. Тогда координаты этой точки подчиняются уравнению

т.е. уравнения (7.4) и (7.5) имеют общие решения. Однако легко убедиться, что система

при ã ≠ a решений не имеет. Для этого достаточно исключить, например, x из первого уравнения:

что после преобразований приводит к уравнению

не имеющему решений при ã ≠ a, поскольку . Итак, (7.4) есть уравнение эллипса с большой полуосью a > 0 и малой полуосью b =√(a 2 - c 2) > 0. Его называют каноническим уравнением эллипса .

Вид эллипса. Рассмотренный выше геометрический способ построения эллипса дает достаточное представление о внешнем виде эллипса. Но вид эллипса можно исследовать и с помощью его канонического уравнения (7.4). Например, можно, считая у ≥ 0, выразить у через x: y = b√(1 - x 2 /a 2), и, исследовав эту функцию, построить ее график. Есть еще один способ построения эллипса. Окружность радиуса a с центром в начале канонической системы координат эллипса (7.4) описывается уравнением x 2 + y 2 = а 2 . Если ее сжать с коэффициентом a/b > 1 вдоль оси ординат , то получится кривая, которая описывается уравнением x 2 + (ya/b) 2 = a 2 , т. е. эллипс.

Замечание 7.1. Если ту же окружность сжать с коэффициентом a/b

Эксцентриситет эллипса . Отношение фокального расстояния эллипса к его большой оси называют эксцентриситетом эллипса и обозначают через ε. Для эллипса, заданного

каноническим уравнением (7.4), ε = 2c/2a = с/a. Если же в (7.4) параметры a и b связаны неравенством a

При с =0, когда эллипс превращается в окружность, и ε = 0. В остальных случаях 0

Уравнение (7.3) эквивалентно уравнению (7.4), поскольку эквивалентны уравнения (7.4) и (7.2) . Поэтому уравнением эллипса является и (7.3). Кроме того, соотношение (7.3) интересно тем, что дает простую, не содержащую радикалов, формулу для длины |F 2 M| одного из фокальных радиусов точки M(x; у) эллипса: |F 2 M| = a + εx.

Аналогичная формула для второго фокального радиуса может быть получена из соображений симметрии либо повторением выкладок, в которых перед возведением в квадрат уравнения (7.2) в правую часть переносится первый радикал, а не второй. Итак, для любой точки M(x; у) на эллипсе (см. рис. 7.2)

|F 1 M | = a - εx, |F 2 M| = a + εx, (7.6)

и каждое из этих уравнений является уравнением эллипса.

Пример 7.1. Найдем каноническое уравнение эллипса с большой полуосью 5 и эксцентриситетом 0,8 и построим его.

Зная большую полуось эллипса a = 5 и эксцентриситет ε = 0,8, найдем его малую полуось b. Поскольку b = √(a 2 - с 2), а с = εa = 4, то b = √(5 2 - 4 2) = 3. Значит каноническое уравнение имеет вид x 2 /5 2 + y 2 /3 2 = 1. Для построения эллипса удобно изобразить прямоугольник с центром в начале канонической системы координат, стороны которого параллельны осям симметрии эллипса и равны его соответствующим осям (рис. 7.4). Этот прямоугольник пересекается с

осями эллипса в его вершинах A(-5; 0), B(5; 0), C(0; -3), D(0; 3), причем сам эллипс вписан в него. На рис. 7.4 указаны также фокусы F 1,2 (±4; 0) эллипса.

Геометрические свойства эллипса. Перепишем первое уравнение в (7.6) в виде |F 1 M| = (а/ε - x)ε. Отметим, что величина а/ε - x при а > с положительна, так как фокус F 1 не принадлежит эллипсу. Эта величина представляет собой расстояние до вертикальной прямой d: x = а/ε от точки M(x; у), лежащей левее этой прямой. Уравнение эллипса можно записать в виде

|F 1 M|/(а/ε - x) = ε

Оно означает, что этот эллипс состоит из тех точек M(x; у) плоскости, для которых отношение длины фокального радиуса F 1 M к расстоянию до прямой d есть величина постоянная, равная ε (рис. 7.5).

У прямой d есть " двойник " - вертикальная прямая d", симметричная d относительно центра эллипса, которая задается уравнением x = -а/ε. Относительно d" эллипс описывается так же, как и относительно d. Обе прямые d и d" называют директрисами эллипса . Директрисы эллипса перпендикулярны той оси симметрии эллипса, на которой расположены его фокусы, и отстоят от центра эллипса на расстояние а/ε = а 2 /с (см. рис. 7.5).

Расстояние p от директрисы до ближайшего к ней фокуса называют фокальным параметром эллипса . Этот параметр равен

p = a/ε - c = (a 2 - c 2)/c = b 2 /c

Эллипс обладает еще одним важным геометрическим свойством: фокальные радиусы F 1 M и F 2 M составляют с касательной к эллипсу в точке M равные углы (рис. 7.6).

Это свойство имеет наглядный физический смысл. Если в фокусе F 1 расположить источник света, то луч, выходящий из этого фокуса, после отражения от эллипса пойдет по второму фокальному радиусу, так как после отражения он будет находиться под тем же углом к кривой, что и до отражения. Таким образом, все лучи, выходящие из фокуса F 1 , сконцентрируются во втором фокусе F 2 , и наоборот. Исходя из данной интерпретации указанное свойство называют оптическим свойством эллипса .