При изучении естественных наук в современной школе огромное значение имеет наглядность учебного материала. Наглядность дает возможность быстрее и глубже усваивать изучаемую тему, помогает разобраться в трудных для восприятия вопросах, и повышает интерес к предмету. Цифровые лаборатории являются новым, современным оборудованием для проведения самых различных школьных исследований естественнонаучного направления. С их помощью можно проводить работы, как входящие в школьную программу, так и совершенно новые исследования. Применение лабораторий значительно повышает наглядность, как в ходе самой работы, так и при обработке результатов благодаря новым измерительным приборам, входящим в комплект лаборатории физики (датчики силы, расстояния, давления, температуры, тока, напряжения, освещенности, звука, магнитного поля и пр.). Оборудование цифровой лаборатории универсально, может быть включено в разнообразные экспериментальные установки, экономить время учеников и учителя, побуждает учеников к творчеству, давая возможность легко менять параметры измерений. Кроме того, программа для видеоанализа позволяет получать данные из видеофрагментов, что позволяет использовать в качестве примеров и количественно исследовать реальные жизненные ситуации, отснятые на видео самими учащимися и фрагменты учебных и популярных видеофильмов.

Скачать:

Предварительный просмотр:

Чтобы пользоваться предварительным просмотром презентаций создайте себе аккаунт (учетную запись) Google и войдите в него: https://accounts.google.com


Подписи к слайдам:

Единственный путь, ведущий к знаниям-это деятельность. Бернард Шоу.

Методическая разработка демонстрационного эксперимента по предмету физика «Количество теплоты и теплоемкость»

Цель данной разработки: показать возможности применения «Цифровой лаборатории» в учебном процессе. Показать возможность измерения удельной теплоемкости вещества

Данную разработку можно использовать при объяснении нового материала, во время проведения лабораторной работы, для проведения занятия во внеурочное время.

Состав цифровой лаборатории Измерительный интерфейс TriLink Цифровые датчики по физике

Техническое обеспечение экран и мультимедийный проектор штативы (2 шт.) пробирки (2 шт.) вода, спирт датчик температуры 0- 100°C (2 шт.) цилиндры металлические (2 шт.) спиртовки (2 шт.) мензурка калориметр горячая вода

Опыт: Различие теплоемкости воды и спирта Нагрев два цилиндра в кипятке, один цилиндр опускают при помощи ложечки для плавления в пробирку с водой, а второй в пробирку со спиртом при комнатной температуре. После опускания цилиндров в пробирки требуется, придерживая пробирку за верхнюю часть, быстро вставить датчик, укрепить корпус датчика на стальном листе и начать перемешивать жидкость в пробирке за счет вращения пробирки вокруг датчика.

Мы в работе

Использование цифровой лаборатории на уроках физики

Спасибо за внимание!!!

Предварительный просмотр:

МУНИЦИПАЛЬНОЕ БЮДЖЕТНОЕ ОБЩЕОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ

СРЕДНЯЯ ОБЩЕОБРАЗОВАТЕЛЬНАЯ ШКОЛА №7 г. ПОРОНАЙСКА

Методическая разработка демонстрационного эксперимента

по предмету физика

«Количество теплоты и теплоемкость»

Для учащихся 8 класса

МБОУ СОШ №7 г. Поронайск

Поронайск

2014

1.Введение

2.Основная часть

3.Заключение

4.Техническое обеспечение

1.Введение

Я преподаю физику в 7-11 классах Поронайской средней школы с 1994 года. Чтобы привить интерес к своему предмету, я считаю, что необходим демонстрационный эксперимент, который является неотъемлемой органической частью физики средней школы.

Демонстрационные опыты формируют накопленные ранее предварительные представления, которые к началу изучения физики не у всех бывают правильными. На протяжении всего курса физики эти опыты пополняют и расширяют кругозор учащихся. Они зарождают правильные начальные представления о новых физических явлениях и процессах, раскрывают закономерности, знакомят с методами исследования, показывают устройство и действие новых приборов и установок. Демонстрационный эксперимент служит источником знаний, развивает умения и навыки учащихся.

Особое значение имеет эксперимент на первых порах обучения, т.е в 7-8 классах, когда учащиеся впервые приступают к изучению физики. Я считаю, лучше один раз увидеть, чем сто раз услышать.

2.Основная часть

Цель данной разработки: показать возможности применения «Цифровой лаборатории» в учебном процессе. Рассмотрим использование лаборатории «Архимед» при изучении темы «Тепловые явления» в 8 классе:

Демонстрация. Количество теплоты и теплоемкость

Цель демонстрации показать возможность измерения удельной теплоемкости вещества

В ходе демонстрации вводятся элементы знаний «количество теплоты», «удельная теплоемкость вещества». Для формирования представлений об удельной теплоемкости как о физической величине, которую можно измерить, предполагается провести ряд простых опытов.

Перед проведением серии опытов, посвященных понятию теплоемкости, ученикам рекомендуется рассказать об истории введения понятия «теплоемкость тела» во времена, когда «количество теплоты» воспринималось как количество невидимой и невесомой жидкости «теплорода», а температура – как мера уровня жидкости в теле. «Теплоемкость тела» считалась коэффициентом пропорциональности между температурой и количеством «теплорода», протекающего в теле. Больше емкость сосуда, меньше изменения налитой жидкости в нем, больше теплоемкость тела - меньше изменения уровня температуры в нем.

Однако оказалось, что при одинаковой массе тел из разных веществ, при одинаковом количестве теплоты, полученной от другого тела, их температура меняется по разному. Поэтому было ведено понятие удельная теплоемкость вещества, а «теплоемкость тела» рассчитывалась как произведение массы тела на удельную теплоемкость вещества, из которого оно сделано.

Согласно современным представлениям количество теплоты Q- это изменение внутренней энергии тела в условиях когда тело не совершает работы. Теплоемкость С- коэффициент пропорциональности между количеством теплоты, полученной или отданной телом, и изменением его температуры.

Чтобы оценить теплоемкость некоторого вещества по сравнению с другим(водой), одной и той же массе вещества (вода и спирт) сообщают одинаковое количества энергии и регистрируют изменение температуры, которое было вызвано добавлением этой энергии.

Опыт: Различие теплоемкости воды и спирта

Вывод о том, что теплоемкость воды больше, чем теплоемкость спирта, можно сделать показав, что получение одного и того же количества теплоты нагревается спирт на большее число градусов.

Нагрев два цилиндра в кипятке, один брусок опускают с помощи ложечки для плавления в пробирку с водой, а второй – в пробирку со спиртом при комнатной температуре.

После пускания цилиндров в пробирки требуется, придерживая пробирку за верхнюю часть быстро вставить датчик, укрепить корпус датчика на стальном листе и начать перемешивать жидкость в пробирке за счет вращения пробирки вокруг датчика. На графике наблюдается спад температуры датчика ниже комнатной за счет испарения жидкости на кончике датчика, затем всплеск до максимальной величины, за счет прогрева воды и чувствительного элемента датчика вблизи горячего цилиндра, а затем выход на стационарное значение за счет перемешивания жидкости в пробирке. Как видно Наблюдаемое изменение температуры не дотягивает до требуемого различия, соответствующего разнице теплоемкостей(примерно в 2 раза).

Для приближения к требуемым величинам, рекомендуется проводить эксперимент с цилиндрами, нагреваемыми до температуры не выше 80 0 С, поскольку спирт кипит при 87 0 С. Точное числовое значение начальной температуры цилиндров несущественно, лишь бы оно было примерно одинаковым.

3.Заключение

  • Повышение уровня знаний за счёт активной деятельности учащихся в ходе экспериментальной исследовательской работы
  • Автоматический сбор данных на протяжении всего эксперимента позволяет сэкономить время на записи
  • Результаты эксперимента – наглядны: данные отображаются в виде графика, таблицы, аналогового табло и в цифровом виде
  • Обладают портативностью
  • Удобная обработка результатов позволяют получать данные, недоступные в традиционных учебных экспериментах

4.Техническое обеспечение

экран и мультимедийный проектор

  • штативы (2 шт.)
  • спиртовки (2 шт.)
  • пробирки (2 шт.)
  • вода, спирт
  • датчик температуры 0- 100 °C (2 шт.)

5.Список используемой литературы

  • Перышкин А. В. «Физика - 8»
  • Волков В. А. «Поурочные разработки по физике 8 кл»
  • «Уроки физики с применением информационных технологий» Москва, Глобус, 2009г.
  • Разумовский В. Г. «Уроки физики в современной школе»
  • А.Н. Болгар и др. «Цифровая лаборатория» Методическое руководство по работе с комплектом оборудования и программным обеспечением фирмы 2НАУЧНЫЕ РАЗВЛЕЧЕНИЯ» м.,2011,89с.
  • URL: http://www.int-edu.ru
  • URL: http://mytest.klyaksa.net

1

1 г. Морозовск, Филиал Университетского казачьего кадетского корпуса-интерната ФГБОУ ВО «Московский государственный университет технологий и управления имени К.Г. Разумовского (Первый казачий университет)», 8/1 взвод

Мосина О.В. (г. Морозовск, Филиал Университетского казачьего кадетского корпуса-интерната ФГБОУ ВО «Московский государственный университет технологий и управления имени К.Г. Разумовского (Первый казачий университет)»)

Перышкин А.В. Физика 8 класс. – М.: Дрофа, 2012.

Блудов М.И. Беседы по физике часть 1. – М.: Просвещение, 1984.

URL: http://class-fizika.narod.ru/8_3.htm.

URL: http://ru.wikipedia.org/wiki/ %D0 %A2 %D0 %B5 %D0 %BF %D0 %BB %D0 %BE %D0 %BF %D1 %80 %D0 %BE %D0 %B2 %D0 %BE %D0 %B4 %D0 %BD %D0 %BE %D1 %81 %D1 %82 %D1 %8C.

Проект разработан в соответствии со стандартом среднего общего образования по физике. При написании данного проекта рассмотрено изучение тепловых явлений, применение их в быту и технике. Помимо теоретического материала большое внимание уделено исследовательской работе - это опыты, которые отвечают на вопросы «Какими способами можно изменить внутреннюю энергию тела», «Одинаковая ли теплопроводность различных веществ», «Почему струи теплого воздуха или жидкости поднимаются вверх», «Почему тела с темной поверхностью нагреваются сильнее»; поиск и обработка информации, фотографий.

Время работы над проектом: 1 - 1,5 месяца.

Цели проекта:

  • практическая реализация имеющихся у школьников знаний о тепловых явлениях;
  • формирование навыков самостоятельной исследовательской деятельности;
  • развитие познавательных интересов;
  • развитие логического и технического мышлений;
  • развитие способностей к самостоятельному приобретению новых знаний по физике в соответствии с жизненными потребностями и интересами;

Основная часть

Теоретическая часть

В жизни мы действительно ежедневно встречаемся с тепловыми явлениями. Однако не всегда мы задумываемся, что эти явления можно объяснить, если хорошо знать физику. На уроках физики мы познакомились со способами изменения внутренней энергии: теплопередачей и совершением работы над телом или самим телом.

При контакте двух тел с разными температурами происходит передача энергии от тела с более высокой температурой к телу с более низкой температурой. Этот процесс будет происходить до тех пор, пока температуры тел не сравняются (не наступит тепловое равновесие). При этом механическая работа не совершается. Процесс изменения внутренней энергии без совершения работы над телом или самим телом называется теплообменом или теплопередачей. При теплопередаче энергия всегда передается от более нагретого тела к менее нагретому. Обратный процесс самопроизвольно (сам по себе) никогда не происходит, т.е. теплообмен необратим. Теплообмен определяет или сопровождает многие процессы в природе: эволюцию звезд и планет, метеорологические процессы на поверхности Земли и др. Виды теплопередачи: теплопроводность, конвекция, излучение.

Теплопроводностью называется явление передачи энергии от более нагретых участков тела к менее нагретым в результате теплового движения и взаимодействия частиц, из которых состоит тело.

Наибольшей теплопроводностью обладают металлы - она у них в сотни раз больше, чем у воды. Исключением являются ртуть и свинец, но и здесь теплопроводность в десятки раз больше, чем у воды.

При опускании металлической спицы в стакан с горячей водой очень скоро конец спицы становился тоже горячим. Следовательно, внутренняя энергия, как и любой вид энергии, может быть передана от одних тел к другим. Внутренняя энергия может передаваться и от одной части тела к другой. Так, например, если один конец гвоздя нагреть в пламени, то другой его конец, находящийся в руке, постепенно нагреется и будет жечь руку.

Практическая часть

Изучим это явление, проделав ряд опытов с твердыми телами, жидкостью и газом.

Взяли различные предметы: одну алюминевую ложку, другую деревянную, третью - пластмассовую, четвертую - из нержавеющего сплава, а пятую - серебряную. Прикрепили к каждой ложке каплями меда скрепки для бумаг. Вложили ложки в стакан с горячей водой, чтобы ручки со скрепками торчали из него в разные стороны. Ложки нагреются, и по мере нагревания мед будет плавиться и скрепки отпадут.

Конечно, ложки должны быть одинаковые по форме и размеру. Где нагревание произойдет быстрее, тот металл лучше проводит тепло, более теплопроводен. Для этого опыта я взял стакан с кипятком и четыре вида ложек: алюминиевую, серебряную, пластмассовую и нержавеющую. Я опускал их по одной в стакан и засекал время: за сколько минут она нагреется. Вот, что у меня получилось:

Вывод: ложки, изготовленные из дерева и пластмасса, греются дольше, чем ложки из металла, значит, металлы обладают хорошей теплопроводностью.

Внесем в огонь конец деревянной палки. Он воспламенится. Другой конец палки, находящийся снаружи, будет холодным. Значит, дерево обладает плохой теплопроводностью.

Поднесем к пламени спиртовки конец тонкой стеклянной палочки. Через некоторое время он нагреется, другой же конец, останется холодным. Следовательно, и стекло имеет плохую теплопроводность

Если же мы будем нагревать в пламени конец металлического стержня, то очень скоро весь стержень сильно нагреется. Удержать его в руках мы уже не сможем.

Значит, металлы хорошо проводят тепло, т. е. имеют большую теплопроводность. На штативе горизонтально закреплён стержень. На стержне через одинаковые промежутки вертикально закреплены с помощью воска металлические гвоздики.

К краю стержня подносят свечу. Поскольку край стержня нагревается, то постепенно стержень прогревается. Когда тепло доходит до места крепления гвоздиков со стержнем, стеарин плавится, и гвоздик падает. Мы видим, что в данном опыте нет переноса вещества, соответственно, наблюдается теплопроводность.

Различные металлы обладают различной теплопроводностью. В физическом кабинете есть прибор, с помощью которого мы можем убедиться в том, что различные металлы обладают разной теплопроводностью. Однако, в домашних условиях мы смогли в этом убедиться с помощью самодельного прибора.

Прибор для показа различной теплопроводности твердых веществ.

Мы изготовили прибор для показа различной теплопроводности твердых тел. Для этого использовали пустую банку из алюминиевой фольги, два резиновых кольца (самодельные), три отрезка проволоки из алюминия, меди и железа, плитку, горячую воду, 3 фигурки человечков с поднятыми вверх руками, вырезанные из бумаги.

Порядок изготовления прибора:

1. проволоки изогнуть в виде буквы «Г»;

2. укрепить их с внешней стороны банки при помощи резиновых колец;

3. подвесить к горизонтальным частям проволочных отрезков (посредством расплавленного парафина или пластилина) бумажных человечков.

Проверка действия прибора. Налить в банку горячей воды (при необходимости подогреть банку с водой на электрической плитке) и наблюдать, какая фигурка упадет первой, второй, третьей.

Результаты. Упадет первой фигурка, закрепленная на медной проволоке, вторая - на алюминиевой, третья - на стальной.

Вывод. Разные твердые вещества обладают различной теплопроводностью.

Теплопроводность у различных веществ различна.

Рассмотрим теперь теплопроводность жидкостей. Возьмём пробирку с водой и станем нагревать её верхнюю часть. Вода у поверхности скоро закипит, а у дна пробирки за это время она только нагреется. Значит, у жидкостей теплопроводность невелика.

Исследуем теплопроводность газов. Сухую пробирку наденем на палец и нагреем в пламени спиртовки донышком вверх. Палец при этом долго не почувствует тепла. Это связано с тем, что расстояние между молекулами газа ещё больше, чем у жидкостей и твёрдых тел. Следовательно, теплопроводность у газов ещё меньше.

Плохой теплопроводностью обладают шерсть, волосы, перья птиц, бумага, снег и другие пористые тела.

Это связано с тем, что между волокнами этих веществ содержится воздух. А воздух - плохой теплопроводник.

Так под снегом сохраняется зеленая трава, озимые сохраняются от вымерзания.

Распушил небольшой комок ваты и обернул им шарик термометра.

Теперь подержал некоторое время термометр на определенном расстоянии от пламени и заметил, как поднялась температура. Затем тот же комок ваты сжал и туго обмотал им шарик термометра и снова поднес к лампе. Во втором случае ртуть поднимется гораздо быстрее.

Значит, сжатая вата проводит тепло намного лучше!

Если возникает необходимость предохранить тело от охлаждения или нагревания, то применяют вещества с малой теплопроводностью. Так, для кастрюль, сковородок ручки делают из пластмассы или дерева.

Дома строят из бревен или кирпича, обладающих плохой теплопроводностью, а значит, предохраняют от охлаждения.

Самой низкой теплопроводностью обладает вакуум (освобожденное от воздуха пространство). Объясняется это тем, что теплопроводность - это перенос энергии от одной части тела к другой, который происходит при взаимодействии молекул или других частиц. В пространстве, где нет частиц, теплопроводность осуществляться не может.

Заключение

У различных веществ различная теплопроводность.

Большой теплопроводностью обладают твердые тела (металлы), меньшей - жидкости, и плохой - газы.

Теплопроводность различных веществ мы можем использовать в быту, технике и природе.

Явление теплопроводности присуще всем веществам, независимо от того, в каком агрегатном состоянии они находятся.

Теперь без затруднения я смогу ответить и объяснить с физической точки зрения на вопросы:

1. Почему птицы в холодную погоду распушают свои перья?

(Между перьями находится воздух, а воздух плохой проводник тепла).

2. Почему шерстяная одежда лучше предохраняет от холода, чем синтетическая?

(Между шерстинками находится воздух, который плохо проводит тепло).

3. Почему зимой, когда погода холодная, кошки спят, свернувшись в клубок? (Свернувшись в клубок, они уменьшают площадь поверхности, отдающей тепло).

4. Зачем ручки паяльников, утюгов, сковородок, кастрюль делают из дерева или пластмассы? (Дерево и пластмасса обладают плохой теплопроводностью, поэтому при нагревании металлических предметов мы, держась за деревянную или пластмассовую ручку, не будем обжигать руки).

5. Зачем кусты теплолюбивых растений и кустов на зиму укрывают опилками?

(Опилки являются плохими проводниками тепла. Поэтому растения укрывают опилками, чтобы они не замёрзли).

6. Какие сапоги лучше защищают от мороза: тесные или просторные?

(Просторные, так как воздух плохо проводит тепло, он является ещё одной прослойкой в сапоге, которая сохраняет тепло).

Библиографическая ссылка

Беляевский И.А. ИССЛЕДОВАНИЕ ТЕПЛОПРОВОДНОСТИ РАЗЛИЧНЫХ ВЕЩЕСТВ // Международный школьный научный вестник. – 2017. – № 1. – С. 72-76;
URL: http://school-herald.ru/ru/article/view?id=143 (дата обращения: 02.03.2020).
Как понять сложные законы физики. 100 простых и увлекательных опытов для детей и их родителей Дмитриев Александр Станиславович

8 Теплопроводность

Теплопроводность

Для опыта нам потребуются: алюминиевая ложка или кусок толстой медной проволоки, деревянная ложка или обычный карандаш, чашка с кипятком.

Знаешь ли ты, мой уважаемый читатель, почему баню или сауну изнутри обшивают деревом? Более того, если дерево для лавки прибивают гвоздями, то шляпки гвоздей забивают так, чтобы они были ниже поверхности дерева. Зачем это делают?

Представим себе, что в парилке, где температура достигает 110 градусов (а иногда и выше!), один из гвоздей немного выскочил наружу и голой кожей вы коснулись металла. Немедленно возникнет ощущение боли, и небольшой ожог обеспечен. Но как же так, ведь температура поверхности дерева и температура поверхности гвоздя должны быть одинаковыми!

Действительно, температура поверхности и металла, и дерева в одном и том же помещении одинаковая. Дело в том, что температура – это еще не самое главное. Есть такое понятие, как теплопроводность.

Что это означает? Это означает то, как вещество, из которого состоит предмет, пропускает (проводит) через себя тепло. Тепло можно представить себе как невидимую воду, текущую через все предметы. Есть только одно правило, которому эта «вода» – или тепло – подчиняется. Тепло всегда перетекает от более теплого тела к более холодному.

Именно поэтому было время, когда ученые думали, что наш мир через много-много лет ожидает «тепловая смерть». Ведь если все теплые тела отдадут тепло более холодным, нагревая их, то настанет такой момент, когда все тела станут одинаковой температуры. И все процессы, все движение, все реакции (например, переваривание пищи в желудке) станут невозможными. Мир как бы будет остановлен. (На самом деле, во-первых, до этого еще так далеко, что и нам, и нашим прапрапрапрапраправнукам эта опасность не грозит. Во-вторых, ученые потом подумали получше и поняли, что вселенная может оказаться бесконечной и тогда «тепловая смерть» не наступит.)

Итак, разные тела проводят тепло по-разному. Очень хорошо проводят тепло металлы. Металлы для тепла – как широкие речки, по ним тепло быстро и далеко течет.

Если начать охлаждать (или нагревать) любую часть металлического предмета, то очень быстро тепло распространяется на весь предмет (или весь предмет охлаждается). Кстати, если металл охладить до невероятно низкой температуры, то у металла начинают проявляться просто фантастические свойства. Например, пущенный по металлу ток будет бежать вечно, никогда не ослабляясь. В обычных проводах ток потихонечку слабеет с расстоянием и через несколько тысяч километров может почти совсем исчезнуть. (Ток, как и тепло, лучше всего поначалу представлять в виде воды. Вода в реке быстрее течет у истока и медленнее – у устья.)

Другие материалы проводят тепло хуже и отдают тепло только с поверхности. Дерево, например, почти вообще не проводит тепло. Это уже не «речка», а плотина какая-то! Чем хуже проводит тепло материал, тем лучше им защищаться от холода (или жары). Например, обычный жир очень плохо проводит тепло (у него низкая теплопроводность, как сказали бы физики). Поэтому все теплокровные животные, живущие в холодных морях или на севере, такие жирные. Тюлень, белый медведь, каланы, морские львы и котики – посмотрите на них: жировой слой с его плохой теплопроводностью служит им скафандром, одеялом, укутывающим их с ног до головы. Проведем простой опыт. Для него нам понадобятся две ложки: деревянная и алюминиевая. Если у тебя не найдется в доме деревянной ложки, возьми деревянную палочку или обычный карандаш. Вместо алюминиевой ложки можно взять кусок толстой медной проволоки. Вскипяти чайник и налей кипятка в обычную чашку. Теперь возьми в одну руку деревянную ложку (карандаш), а в другую – алюминиевую (кусок проволоки) и опусти обе в кипяток. Некоторое время ты можешь размешивать кипяток и той и другой ложкой. Но скоро металл придется бросить – он сильно нагревается.

Теперь нам ясно, как отличаются вещества по теплопроводности. Ведь температура воды в чашке одна и та же, а тепло, бегущее по опущенным в воду предметам, передается по-разному. Еще можно представить, что если тепло – это невидимая жидкость, то металл – это удобный шланг, по которому жидкость бежит быстро. А дерево, пластмасса – это губка, которая, хоть и впитывает тепло, но медленно и отдает неохотно.

И нам становится ясно, почему в бане (сауне) гвозди забивают глубоко, чтобы не торчали шляпки наружу. Это все из-за теплопроводности!

Практический совет: никогда не дотрагивайся языком до железных предметов на морозе. Жидкость, которая содержится на языке, с такой скоростью отдает свое тепло металлу (ведь у металла хорошая теплопроводность!), что мгновенно превращается в лед, и язык прочно пристывает, примерзает к металлу. Но уж если такое произошло, надо чтобы кто-нибудь налил большую кружку теплой воды и лил на металл и язык. Когда металл в этом месте нагреется, лед растает и язык отлипнет от металла сам.

Тема урока: Урок занимательной физики

по теме «тепловые явления»

Цели урока :

1. Обучающая: систематизировать знания учащихся по теме «Тепловые явления» и продемонстрировать учащимся занимательные эксперименты с помощью самодельного оборудования.

2. Воспитывающая:

3. Развивающая: развивать логику, четкость и краткость речи, физическую терминологию, навыки обобщения, общую эрудицию учащихся.

Оборудование:

Демонстрации:

План урока

    Организационный момент

    Постановка цели урока

    Актуализация знаний

    Демонстрация занимательных экспериментов и их объяснение на основе пройденного ранее материала

    Домашнее задание

    Итог урока

Ход урока

    Организационный момент

    Постановка цели урока

На протяжении нескольких уроков мы с вами рассматривали различные тепловые процессы и учились объяснять их на основе современных знаний по физике.

Сегодня на уроке мы с вами рассмотрим ряд занимательных экспериментов по этой теме и объясним наблюдаемое на основе имеющихся у нас знаний.

    Актуализация знаний

Но с начала давайте вспомним изученный ранее нами материал.

Вопросы:

    1. Какие явления называются тепловыми?

      Приведите примеры тепловых явлений?

      Что характеризует температура?

      Как связана температура тела со скоростью движения его молекул?

      Чем отличается движение молекул в газах, жидкостях и твердых телах?

    Демонстрация занимательных экспериментов

Физика вокруг нас! Мы встречаемся с нею повсюду. А какие опыты можно провести дома не используя дорогостоящие приборы и оборудование? Очень простые - занимательные...

Эксперимент №1

«Фокус для новогодней ночи»

Этот фокус лучше всего показывать в новогоднюю ночь в комнате, освещенной лишь елочной гирляндой. Фокусник берет со стола две свечи. Он соединяет их фитилями, произносит "магическое заклинание" - и вот... в месте контакта фитилей появляется дымок, а вслед за ним и огонь. Фокусник разводит свечи в стороны - они горят! В чем секрет фокуса?

Ответ: Кто увлекается химией, наверно, уже додумался, в чем секрет фокуса - в самовоспламеняющейся смеси. Перед демонстрацией фокуса, приготовьте реквизиты, для этого нужно посыпать фитиль одной из свеч, порошком перманганата калия (марганцовкой), а другой пропитать жидким глицерином. Помните, воспламенение происходит не сразу, требуется некоторое время. Будьте осторожны. Огонь-то настоящий.

Эксперимент №2

« КИПЯТИЛЬНИК»

Может ли кипеть вода при комнатной температуре?

Для ответа на этот вопрос проведём такой опыт: Наполнил одноразовый медицинский шприц, в котором отсутствовала игла, на 1/8 водой. Затем закроем пальцем отверстие и резко вытянем поршень до крайнего положения. Вода внутри шприца "закипела", оставаясь холодной. Почему "кипит" вода?

Ответ: Температура кипения зависит от давления. Чем меньше давление газа над поверхностью жидкости, тем ниже температура кипения этой жидкости.

Эксперимент №3

«Не может быть?»

Для опыта сварите вкрутую яйцо.
Очистите его от скорлупы. Возьмите листок бумаги размером
80 на 80 мм, сверните его гармошкой и подожгите. Затем опустите горящую бумагу в бутылку с широким горлом.
Через 1-2 сек горлышко накройте яйцом (см.рис) .Горение бумаги прекращается, и яйцо начинает втягиваться в графин. Объясните наблюдаемое явление.

Ответ: При горении бумаги воздух в нутрии бутылки нагрелся и расширился. Когда пламя потухло, воздух в бутылке охладился и соответственно, его давление уменьшилось, и атмосферное давление затолкнуло яйцо внутрь бутылки.

Замечание : Этот опыт можно сделать интереснее, если в горлышко бутылки вставить не до конца очищенный банан. Втягиваясь в бутылку, он одновременно и очистится

Эксперимент №4

«Ползущий стакан»

Возьмите чистое оконное стекло длиной около 30 - 40 см. Под один край стекла подложите два спичечных коробка, так, чтобы образовалась наклонная плоскость. Смочите водой край стакана из тонкого стекла и поставить вверх дном на стекло. Поднести к стенке стакана горящую свечу и стакан медленно поползет. Как это объяснить?

Ответ: Это объясняется тем, что при нагревании воздух внутри стакана расширяется и чуть приподнимает стакан. Вода мешает воздуху выйти из стакана наружу, в результате сила трения между стаканом и стеклом уменьшается и стакан ползет вниз.

Эксперимент №5

«Наблюдение испарения и конденсации»

Эксперимент №6

Пронаблюдайте конвекцию в холодной и горячей воде, используя в качестве красителя кристаллы марганцовки, каплю зеленки или любые другие красящие вещества. Сравните характер и скорость конвекции и сделайте выводы

Эксперимент №7

Интересно, что...

Самый длительный в истории научных исследований эксперимент проходит в одном из университетов Австралии. Первый декан физического факультета этого университета Т.Парнелл еще в 1927 г. расплавил немного битума, залил его в воронку с пробкой на конце, дал ему в течение трех лет охладиться и отстояться, а затем вынул пробку. С тех пор в среднем 1 раз в 9 лет из воронки падает капля смолы в подставленный внизу стакан. Последняя капля упала на Рождество в 1999 г. Полагают, что воронка опустеет не раньше, чем еще через 100 лет.

НАРОДНАЯ МУДРОСТЬ

Пословицы:

«Много снега - много хлеба» Почему?

Ответ: Снег, обладает плохой теплопроводностью, т.е. снег является "шубой" для земли, он сохраняет ее тепло. Шуба толстая, мороз не доберется до озимых, предохранит их от вымерзания.

"Без крышки самовар не кипит, без матери ребенок не резвиться". Почему самовар без крышки долго не закипает?

Ответ: При открытой крышке часть молекул, имеющих большую кинетическую энергию, будет улетать с поверхности воды, унося с собой энергию.

"Замерз - как на дне морском." А почему на морском дне всегда холодно?

Ответ: Солнечные лучи не прогревают глубокие слои воды: тепловые, инфракрасные лучи - поглощаются почти все водной поверхностью. Кроме того, вода имеет сравнительно низкую теплопроводность.

Задачи – загадки

Зимой - греет, весной - тлеет, летом - умирает, осенью - летает. (Снег.)

Мир обогревает, усталости не знает. (Солнце.)

Как энергия Солнца достигает Земли?

Ответ. Излучением. (Электромагнитными волнами)

Висит груша - нельзя скушать; не бойся - тронь, хоть внутри и огонь. (Электрическая лампочка. )

Без ног бежит, без огня горит. (Электричество.)

Как Солнце горит, быстрее ветра летит, дорога в воздухе лежит, по силе себе равных не имеет. (Молния.)

Кто не учившись, говорит на всех языках? (Эхо.)

По морю идет, идет, а до берега дойдет - тут и пропадет. (Волна.)

Вокруг носа вьется, а в руки не дается. (Запах.)

Без крыльев, без тела за тысячу верст прилетела. (Радиоволна. )

Как можно пронести воду в решете? (Заморозив воду.)

    Домашнее задание

Приготовьте в морозилке лед. Сложите его в целлофановый пакет и оберните пуховым платком или обложите ватой. Можно дополнительно завернуть в шубу. Оставьте этот сверток на 5–7 ч, затем проверьте сохранность льда. Объясните наблюдаемое состояние.

Предложите дома способ сохранения замороженных продуктов при размораживании холодильника.

    Итог урока

Сегодня на уроке мы с вами вспомнили, что такое тепловые явления, пронаблюдали примеры тепловых явлений на опытах, поставленных с помощью элементарного, подручного оборудования и объяснили эти явления.

Подведение итогов урока, выставление оценок.

Внимание! Администрация сайта сайт не несет ответственности за содержание методических разработок, а также за соответствие разработки ФГОС.

  • Участник: Шароглазова Ксения Сергеевна
  • Руководитель: Печерская Светлана Юрьевна
Цель данной работы: изучение явления теплопроводности, проделав ряд опытов с твердыми телами, жидкостями и газами.

Актуальность: В наше время разрабатываются новые материалы. Знания о теплопроводности различных веществ позволяет не только широко использовать их, но и предотвращать их вредное воздействие в быту, технике и природе.

Цель: изучение явления теплопроводности, проделав ряд опытов с твердыми телами, жидкостями и газами.

Задачи:

  • изучить теоретический материал по данному вопросу;
  • исследовать теплопроводность твердых тел;
  • исследовать теплопроводность жидкостей;
  • исследовать теплопроводность газов;
  • сделать выводы о полученных результатах.

Гипотеза: все вещества (твердые, жидкие и газообразные) имеют разную теплопроводность.

Оборудование: спиртовка, штатив, деревянная палочка, стеклянная палочка, медная проволока, пробирка с водой.

Элементы УМК к учебнику А.В.Перышкина: учебник «Физика. 8 класс» А.В.Перышкина

Внутренняя энергия, как и любой вид энергии, может быть передана от одних тел к другим. Внутренняя энергия может передаваться и от одной части тела к другой. Так, например, если один конец гвоздя нагреть в пламени, то другой его конец, находящийся в руке, постепенно нагреется и будет жечь руку. Явление передачи внутренней энергии от одной части тела к другой или от одного тела к другому при их непосредственном контакте называется теплопроводностью.

Изучим это явление, проделав ряд опытов с твердыми телами, жидкостью и газом.

Видео: https://cloud.mail.ru/public/JCFY/CFTcCeqhE

. Исследование теплопроводности твердых тел на примере деревянной палочки, стеклянной палочки и медного стержня

Внесем в огонь конец деревянной палки. Он воспламенится.

Вывод: дерево обладает плохой теплопроводностью.

Поднесем к пламени спиртовки конец тонкой стеклянной палочки. Через некоторое время он нагреется, другой же конец останется холодным.

Вывод: стекло имеет плохую теплопроводность.

Если же мы будем нагревать в пламени конец металлического стержня, то очень скоро весь стержень сильно нагреется. Удержать его в руках мы уже не сможем.

Вывод: металлы хорошо проводят тепло, т. е. имеют большую теплопроводность. Наибольшей теплопроводностью обладают серебро и медь.

Рассмотрим передачу тепла от одной части твердого тела к другой на следующем опыте. Закрепим один конец толстой медной проволоки в штативе. К проволоке прикрепим воском несколько гвоздиков (рис. 6). При нагревании свободного конца проволоки в пламени спиртовки воск будет таять. Гвоздики начнут постепенно отваливаться. Сначала отпадут те, которые расположены ближе к пламени, затем по очереди все остальные.

Выясним, как происходит передача энергии по проволоке. Скорость колебательного движения частиц металла увеличивается в той части проволоки, которая ближе расположена к пламени. Поскольку частицы постоянно взаимодействуют друг с другом, то увеличивается скорость движения соседних частиц. Начинает повышаться температура следующей части проволоки и т. д. Следует помнить, что при теплопроводности не происходит переноса вещества от одного конца тела к другому.

Опыт 2. Исследование теплопроводности жидкостей на примере воды

Рассмотрим теперь теплопроводность жидкостей. Возьмем пробирку с водой и станем нагревать ее верхнюю часть. Вода у поверхности скоро закипит, а у дна пробирки за это время она только нагреется (рис. 7). Значит, у жидкостей теплопроводность невелика, за исключением ртути и расплавленных металлов. Это объясняется тем, что в жидкостях молекулы расположены на больших расстояниях друг от друга, чем в твердых телах.

Вывод: теплопроводность жидкостей меньше теплопроводности металлов.


Опыт 3. Исследование теплопроводности газов

Исследуем теплопроводность газов.

Сухую пробирку наденем на палец и нагреем в пламени спиртовки донышком вверх (рис. 8). Палец при этом долго не почувствует тепла. Это связано с тем, что расстояние между молекулами газа еще больше, чем у жидкостей и твердых тел.

Вывод : теплопроводность у газов еще меньше, чем у жидкостей. Итак, теплопроводность у различных веществ различна.


Выводы и их обсуждение

Вывод: Проведенные опыты показывают, что теплопроводность у различных веществ различна. Наибольшей теплопроводность обладают металлы, у жидкостей теплопроводность невелика и самая малая теплопроводность у газов.

Используя §4 учебника физики для 8 класса, представим результаты в виде таблицы:

Объяснение явления теплопроводности с молекулярно-кинетической точки зрения: теплопроводность - это перенос энергии от одной части тела к другой, который происходит при взаимодействии молекул или других частиц. В металлах частицы расположены близко, они постоянно взаимодействуют друг с другом. Скорость колебательного движения в нагретой части металла увеличивается и быстро передается соседним частицам. Повышается температура следующей части проволоки. В жидкостях и газах молекулы расположены на больших расстояниях, чем в металлах. В пространстве, где нет частиц, теплопроводность осуществляться не может.

Применение теплопроводности

Теплопроводность на кухне

Теплопроводность и ее регулировка важны в процессе приготовления пищи. Часто во время тепловой обработки продукта необходимо поддерживать высокую температуру, поэтому на кухне используют металлы (медь, алюминий…), так их теплопроводность и прочность выше, чем у других материалов. Из металла делают кастрюли, сковородки, противни, и другую посуду. Когда они соприкасаются с источником тепла, это тепло легко передается пище. Иногда бывает необходимо уменьшить теплопроводность - в этом случае используют кастрюли из материалов с более низкой теплопроводностью, или готовят способами, при которых пище передается меньшее количество тепла. Приготовление блюд на водяной бане - один из примеров уменьшения теплопроводности. Для посуды, предназначенной для приготовления пищи, не всегда используют материалы с высокой теплопроводностью. В духовом шкафу, например, часто используют керамическую посуду, теплопроводность которой намного ниже, чем у металлической посуды. Их самое главное преимущество - способность держать температуру. Хороший пример использования материалов с высокой теплопроводностью на кухне - плита. Например, конфорки электроплиты сделаны из металла, чтобы обеспечить хорошую передачу тепла от раскаленной спирали нагревательного элемента к кастрюле или сковородке. Люди используют материалы с низкой теплопроводностью между руками и посудой, чтобы не обжечься. Ручки многих кастрюль сделаны из пластмасс, а противни вынимают из духовки прихватками из ткани или пластмассы с низкой теплопроводностью.

Материалы с невысокой теплопроводностью также используют для поддержания температуры пищи неизменной. Так, например, чтобы утренний кофе или суп, который берут в путешествие или на обед на работу, оставался горячим, его наливают в термос, чашку или банку с хорошей теплоизоляцией. Чаще всего в них пища остается горячей (или холодной) благодаря тому, что между их стенками находится материал, плохо проводящий тепло. Это может быть пенопласт или воздух, который находится в закрытом пространстве между стенками сосуда. Он не дает теплу перейти в окружающую среду, пище - остыть, а рукам - получить ожог. Пенопласт используют также для стаканчиков и контейнеров для пищи навынос. В вакуумном сосуде Дьюара (известном как «термос», по названию торговой марки) между наружной и внутренней стенкой почти нет воздуха - это еще больше уменьшает теплопроводность.

Отопительная система

Задача любой системы отопления является эффективная передача энергии от теплоносителя (горячей воды) в помещение. Для этого используют специальные элементы системы отопления – радиаторы. Радиаторы предназначены для повышения теплопередачи накопившейся в системе тепловой энергии в помещение. Они представляют собой секционную или монолитную конструкцию, внутри которой циркулирует теплоноситель. Основные характеристики радиатора отопления: материал изготовления, тип конструкции, габаритные размеры (кол-во секций), теплоотдача. Чем выше этот показатель, тем меньше тепловых потерь будет при передаче энергии от теплоносителя в помещение. Лучший материал для изготовления радиаторов – это медь. Наиболее часто используют чугунные радиаторы; алюминиевые радиаторы; стальные радиаторы; биметаллические радиаторы.

Теплопроводность для тепла

Мы используем материалы с низкой теплопроводностью для поддержания постоянной температуры тела. Примеры таких материалов - шерсть, пух, и синтетическая шерсть. Кожа животных покрыта мехом, а птиц - пухом с низкой теплопроводностью, и мы заимствуем эти материалы у животных или создаем похожие на них синтетические ткани, и делаем из них одежду и обувь, которые защищают нас от холода. Кроме этого мы делаем одеяла, так как спать под ними удобнее, чем в одежде. Воздух имеет низкую теплопроводность, но проблема с холодным воздухом в том, что обычно он может свободно двигаться в любом направлении. Он вытесняет теплый воздух вокруг нас, и нам становится холодно. Если движение воздуха ограничить, например, заключив его между внешней и внутренней стенками сосуда, то он обеспечивает хорошую термоизоляцию. У снега и льда тоже низкая теплопроводность, поэтому люди, животные и растения используют их для теплоизоляции. В свежем не утрамбованном снеге внутри находится воздух, что еще больше уменьшает его теплопроводность, особенно потому, что теплопроводность воздуха ниже теплопроводности снега. Благодаря этим свойствам, ледяной и снежный покров защищает растения от замерзания. Животные роют ямки и целые пещеры для зимовья в снегу. Путешественники, переходящие через заснеженные районы, иногда роют подобные пещеры, чтобы в них переночевать. С древнейших времен люди строили убежища изо льда, а сейчас создают целые развлекательные центры и гостиницы. В них часто горит огонь, и люди спят в мехах и синтетических спальных мешках.

Для обеспечения нормальной жизнедеятельности в организме людей и животных необходимо поддерживать определенную температуру в очень узких пределах. У крови и других жидкостей, а также у тканей разная теплопроводность и ее можно регулировать в зависимости от потребностей и окружающей температуры. Так, например, организм может изменить количество крови на участке тела или во всем организме с помощью расширения или сужения сосудов. Наше тело также может сгущать и разжижать кровь. При этом теплопроводность крови, а, следовательно, и части тела, где эта кровь течет, изменяется.

Теплолечение

Современные методы лечения теплом могут быть разделены на три большие группы: 1) контактное приложение нагретых сред; 2) светотепловое облучение и 3) использование теплоты, образующейся в тканях при прохождении высокочастотного электрического тока. Остановимся на использовании нагретых сред. Для теплолечения выбираются среды, позволяющие создать в них значительный запас теплоты. Эта теплота затем должна медленно и постепенно передаваться организму во все время процедуры. Для этого среда должна иметь, возможно, высокую теплоемкость и сравнительно низкие теплопроводность и конвекционную способности. Для теплолечения в основном применяют следующие среды: воздух, воду, торф, лечебные грязи и парафин.

Теплопроводность в бане

Многие любят отдыхать в саунах или банях, но сидеть там на скамейках из материала с высокой теплопроводностью - было бы невозможно. Требуется много времени, чтобы сравнять температуру таких материалов с температурой тела, поэтому вместо них используют материалы с низкой теплопроводностью, например дерево, верхние слои которого намного быстрее принимают температуру тела. Так как в сауне температура поднимается достаточно высоко, люди часто надевают на голову шапочки из шерсти или войлока, чтобы защитить голову от жары. В турецких банях хамамах температура намного ниже, поэтому там для скамеек используют материал с более высокой теплопроводностью - камень.

Тепло ли колючим зверям в иголках?

Шерсть не только спасает зверей от холода, но и служит средством защиты. А чтобы защита была внушительнее и надежнее, волосяной покров порой видоизменяется, превращаясь в своеобразные доспехи. Иглы, например. Но вот сохраняет ли такое облачение присущие шерсти свойства, не зябнут ли ежи и дикобразы в своих колючих шубках?

Ученые Института проблем экологии и эволюции им. А.Н. Северова РАН обстоятельно изучили теплопроводные и теплоизоляционные свойства иголок, взятых со спины взрослого самца североамериканского дикобраза из коллекции Зоологического музея МГУ, и убедились, что греют эти самые иголки очень даже неплохо. Чтобы понять внутреннюю структуру игл, на них делали тонкие срезы, на которые напыляли золото для исследования в электронном микроскопе. Кератин - главная составляющая иголок - проводит тепло в 10 раз лучше, чем воздух. И благодаря этому иглы увеличивают теплопроводность «доспехов». Следовательно, возрастают и потери тепла с тела животного. Однако внутренняя пористая структура игл создает дополнительное экранирование теплового излучения, что, скорее всего, и компенсирует увеличение теплопроводности. Так что дикобраз, как и другие колючие звери, вовсе не страдает от холода. Иглистый покров сохраняет ровно столько тепла, сколько нужно теплокровному животному такого размера.

Полипропилен

Пока является лучшей основой для материалов (волокон, нитей, пряжи, полотен, тканей), используемых в производстве нательной спортивной одежды, термобелья и термоносков. Среди всех синтетических материалов, применяемых в этой области, он обладает самой низкой теплопроводностью. Поэтому одежда из полипропилена позволяет наилучшим образом сохранить тепло зимой и прохладу летом.

Какой материал имеет самую высокую теплопроводность?

Материалом с наивысшей теплопроводностью является вовсе не какой-нибудь металл (серебро или медь), как думают многие. Самую высокую теплопроводность имеет материал, который похож на стекло – алмаз. Его теплопроводность почти в 6 раз больше, чем у серебра или меди. Если изготовить чайную ложечку из алмаза, то воспользоваться ею не удастся, так как она будет обжигать пальцы в ту же секунду.

Из чего изготавливают сваи при строительстве зданий в регионах с вечной мерзлотой?

Большие трудности строителям зданий доставляет просадка фундамента особенно в регионах с вечной мерзлотой. Дома часто дают трещины из-за подтаивания грунта под ними. Фундамент передает почве какое-то количество теплоты. Поэтому здания начали строить на сваях. В этом случае тепло передается только теплопроводностью от фундамента свае и далее от сваи грунту. Из чего же надо делать сваи? Оказывается, сваи, выполненные из прочного твердого материала, внутри должны быть заполнены керосином. Летом свая проводит тепло сверху вниз плохо, т.к. жидкость обладает низкой теплопроводностью. Зимой свая за счет конвекции жидкости внутри неё, наоборот, будет способствовать дополнительному охлаждению грунта.

«Огнеупорный шарик»

Обычный воздушный шарик, надутый воздухом, легко воспламеняется в пламени свечи. Он тут же лопается. Если же к пламени свечи поднести такой же шарик, заполненный водой, он становится «огнеупорным». Теплопроводность воды в 24 раза больше, чем у воздуха. Значит, вода проводит тепло в 24 раза быстрее, чем воздух. Пока вода не испарится внутри шарика – он не лопнет.