В 1836 году Майкл Фарадей опубликовал выведенные математически количественные характеристики электролиза. Обнаруженные взаимосвязи между количеством прошедшего через электролит электричества и количеством выделившегося при этом вещества впоследствии были названы законами Фарадея для электролиза.

Первый закон

Если пропускать через раствор медного купороса электрический ток в течение определённого количества времени, то на катоде выделяется небольшое количество меди. Однако если пустить ток большей силы, за такое же количество времени на катоде образуется большее количество меди. При увеличении времени и одинаковой силе тока также увеличивается количество меди.

Фарадей установил взаимосвязь массы вещества, силы тока и времени. Математически эта взаимосвязь выражается следующим образом:

  • m - масса вещества;
  • k - электрохимический эквивалент;
  • I - сила тока;
  • t - время.

Электрохимический эквивалент - это масса вещества, образованная при прохождении через электролит тока в 1 А за одну секунду. Выражается как соотношение массы вещества к количеству электричества или г/Кл.

Произведение силы тока и времени выражает количество электричества: q = It. Это электрический заряд, измеряемый в кулонах (один ампер к одной секунде). Электрический заряд отражает способность тела быть источником электромагнитного поля и принимать участие в электромагнитном взаимодействии.

Соответственно, уравнение Фарадея приобретает вид:

Рис. 2. Первый закон Фарадея.

Первый закон электролиза Фарадея: масса вещества, выделившегося при электролизе, прямо пропорциональна количеству электрического тока, пропущенного через электролит.

Второй закон

Фарадей, пропуская электрический ток одинаковой силы через различные электролиты, заметил, что массы веществ на электродах неодинаковы. Взвесив выделившиеся вещества, Фарадей сделал вывод, что вес зависит от химической природы вещества. Например, на каждый грамм выделенного водорода приходилось 107,9 г серебра, 31,8 г меди, 29,35 г никеля.

На основе полученных данных Фарадей вывел второй закон электролиза: для определённого количества электричества масса химического элемента, образовавшегося на электроде, прямо пропорциональна эквивалентной массе элемента. Она равна массе одного эквивалента - количеству вещества, реагирующему или замещающему 1 моль атомов водорода в химических реакциях:

  • μ - молярная масса вещества;
  • z - число электронов на один ион (валентное число ионов).

Для выделения одного моля эквивалента затрачивается одинаковое количество электричества - 96485 Кл/моль. Это число называется числом Фарадея и обозначается буквой F.

Согласно второму закону, электрохимический эквивалент прямо пропорционален эквивалентной массе вещества:

k = (1/F) μ eq или k = (1/zF)μ.

Рис. 3. Второй закон Фарадея.

Два закона Фарадея можно привести к общей формуле: m = (q / F) ∙ (μ/z).

Что мы узнали?

Фарадей, проводя реакцию электролиза разных веществ, вывел два закона. Согласно первому закону, масса вещества, осевшего на электрод, прямо пропорциональная количеству электричества, пропущенного через электролит: m = kq. Второй закон отражает взаимосвязь электрохимического эквивалента и эквивалентной массы вещества: k = (1/F) μ eq . Электрохимический эквивалент - количество выделившегося вещества при прохождении единицы электричества. Эквивалентная масса - количество вещества, реагирующее с 1 молем водорода.

Возникновение электродвижущей силы индукции было важнейшим открытием в области физики. Оно явилось основополагающим для развития технического применения этого явления.

Jpg?.jpg 600w, https://elquanta.ru/wp-content/uploads/2018/03/1-24.jpg 765w" sizes="(max-width: 600px) 100vw, 600px">

Майкл Фарадей

История

В 20-е годы 19-го века датчанин Эрстед наблюдал за отклонением магнитной стрелки при расположении ее рядом с проводником, по которому протекал электроток.

Это явление захотел исследовать ближе Майкл Фарадей. С большим упорством он преследовал свою цель – преобразовать магнетизм в электричество.

Первые опыты Фарадея принесли ему ряд неудач, так как он изначально считал, что значительный постоянный ток в одном контуре может сгенерировать ток в рядом находящемся контуре при условии отсутствия электрической связи между ними.

Исследователь видоизменил эксперименты, и в 1831 году они увенчались успехом. Опыты Фарадея начинались с наматывания медной проволоки вокруг бумажной трубки и соединения ее концов с гальванометром. Затем ученый погружал магнит внутрь катушки и замечал, что стрелка гальванометра давала мгновенное отклонение, показывая, что в катушке был индуцирован ток. После вынимания магнита наблюдалось отклонение стрелки в противоположном направлении. Вскоре в ходе других экспериментов он заметил, что в момент подачи и снятия напряжения с одной катушки появляется ток в рядом находящейся катушке. Обе катушки имели общий магнитопровод.

Jpg?.jpg 600w, https://elquanta.ru/wp-content/uploads/2018/03/2-21-120x74..jpg 706w" sizes="(max-width: 600px) 100vw, 600px">

Опыты Фарадея

Многочисленные опыты Фарадея с другими катушками и магнитами были продолжены, и исследователь установил, что сила индуцированного тока зависит от:

  • количества витков в катушке;
  • силы магнита;
  • скорости, с которой магнит погружался в катушку.

Термин «электромагнитная индукция» (эми) относится к явлению, что ЭДС генерируется в проводнике переменным внешним магнитным полем.

Формулирование закона электромагнитной индукции

Словесная формулировка закона электромагнитной индукции: индуцированная электродвижущая сила в любом замкнутом контуре равна отрицательной временной скорости изменения магнитного потока, заключенного в цепь.

Это определение математически выражает формула:

Е = — ΔΦ/ Δt,

где Ф = В х S, с плотностью магнитного потока В и площадью S, которую пересекает перпендикулярно магнитный поток.

Дополнительная информация. Существуют два разных подхода к индукции. Первый – объясняет индукцию с помощью силы Лоренца и ее действия на движущийся электрозаряд. Однако в определенных ситуациях, таких как магнитное экранирование или униполярная индукция, могут возникнуть проблемы в понимании физического процесса. Вторая теория использует методы теории поля и объясняет процесс индукции с помощью переменных магнитных потоков и связанных с ними плотностей этих потоков.

Физический смысл закона электромагнитной индукции формулируется в трех положениях:

  1. Изменение внешнего МП в катушке провода индуцирует в ней напряжение. При замкнутой проводящей электроцепи индуцированный ток начинает циркулировать по проводнику;
  2. Величина индуцированного напряжения соответствует скорости изменения магнитного потока, связанного с катушкой;
  3. Направление индукционной ЭДС всегда противоположно причине, ее вызвавшей.

Data-lazy-type="image" data-src="http://elquanta.ru/wp-content/uploads/2018/03/3-18-600x367.jpg?.jpg 600w, https://elquanta.ru/wp-content/uploads/2018/03/3-18-768x470..jpg 120w, https://elquanta.ru/wp-content/uploads/2018/03/3-18.jpg 900w" sizes="(max-width: 600px) 100vw, 600px">

Закон электромагнитной индукции

Важно! Формула для закона электромагнитной индукции применяется в общем случае. Не существует известной формы индукции, которая не может быть объяснена изменением магнитного потока.

ЭДС индукции в проводнике

Для расчета индукционного напряжения в проводнике, который движется в МП, применяют другую формулу:

E = — B x l x v х sin α, где:

  • В – индукция;
  • l – протяженность проводника;
  • v – скорость его движения;
  • α – угол, образованный направлением перемещения и векторным направлением магнитной индукции.

Важно! Способ определения, куда направлен индукционный ток, создающийся в проводнике: располагая правую руку ладонью перпендикулярно вхождению силовых линий МП и, отведенным большим пальцем указывая направление перемещения проводника, узнаем направление тока в нем по распрямленным четырем пальцам.

Jpg?.jpg 600w, https://elquanta.ru/wp-content/uploads/2018/03/4-17-210x140.jpg 210w" sizes="(max-width: 600px) 100vw, 600px">

Правило правой руки

Законы электролиза

Исторические опыты Фарадея в 1833 году были связаны и с электролизом. Он брал пробирку с двумя платиновыми электродами, погруженными в растворенный хлорид олова, нагретый спиртовой лампой. Хлор выделялся на положительном электроде, а олово – на отрицательном. Затем он взвешивал выделившееся олово.

В других опытах исследователь соединял емкости с разными электролитами последовательно и замерял количество осаждающегося вещества.

На основании этих экспериментов формулируются два закона электролиза:

  1. Первый из них: масса вещества, выделяемого на электроде, прямо пропорциональна количеству электричества, пропускаемого через электролит. Математически это записывают так:

m = K x q, где К – константа пропорциональности, называемая электрохимическим эквивалентом.

Сформулируйте его определение, как масса вещества в г, высвобождаемая на электроде при прохождении тока в 1 А за 1 с либо при прохождении 1 Кл электричества;

Data-lazy-type="image" data-src="http://elquanta.ru/wp-content/uploads/2018/03/5-13-600x342.jpg?.jpg 600w, https://elquanta.ru/wp-content/uploads/2018/03/5-13-768x438..jpg 960w" sizes="(max-width: 600px) 100vw, 600px">

Первый закон электролиза

  1. Второй закон Фарадея гласит: если одинаковое количество электричества пропускается через разные электролиты, то количество веществ, высвобождаемых на соответствующих электродах, прямо пропорционально их химическому эквиваленту (химический эквивалент металла получается путем деления его молярной массы на валентность – M/z).

Для второго закона электролиза используется запись:

Здесь F постоянная Фарадея, которая определяется зарядом 1 моля электронов:

F = Na (число Авогадро) х e (элементарный электрозаряд) = 96485 Кл/моль.

Запишите другое выражение для второго закона Фарадея:

m1/m2 = К1/К2.

Jpg?.jpg 600w, https://elquanta.ru/wp-content/uploads/2018/03/6-7-768x528..jpg 800w" sizes="(max-width: 600px) 100vw, 600px">

Второй закон электролиза

Например, если взять две соединенных последовательно электролитических емкости, содержащие раствор AgNO 3 и CuSO 4, и пропустить через них одинаковое количество электричества, то соотношение массы осажденной меди на катоде одной емкости к массе осажденного серебра на катоде другой емкости будет равно отношению их химических эквивалентов. Для меди это Оцените статью: