Расхождения между величиной какого-либо показателя, найденного посредством статистического наблюдения, и действительными его размерами называются ошибками наблюдения . В зависимости от причин возникновения различают ошибки регистрации и ошибки репрезентативности.

Ошибки регистрации возникают в результате неправильного установления фактов или ошибочной записи в процессе наблюдения или опроса. Они бывают случайными или систематическими. Случайные ошибки регистрации могут быть допущены как опрашиваемыми в их ответах, так и регистраторами. Систематические ошибки могут быть и преднамеренными, и непреднамеренными. Преднамеренные – сознательные, тенденциозные искажения действительного положения дела. Непреднамеренные вызываются различными случайными причинами (небрежность, невнимательность).

Ошибки репрезентативности (представительности) возникают в результате неполного обследования и в случае, если обследуемая совокупность недостаточно полно воспроизводит генеральную совокупность. Они могут быть случайными и систематическими. Случайные ошибки репрезентативности – это отклонения, возникающие при несплошном наблюдении из-за того, что совокупность отобранных единиц наблюдения (выборка) неполно воспроизводит всю совокупность в целом. Систематические ошибки репрезентативности – это отклонения, возникающие вследствие нарушения принципов случайного отбора единиц. Ошибки репрезентативности органически присущи выборочному наблюдению и возникают в силу того, что выборочная совокупность не полностью воспроизводит генеральную. Избежать ошибок репрезентативности нельзя, однако, пользуясь методами теории вероятностей, основанными на использовании предельных теорем закона больших чисел, эти ошибки можно свести к минимальным значениям, границы которых устанавливаются с достаточно большой точностью.

Ошибки выборки – разность между характеристиками выборочной и генеральной совокупности. Для среднего значения ошибка будет определяться по формуле

где

Величина
называетсяпредельной ошибкой выборки.

Предельная ошибка выборки – величина случайная. Исследованию закономерностей случайных ошибок выборки посвящены предельные теоремы закона больших чисел. Наиболее полно эти закономерности раскрыты в теоремах П. Л. Чебышева и А. М. Ляпунова.

Теорему П. Л. Чебышева применительно к рассматриваемому методу можно сформулировать следующим образом: при достаточно большом числе независимых наблюдений можно с вероятностью, близкой к единице (т. е. почти с достоверностью), утверждать, что отклонение выборочной средней от генеральной будет сколько угодно малым. В теореме П. Л. Чебышева доказано, что величина ошибки не должна превышать. В свою очередь величина, выражающая среднее квадратическое отклонение выборочной средней от генеральной средней, зависит от колеблемости признака в генеральной совокупностии числа отобранных единицn . Эта зависимость выражается формулой

, (7.2)

где зависит также от способа производства выборки.

Величину =называютсредней ошибкой выборки. В этом выражении– генеральная дисперсия,n – объем выборочной совокупности.

Рассмотрим, как влияет на величину средней ошибки число отбираемых единиц n . Логически нетрудно убедиться, что при отборе большого числа единиц расхождения между средними будут меньше, т. е. существует обратная связь между средней ошибкой выборки и числом отобранных единиц. При этом здесь образуется не просто обратная математическая зависимость, а такая зависимость, которая показывает, что квадрат расхождения между средними обратно пропорционален числу отобранных единиц.

Увеличение колеблемости признака влечет за собой увеличение среднего квадратического отклонения, а следовательно, и ошибки. Если предположить, что все единицы будут иметь одинаковую величину признака, то среднее квадратическое отклонение станет равно нулю и ошибка выборки также исчезнет. Тогда нет необходимости применять выборку. Однако следует иметь в виду, что величина колеблемости признака в генеральной совокупности неизвестна, поскольку неизвестны размеры единиц в ней. Можно рассчитать лишь колеблемость признака в выборочной совокупности. Соотношение между дисперсиями генеральной и выборочной совокупности выражается формулой

Поскольку величина при достаточно большихn близка к единице, можно приближенно считать, что выборочная дисперсия равна генеральной дисперсии, т. е.

Следовательно, средняя ошибка выборки показывает, какие возможны отклонения характеристик выборочной совокупности от соответствующих характеристик генеральной совокупности. Однако о величине этой ошибки можно судить с определенной вероятностью. На величину вероятности указывает множитель

Теорема А. М. Ляпунова . А. М. Ляпунов доказал, что распределение выборочных средних (следовательно, и их отклонений от генеральной средней) при достаточно большом числе независимых наблюдений приближенно нормально при условии, что генеральная совокупность обладает конечной средней и ограниченной дисперсией.

Математически теорему Ляпунова можно записать так:

(7.3)

где
, (7.4)

где
– математическая постоянная;

предельная ошибка выборки , которая дает возможность выяснить, в каких пределах находится величина генеральной средней.

Значения этого интеграла для различных значений коэффициента доверия t вычислены и приводятся в специальных математических таблицах. В частности, при:

Поскольку t указывает на вероятность расхождения
, т. е. на вероятность того, на какую величину генеральная средняя будет отличаться от выборочной средней, то это может быть прочитано так: с вероятностью 0,683 можно утверждать, что разность между выборочной и генеральной средними не превышает одной величины средней ошибки выборки. Другими словами, в 68,3 % случаев ошибка репрезентативности не выйдет за пределы
С вероятностью 0,954 можно утверждать, что ошибка репрезентативности не превышает
(т. е. в 95 % случаев). С вероятностью 0,997, т. е. довольно близкой к единице, можно ожидать, что разность между выборочной и генеральной средней не превзойдет трехкратной средней ошибки выборки и т. д.

Логически связь здесь выглядит довольно ясно: чем больше пределы, в которых допускается возможная ошибка, тем с большей вероятностью судят о ее величине.

Зная выборочную среднюю величину признака
и предельную ошибку выборки
, можно определить границы (пределы), в которых заключена генеральная средняя

1 . Собственно-случайная выборка – этот способ ориентирован на выборку единиц из генеральной совокупности без всякого расчленения на части или группы. При этом для соблюдения основного принципа выборки – равной возможности всем единицам генеральной совокупности быть отобранным – используются схема случайного извлечения единиц путем жеребьевки (лотереи) или таблицы случайных чисел. Возможен повторный и бесповторный отбор единиц

Средняя ошибка собственно-случайной выборкипредставляет собойсреднеквадратическое отклонение возможных значений выборочной средней от генеральной средней. Средние ошибки выборки при собственно-случайном методе отбора представлены в табл. 7.2.

Таблица 7.2

Средняя ошибка выборки μ

При отборе

повторном

бесповторном

Для средней

В таблице использованы следующие обозначения:

– дисперсия выборочной совокупности;

– численность выборки;

– численность генеральной совокупности;

– выборочная доля единиц, обладающих изучаемым признаком;

– число единиц, обладающих изучаемым признаком;

– численность выборки.

Для увеличения точности вместо множителя следует брать множитель
, но при большой численностиN различие между этими выражениями практического значения не имеет.

Предельная ошибка собственно-случайной выборки
рассчитывается по формуле

, (7.6)

где t – коэффициент доверия зависит от значения вероятности.

Пример. При обследовании ста образцов изделий, отобранных из партии в случайном порядке, 20 оказалось нестандартными. С вероятностью 0,954 определите пределы, в которых находится доля нестандартной продукции в партии.

Решение . Вычислим генеральную долю (Р ):
.

Доля нестандартной продукции:
.

Предельная ошибка выборочной доли с вероятностью 0,954 рассчитывается по формуле (7.6) с применением формулы табл. 7.2 для доли:

С вероятностью 0,954 можно утверждать, что доля нестандартной продукции в партии товара находится в пределах 12 % ≤ P ≤ 28 %.

В практике проектирования выборочного наблюдения возникает потребность определения численности выборки, которая необходима для обеспечения определенной точности расчета генеральных средних. Предельная ошибка выборки и ее вероятность при этом являются заданными. Из формулы
и формул средних ошибок выборки устанавливается необходимая численность выборки. Формулы для определения численности выборки (n ) зависят от способа отбора. Расчет численности выборки для собственно-случайной выборки приведен в табл. 7.3.

Таблица 7.3

Предполагаемый отбор

для средней

Повторный

Бесповторный

2 . Механическая выборка – при этом методе исходят из учета некоторых особенностей расположения объектов в генеральной совокупности, их упорядоченности (по списку, номеру, алфавиту). Механическая выборка осуществляется путем отбора отдельных объектов генеральной совокупности через определенный интервал (каждый 10-й или 20-й). Интервал рассчитывается по отношению, гдеn – численность выборки,N – численность генеральной совокупности. Так, если из совокупности в 500 000 единиц предполагается получить 2 %-ную выборку, т. е. отобрать 10 000 единиц, то пропорция отбора составит
Отбор единиц осуществляется в соответствии с установленной пропорцией через равные интервалы. Если расположение объектов в генеральной совокупности носит случайный характер, то механическая выборка по содержанию аналогична случайному отбору. При механическом отборе применяется только бесповторная выборка .

Средняя ошибка и численность выборки при механическом отборе подсчитывается по формулам собственно-случайной выборки (см. табл. 7.2 и 7.3).

3 . Типическая выборка , при котрой генеральная совокупность делится по некоторым существенным признакам на типические группы; отбор единиц производится из типических групп. При этом способе отбора генеральная совокупность расчленяется на однородные в некотором отношении группы, которые имеют свои характеристики, и вопрос сводится к определению объема выборок из каждой группы. Может бытьравномерная выборка – при этом способе из каждой типической группы отбирается одинаковое число единиц
Такой подход оправдан лишь при равенстве численностей исходных типических групп. При типическом отборе, непропорциональном объему групп, общее число отбираемых единиц делится на число типических групп, полученная величина дает численность отбора из каждой типической группы.

Более совершенной формой отбора является пропорциональная выборка . Пропорциональной называется такая схема формирования выборочной совокупности, когда численность выборок, взятых из каждой типической группы в генеральной совокупности, пропорциональна численностям, дисперсиям (или комбинированно и численностям, и дисперсиям). Условно определяем численность выборки в 100 единиц и отбираем единицы из групп:

пропорционально численности их генеральной совокупности (табл. 7.4). В таблице обозначено:

N i – численность типической группы;

d j – доля (N i /N );

N – численность генеральной совокупности;

n i – численность выборки из типической группы вычисляется:

, (7.7)

n – численность выборки из генеральной совокупности.

Таблица 7.4

N i

d j

n i

пропорционально среднему квадратическому отклонению (табл. 7.5).

здесь  i – среднее квадратическое отклонение типических групп;

n i – численность выборки из типической группы вычисляется по формуле

(7.8)

Таблица 7.5

N i

n i

комбинированно (табл. 7.6).

Численность выборки вычисляется по формуле

. (7.9)

Таблица 7.6

i N i

При проведении типической выборки непосредственный отбор из каждой группы проводится методом случайного отбора.

Средние ошибки выборки рассчитываются по формулам табл. 7.7 в зависимости от способа отбора из типических групп.

Таблица 7.7

Способ отбора

Повторный

Бесповторный

для средней

для доли

для средней

для доли

Непропорциональный объему групп

Пропорциональный объему групп

Пропорциональный колеблемости в группах (является наивыгоднейшим)

здесь
– средняя из внутригрупповых дисперсий типических групп;

– доля единиц, обладающих изучаемым признаком;

– средняя из внутригрупповых дисперсий для доли;

– среднее квадратическое отклонение в выборке изi -й типической группы;

– объем выборки из типической группы;

– общий объем выборки;

– объем типической группы;

– объем генеральной совокупности.

Численность выборки из каждой типической группы должна быть пропорциональна среднему квадратическому отклонению в этой группе
.Расчет численности
производится по формулам, приведенным в табл. 7.8.

Таблица 7.8

4 . Серийная выборка – удобена в тех случаях, когда единицы совокупности объединены в небольшие группы или серии. При серийной выборке генеральную совокупность делят на одинаковые по объему группы – серии. В выборочную совокупность отбираются серии. Сущность серийной выборки заключается в случайном или механическом отборе серий, внутри которых производится сплошное обследование единиц. Средняя ошибка серийной выборки с равновеликими сериями зависит от величины только межгрупповой дисперсии. Средние ошибки сведены в табл. 7.9.

Таблица 7.9

Способ отбора серии

для средней

для доли

Повторный

Бесповторный

Здесь R – число серий в генеральной совокупности;

r – число отобранных серий;

– межсерийная (межгрупповая) дисперсия средних;

– межсерийная (межгрупповая) дисперсия доли.

При серийном отборе необходимую численность отбираемых серий определяют так же, как и при собственно-случайном методе отбора.

Расчет численности серийной выборки производится по формулам, приведенным в табл. 7.10.

Таблица 7.10

Пример. В механическом цехе завода в десяти бригадах работает 100 рабочих. В целях изучения квалификации рабочих была произведена 20 %-ная серийная бесповторная выборка, в которую вошли две бригады. Получено следующее распределение обследованных рабочих по разрядам:

Разряды рабочих в бригаде 1

Разряды рабочих в бригаде 2

Разряды рабочих в бригаде 1

Разряды рабочих в бригаде 2

Необходимо определить с вероятностью 0,997 пределы, в которых находится средний разряд рабочих механического цеха.

Решение. Определим выборочные средние по бригадам и общую среднюю как среднюю взвешенную из групповых средних:

Определим межсерийную дисперсию по формулам (5.25):

Рассчитаем среднюю ошибку выборки по формуле табл. 7.9:

Вычислим предельную ошибку выборки с вероятностью 0,997:

С вероятностью 0,997 можно утверждать, что средний разряд рабочих механического цеха находится в пределах

Между показателями выборочной совокупности и искомыми показателями (параметрами) генеральной совокупности, как правило, существуют некоторые разногласия, которые называют ошибками выборки. Общая ошибка выборочной характеристики состоит из ошибок двух родов: ошибки регистрации и ошибки репрезентативности.

Ошибки регистрации свойственны любому статистическому наблюдению и появление их может быть вызвано невнимательностью регистратора, неточностью подсчетов, несовершенством измерительных приборов и т.д.

Ошибки репрезентативности присущи только выборочному наблюдению и обусловлены самой его природой поскольку как бы тщательно и правильно не проводился отбор единиц средние и относительные показатели выборочной совокупности всегда будут в какой-то степени отличаться от соответствующих показателей генеральной совокупности.

Различают систематические и случайные ошибки репрезентативности. Систематические ошибки репрезентативности - это неточности, которые возникают вследствие несоблюдения условий отбора единиц в выборочную совокупность, не предоставление равной возможности каждой единице генеральной совокупности попасть в выборку. Случайные ошибки репрезентативности - это погрешности, которые возникают вследствие того, что выборочная совокупность точно не воспроизводит характеристики генеральной совокупности (среднее, долю, дисперсию и др.) в силу несплошного характера обследования.

При соблюдении принципа случайного отбора размер ошибки выборки прежде всего зависит от численности выборки. Чем больше численность выборки при прочих равных условиях, тем меньше величина ошибки выборки. При большой численности выборки отчетливее проявляется действие закона больших чисел, согласно которому: с вероятностью, сколь угодно близкой к единице, можно утверждать, что при достаточно большом объеме выборки и ограниченной дисперсии выборочные характеристики (средняя доля) будут сколь угодно мало отличаться от соответствующих генеральных характеристик.

Размеры ошибки выборки также непосредственно связаны со степенью варьирования изучаемого признака, а степень варьирования, как отмечалось выше, в статистике характеризуется размером дисперсии (рассеяния): чем меньше дисперсия, тем меньше ошибка выборки, тем более надежные статистические выводы. Поэтому на практике дисперсию отождествляют с ошибкой выборки.

Поскольку параметр генеральной совокупности есть искомая величина и он неизвестен, нужно ориентироваться не на конкретную ошибку, а среднюю из всех возможных выборок.

Если из генеральной совокупности отобрать несколько выборочных совокупностей, то каждая из полученных выборок даст разное значение конкретной ошибки.

Средняя квадратическая величина исчисленная из всех возможных значений конкретных ошибок (;) составит:

где *и - выборочные средние; х - генеральная средняя;)] - численность выборок по величине є1 = ~си - х.

Среднее квадратическое отклонение выборочных средних от генеральной средней называют средней ошибкой выборки.

Зависимость величины ошибки выборки от ее численности и от степени варьирования признака находит выражение в формуле средней ошибки выборки /и.

Квадрат средней ошибки (дисперсия выборочных средних) прямо пропорционален дисперсии Сто и обратно пропорционален численности выборки п:

где - дисперсия признака в генеральной совокупности.

Отсюда среднюю ошибку в общем виде определяют по формуле:

Итак, определив по выборке среднее квадратичное отклонение, можно установить значение средней ошибки выборки, величина которой, как следует из формулы, тем больше, чем больше вариация случайной величины и тем меньше, чем больше численность выборки.

Поэтому по мере роста объема выборки размер средней ошибки уменьшается. Если, например, нужно уменьшить среднюю ошибку выборки в два раза, то численность выборки следует увеличить в четыре раза, если надо уменьшить ошибку выборки в три раза, то объем выборки следует увеличить в девять раз и т. д.

В практических расчетах применяются две формулы средней ошибки выборки для средней и для доли.

При выборочном изучении средних показателей формула средней ошибки такая:

При изучении относительных показателей (частных признаков) формула средней ошибки имеет вид:

где г - доля признака в генеральной совокупности.

Применение приведенных формул средней ошибки предполагает, что известны генеральная дисперсия и генеральная доля. Однако в действительности эти показатели неизвестны и вычислить их невозможно из-за отсутствия данных относительно генеральной совокупности. Поэтому возникает потребность замены генеральной дисперсии и генеральной доли другими, близкими к ним, величинами.

В математической статистике доказано, что такими величинами могут быть выборочная дисперсия(ст) и выборочная доля (со).

С учетом сказанного формулы средней ошибки могут быть записаны так:

Эти формулы дают возможность определить среднюю ошибку при повторной выборке. Применения простой случайной повторной выборки в практике является ограниченным. Прежде всего практически нецелесообразно, а иногда невозможно повторное обследование тех же единиц. Применение бесповторного отбора вместо повторного диктуется также требованием повышения степени точности и надежности выборки. Поэтому на практике чаще используют способ бесповторного случайного отбора. По этому способу отбора единица совокупности, отобранная в выборку, в дальнейшем отборе не участвует. Единицы отбирают из генеральной совокупности, уменьшенной на количество ранее отобранных единиц. Поэтому в связи с изменением численности генеральной совокупности после каждого отбора и вероятности отбора для единиц, что остались, в формулы средней ошибки выборки вводится поправочный множитель

где N - численность генеральной совокупности; п - численность выборки. При достаточно большом значении N можно единицей в знаменателе пренебречь. Тогда

Следовательно, формулы средней ошибки выборки для бесповторного отбора для средней и для доли соответственно имеют вид:

Поскольку п всегда меньше М, то дополнительный множитель всегда меньше единицы. Следовательно, абсолютное значение ошибки выборки при бесповторном отборе всегда будет меньше, чем при повторном.

Если численность выборки достаточно велика, то величина 1 ^ близка к единице, а потому ею можно пренебречь. Тогда среднюю ошибку случайного бесповторного отбора определяют по формуле собственно-случайной повторной выборки.

Рассчитаем для нашего примера среднюю ошибку для урожайности и доли участков с урожайностью 25 ц/га и более.

Средняя ошибка выборки

а) средней урожайности ячменя

Средняя урожайность ячменя в генеральной совокупности х -Г^ = 25,1 ± 0,12 ц/га, то есть находится в пределах от 24,98 до 25,22 ц/га.

Доля участков с урожайностью 25 ц/га и более в генеральной совокупности р

Т-^Г = 0,80 ± 0,07, т.е. находится в пределах от 73 до 87%.

Средняя ошибка выборки показывает возможные отклонения характеристик выборочной совокупности от характеристик генеральной совокупности. Вместе с тем при проведении выборочного наблюдения перед исследователями часто стоит задача расчета не только средней ошибки, но и определение предельной возможной ошибки выборки. Зная среднюю ошибку, можно определить границы, за которые не выйдет величина ошибки выборки. Однако утверждать, что эти отклонения не превысят заданной величины, можно не с абсолютной достоверностью, а лишь с определенной степенью вероятности. Уровень вероятности, что принимается при определении возможных пределов, в которых содержатся значения параметров генеральной совокупности, называется доверительным уровнем вероятности.

Доверительная вероятность - это довольно высокая и, такая, что практически считается осуществленной в каждом конкретном случае, вероятность, что гарантирует получение надежных статистических выводов. Обозначим ее через Г а вероятность превысить этот уровень - а. Итак, а =1 - Р Вероятность а называют уровнем значимости (существенности), который характеризует относительное число ошибочных выводов в общем числе выводов и определяется как разница между единицей и доверительной вероятностью, что принимается.

Уровень доверительной вероятности устанавливает исследователь исходя из степени ответственности и характера задач, которые решаются. В статистических исследованиях в экономике чаще всего принимается уровень доверительной вероятности Г = 0,95; Р = 0,99 (соответственно уровень значимости а = 0,05; а = 0,01) реже Г = 0,999. Например, доверительная вероятность Г = 0,99 означает, что ошибка оценки в 99 случаях из 100 не превысит установленной величины и только в одном случае из 100 может достичь вычисленного значения, или превысить его.

Ошибка выборки, исчисленная с заданной степенью надежной вероятности, называется предельной ошибкой выборки Ер.

Рассмотрим, как устанавливается величина возможной предельной ошибки выборки. Величина ер связана с нормированным отклонением и, которое определяется как отношение предельной ошибки выборки ер к средней ошибки и:

Для удобства расчетов отклонения случайной величины от ее среднего значения обычно выражают в единицах среднего квадратического отклонения. Выражение

называют нормированным отклонением. в В статистической литературе и называют коэффициентом доверия, или коэффициентом кратности средней ошибки выборки.

Так, нормированное отклонение выборочной средней можно определить по формуле:

и _є_р_

Из выражения 1 можно найти возможную предельную ошибку выборки

ер = и/л.

Подставив вместо г. в ее значение, приведем формулы предельных ошибок выборки для средней и для доли при бесповторном случайном отборе:

Следовательно, предельная ошибка выборки зависит от величины средней ошибки и нормированного отклонения и равна ± кратному числу средних ошибок выборки.

Средняя и предельная ошибки выборки - именованные величины и выражаются в тех же единицах, что и средняя арифметическая и среднее квадратическое отклонения.

Нормированное отклонение функционально связано с вероятностью. Для нахождения значений и составлены специальные таблицы (доб.2), по которым можно найти значение и при заданном уровне доверительной вероятности и значения вероятности при известном и.

Приведем значения и и соответствующие им вероятности для выборок с численностью п > 30, что чаще всего используется в практических расчетах:

Следовательно, при и = 1 вероятность отклонения выборочных характеристик от генеральных на величину однократной средней ошибки выборки равна 0,6827. Это означает, что в среднем с каждой 1000 выборок 683 дадут обобщенные характеристики, которые будут отличаться от генеральных обобщенных характеристик не более, чем на величину однократной средней ошибки. При и = 2 вероятность равна 0,9545. в Это означает, что с каждого 1000 выборок 954 дадут обобщенные характеристики, которые будут отличаться от генеральных обобщенных характеристик не более чем на двукратную среднюю ошибку выборки и т.д.

Однако в связи с тем, что, как правило, проводится только одна выборка, то мы говорим, что, например, с вероятностью 0,9545 можно гарантировать, что размеры предельной ошибки не превысят двукратную среднюю ошибку выборки.

Математически доказано, что отношение ошибки выборки к средней ошибки, как правило, не превышает ± 3д при достаточно большой численности п, несмотря на то, что ошибка выборки может приобретать любые значения. Другими словами можно сказать, что при достаточно высокой вероятности суждения (Р = 0,9973) предельная ошибка выборки, как правило, не превышает трех средних ошибок выборки. Поэтому величину Ер = 3д можно принять за предел возможной ошибки выборки.

Определим для нашего примера предельную ошибку выборки для средней урожайности и доли участков с урожайностью 25 ц/га и более. Доверительный уровень вероятности примем равным Р = 0,9545. в По таблице (прил .2) найдем значения и = 2. Средние ошибки выборки для урожайности и доли участков с урожайностью 25 ц/га и больше были найдены ранее и соответственно составляли: Ц~ = ±0,12 ц/га; МР = ± 0,07.

Предельная ошибка средней урожайности ячменя:

Итак, разница между выборочной средней урожайностью и генеральной средней будет не больше 0,24 ц/га. Пределы средней урожайности в генеральной совокупности: х = х ±есть~ = 25,1 + 0,24, то есть от 24,86 до 25,34 ц/га.

Предельная ошибка доли участков с урожайностью 25 ц/га и более:

Следовательно, предельная ошибка в определении доли участков с урожайностью 25 ц/га и больше не превысит 14%, то есть удельный вес участков с указанной урожайностью в генеральной совокупности находится в пределах: г = а> ± ер = 0,80 ± 0,14, то есть от 66 до 94%.

Рассмотрим подробно перечисленные выше способы формирования выборочной совокупности и возникающие при этом ошибки репрезентативности.

Собственно-случайная выборка основывается на отборе единиц из генеральной совокупности наугад без каких-либо элементов системности. Технически собственно-случайный отбор проводят методом жеребьевки (например, розыгрыши лотерей) или по таблице случайных чисел.

Собственно-случайный отбор «в чистом виде» в практике выборочного наблюдения применяется редко, но он является исходным среди других видов отбора, в нем реализуются основные принципы выборочного наблюдения. Рассмотрим некоторые вопросы теории выборочного метода и формулы ошибок для простой случайной выборки.

Ошибка выборочного наблюдения - это разность между величиной параметра в генеральной совокупности, и его величиной, вычисленной по результатам выборочного наблюдения. Для средней количественного признака ошибка выборки определяется

Показатель называется предельной ошибкой выборки.

Выборочная средняя является случайной величиной, которая может принимать различные значения в зависимости от того, какие единицы попали в выборку. Следовательно, ошибки выборки также являются случайными величинами и могут принимать различные значения. Поэтому определяют среднюю из возможных ошибок - среднюю ошибку выборки, которая зависит от:

  • 1) объема выборки: чем больше численность, тем меньше величина средней ошибки;
  • 2) степени изменения изучаемого признака: чем меньше вариация признака, а, следовательно, и дисперсия, тем меньше средняя ошибка выборки.

При случайном повторном отборе средняя ошибка рассчитывается

Практически генеральная дисперсия точно не известна, но в теории вероятности доказано, что

Так как величина при достаточно больших n близка к 1, можно считать, что. Тогда средняя ошибка выборки может быть рассчитана:

Но в случаях малой выборки (при n30) коэффициент необходимо учитывать, и среднюю ошибку малой выборки рассчитывать по формуле

При случайной бесповторной выборке приведенные формулы корректируются на величину. Тогда средняя ошибка бесповторной выборки:

Т.к. всегда меньше, то множитель () всегда меньше 1. Это значит, что средняя ошибка при бесповторном отборе всегда меньше, чем при повторном.

Механическая выборка применяется, когда генеральная совокупность каким-либо способом упорядочена (например, списки избирателей по алфавиту, телефонные номера, номера домов, квартир). Отбор единиц осуществляется через определенный интервал, который равен обратному значению процента выборки. Так при 2% выборке отбирается каждая 50 единица =1/0,02 , при 5% каждая 1/0,05=20 единица генеральной совокупности.

Начало отсчета выбирается разными способами: случайным образом, из середины интервала, со сменой начала отсчета. Главное при этом - избежать систематической ошибки. Например, при 5% выборке, если первой единицей выбрана 13-я, то следующие 33, 53, 73 и т.д.

По точности механический отбор близок к собственно-случайной выборке. Поэтому для определения средней ошибки механической выборки используют формулы собственно-случайного отбора.

При типическом отборе обследуемая совокупность предварительно разбивается на однородные, однотипные группы. Например, при обследовании предприятий это могут быть отрасли, подотрасли, при изучении населения - районы, социальные или возрастные группы. Затем осуществляется независимый выбор из каждой группы механическим или собственно-случайным способом.

Типическая выборка дает более точные результаты по сравнению с другими способами. Типизация генеральной совокупности обеспечивает представительство в выборке каждой типологической группы, что позволяет исключить влияние межгрупповой дисперсии на среднюю ошибку выборки. Следовательно, при нахождении ошибки типической выборки согласно правилу сложения дисперсий () необходимо учесть лишь среднюю из групповых дисперсий. Тогда средняя ошибка выборки:

при повторном отборе

при бесповторном отборе

где - средняя из внутригрупповых дисперсий в выборке.

Серийный (или гнездовой) отбор применяется в случае, когда генеральная совокупность разбита на серии или группы до начала выборочного обследования. Этими сериями могут быть упаковки готовой продукции, студенческие группы, бригады. Серии для обследования выбираются механическим или собственно-случайным способом, а внутри серии производится сплошное обследование единиц. Поэтому средняя ошибка выборки зависит только от межгрупповой (межсерийной) дисперсии, которая вычисляется по формуле:

где r - число отобранных серий;

Средняя і-той серии.

Средняя ошибка серийной выборки рассчитывается:

при повторном отборе

при бесповторном отборе

где R - общее число серий.

Комбинированный отбор представляет собой сочетание рассмотренных способов отбора.

Средняя ошибка выборки при любом способе отбора зависит главным образом от абсолютной численности выборки и в меньшей степени - от процента выборки. Предположим, что проводится 225 наблюдений в первом случае из генеральной совокупности в 4500 единиц и во втором - в 225000 единиц. Дисперсии в обоих случаях равны 25. Тогда в первом случае при 5 %-ном отборе ошибка выборки составит:

Во втором случае при 0,1 %-ном отборе она будет равна:

Таким образом, при уменьшении процента выборки в 50 раз, ошибка выборки увеличилась незначительно, так как численность выборки не изменилась.

Предположим, что численность выборки увеличили до 625 наблюдений. В этом случае ошибка выборки равна:

Увеличение выборки в 2,8 раза при одной и той же численности генеральной совокупности снижает размеры ошибки выборки более чем в 1,6 раза.

При выборочном наблюдении должна быть обеспечена слу-чайность отбора единиц. Каждая единица должна иметь равную с другими возможность быть отобранной. Именно на этом основывается собственно-случайная выборка.

К собственно-случайной выборке относится отбор единиц из всей генеральной совокупности (без предварительного рас-членения ее на какие-либо группы) посредством жеребьевки (преимущественно) или какого-либо иного подобного спосо-ба, например, с помощью таблицы случайных чисел. Случай-ный отбор -- это отбор не беспорядочный. Принцип случай-ности предполагает, что на включение или исключение объ-екта из выборки не может повлиять какой-либо фактор, кро-ме случая. Примером собственно-случайного отбора могут служить тиражи выигрышей: из общего количества выпущен-ных билетов наугад отбирается определенная часть номеров, на которые приходятся выигрыши. Причем всем номерам обеспечивается равная возможность попадания в выборку. При этом количество отобранных в выборочную совокупность единиц обычно определяется исходя из принятой доли выборки.

Доля выборки есть отношение числа единиц выборочной со-вокупности к числу единиц генеральной совокупности:

Так, при 5%-ной выборке из партии деталей в 1000 ед. объ-ём выборки п составляет 50 ед., а при 10%-ной выборке -- 100 ед. и т.д. При правильной научной организации выборки ошибки репрезентативности можно свести к минимальным значениям, в результате -- выборочное наблюдение становится достаточно точным.

Собственно-случайный отбор «в чистом виде» применяет-ся в практике выборочного наблюдения редко, но он является исходным среди всех других видов отбора, в нем заключаются и реализуются основные принципы выборочного наблюдения.

Рассмотрим некоторые вопросы теории выборочного метода и формулы ошибок для простой случайной выборки.

Применяя выборочный метод в статистике, обычно используют два основных вида обобщающих показателей: среднюю величину ко-личественного признака и относительную величину альтернативного признака (долю или удельный вес единиц в статистической совокупности, которые отличаются от всех других единиц этой сово-купности только наличием изучаемого признака).

Выборочная доля (w), или частость, определяется отношением числа единиц, обладающих изучаемым признаком т, к общему числу единиц выборочной совокупности п:

Например, если из 100 деталей выборки (n =100), 95 деталей оказались стандартными =95), то выборочная доля

w =95/100=0,95 .

Для характеристики надежности выборочных показателей различают среднюю и предельную ошибки выборки.

Ошибка выборки ? или, иначе говоря, ошибка репрезента-тивности представляет собой разность соответствующих выбо-рочных и генеральных характеристик:

*

*

Ошибка выборки свойственна только выборочным наблюде-ниям. Чем больше значение этой ошибки, тем в большей степе-ни выборочные показатели отличаются от соответствующих генеральных показателей.

Выборочная средняя и выборочная доля по своей сути яв-ляются случайными величинами, которые могут принимать раз-личные значения в зависимости от того, какие единицы сово-купности попали в выборку. Следовательно, ошибки выборки также являются случайными величинами и могут принимать различные значения. Поэтому определяют среднюю из возмож-ных ошибок -- среднюю ошибку выборки.

От чего зависит средняя ошибка выборки? При соблюдении принципа случайного отбора средняя ошибка выборки определя-ется прежде всего объемом выборки: чем больше численность при прочих равных условиях, тем меньше величина средней ошибки выборки. Охватывая выборочным обследованием все большее количество единиц генеральной совокупности, всё более точно характеризуем всю генеральную совокупность.

Средняя ошибка выборки также зависит от степени варьи-рования изучаемого признака. Степень варьирования, как из-вестно, характеризуется дисперсией? 2 или w(1-w) -- для альтернативного признака. Чем меньше вариация признака, а следовательно, и дисперсия, тем меньше средняя ошибка вы-борки, и наоборот. При нулевой дисперсии (признак не варь-ирует) средняя ошибка выборки равна нулю, т. е. любая еди-ница генеральной совокупности будет совершенно точно ха-рактеризовать всю совокупность по этому признаку.

Зависимость средней ошибки выборки от ее объема и степе-ни варьирования признака отражена в формулах, с помощью которых можно рассчитать среднюю ошибку выборки в условиях выборочного наблюдения, когда генеральные характеристики (х,p) неизвестны, и следовательно, не представляется возмож-ным нахождение реальной ошибки выборки непосредственно по формулам (форм. 1), (форм. 2).

Ш При случайном повторном отборе средние ошибки теоретически рассчитывают по следующим формулам:

* для средней количественного признака

* для доли (альтернативного признака)

Поскольку практически дисперсия признака в генеральной совокупности? 2 точно неизвестна, на практике пользуются значением дисперсии S 2 , рассчитанным для выборочной сово-купности на основании закона больших чисел, согласно кото-рому выборочная совокупность при достаточно большом объеме выборки достаточно точно воспроизводит характеристики гене-ральной совокупности.

Таким образом, расчетные формулы средней ошиб-ки выборки при случайном повторном отборе будут следующие:

* для средней количественного признака

* для доли (альтернативного признака)

Однако дисперсия выборочной совокупности не равна диспер-сии генеральной совокупности, и следовательно, средние ошибки выборки, рассчитанные по формулам (форм. 5) и (форм. 6), будут прибли-женными. Но в теории вероятностей доказано, что генеральная дисперсия выражается через выборную следующим соотношением:

Так как п/ (n -1) при достаточно больших п -- величина, близкая к единице, то можно принять, что, а следова-тельно, в практических расчетах средних ошибок выборки мож-но использовать формулы (форм. 5) и (форм. 6). И только в случаях ма-лой выборки (когда объем выборки не превышает 30) необхо-димо учитывать коэффициент п /(n -1) и исчислять среднюю ошибку малой выборки по формуле:

Ш X При случайном бесповторном отборе в приведенные выше формулы расчета средних ошибок выборки необходимо подко-ренное выражение умножить на 1-(n/N), поскольку в процес-се бесповторной выборки сокращается численность единиц генеральной совокупности. Следовательно, для бесповторной вы-борки расчетные формулы средней ошибки выборки примут такой вид:

* для средней количественного признака

* для доли (альтернативного признака)

. (форм. 10)

Так как п всегда меньше N , то дополнительный множи-тель 1-(n/N ) всегда будет меньше единицы. Отсюда следу-ет, что средняя ошибка при бесповторном отборе всегда будет меньше, чем при повторном. В то же время при сравнительно небольшом проценте выборки этот множитель близок к еди-нице (например, при 5%-ной выборке он равен 0,95; при 2%-ной -- 0,98 и т.д.). Поэтому иногда на практике пользуются для определения средней ошибки выборки формулами (форм. 5) и (форм. 6) без указанного множителя, хотя выборку и организуют как бесповторную. Это имеет место в тех случаях, когда число единиц генеральной совокупности N неизвестно или безгра-нично, или когда п очень мало по сравнению с N , и по су-ществу, введение дополнительного множителя, близкого по значению к единице, практически не повлияет на значение средней ошибки выборки.

Механическая выборка состоит в том, что отбор единиц в выборочную совокупность из генеральной, разбитой по ней-тральному признаку на равные интервалы (группы), произво-дится таким образом, что из каждой такой группы в выборку отбирается лишь одна единица. Чтобы избежать систематиче-ской ошибки, отбираться должна единица, которая находится в середине каждой группы.

При организации механического отбора единицы совокуп-ности предварительно располагают (обычно в списке) в опре-деленном порядке (например, по алфавиту, местоположению, в порядке возрастания или убывания значений какого-либо по-казателя, не связанного с изучаемым свойством, и т.д.), после чего отбирают заданное число единиц механически, через оп-ределенный интервал. При этом размер интервала в генеральной совокупности равен обратному значению доли выборки. Так, при 2%-ной выборке отбирается и проверяется каждая 50-я единица (1: 0,02), при 5%-ной выборке -- каждая 20-я едини-ца (1: 0,05), например, сходящая со станка деталь.

При достаточно большой совокупности механический отбор по точности результатов близок к собственно-случайному. По-этому для определения средней ошибки механической выборки используют формулы собственно-случайной бесповторной вы-борки (форм. 9), (форм. 10).

Для отбора единиц из неоднородной совокупности применя-ется, так называемая типическая выборка , которая используется в тех случаях, когда все единицы генеральной совокупности можно разбить на несколько качественно однородных, однотипных групп по признакам, влияющим на изучаемые показатели.

При обследовании предприятий такими группами могут быть, например, отрасль и подотрасль, формы собственности. Затем из каждой типической группы собственно-случайной или механической выборкой производится индивидуальный отбор единиц в выборочную совокупность.

Типическая выборка обычно применяется при изучении слож-ных статистических совокупностей. Например, при выборочном обследовании семейных бюджетов рабочих и служащих в отдель-ных отраслях экономики, производительности труда рабочих пред-приятия, представленных отдельными группами по квалификации.

Типическая выборка дает более точные результаты по сравнению с другими способами отбора единиц в выбороч-ную совокупность. Типизация генеральной совокупности обеспечивает репрезентативность такой выборки, представи-тельство в ней каждой типологической группы, что позволяет исключить влияние межгрупповой дисперсии на среднюю ошибку выборки.

При определении средней ошибки типической выборки в ка-честве показателя вариации выступает средняя из внутригрупповых дисперсий.

Среднюю ошибку выборки находят по формулам:

* для средней количественного признака

(повторный отбор); (форм. 11)

(бесповоротный отбор); (форм. 12)

* для доли (альтернативного признака)

(повторный отбор); (форм.13)

(бесповторный отбор), (форм. 14)

где - средняя из внутригрупповых дисперсий по вы-борочной совокупности;

Средняя из внутригрупповых дисперсий доли (альтернативного признака) по выборочной совокупности.

Серийная выборка предполагает случайный отбор из генераль-ной совокупности не отдельных единиц, а их равновеликих групп (гнезд, серий) с тем, чтобы в таких группах подвергать наблюде-нию все без исключения единицы.

Применение серийной выборки обусловлено тем, что многие товары для их транспортировки, хранения и продажи упаковываются в пачки, ящики и т.п. Поэтому при контроле качества упакованного товара рациональнее проверить не-сколько упаковок (серий), чем из всех упаковок отбирать необходимое количество товара.

Поскольку внутри групп (серий) обследуются все без исключе-ния единицы, средняя ошибка выборки (при отборе равновеликих серий) зависит только от межгрупповой (межсерийной) дисперсии.

Ш Среднюю ошибку выборки для средней количественного признака при серийном отборе находят по формулам:

(повторный отбор); (форм.15)

(бесповторный отбор), (форм. 16)

где r - число отобранных серий; R - общее число серий.

Межгрупповую дисперсию серийной выборки вычисляют сле-дующим образом:

где - средняя i - й серии; - общая средняя по всей выбо-рочной совокупности.

Ш Средняя ошибка выборки для доли (альтернативного при-знака) при серийном отборе:

(повторный отбор); (форм. 17)

(бесповторный отбор). (форм. 18)

Межгрупповую (межсерийную) дисперсию доли серийной вы-борки определяют по формуле:

, (форм. 19)

где - доля признака в i -й серии; - общая доля признака во всей выборочной совокупности.

В практике статистических обследований помимо рассмот-ренных ранее способов отбора применяется их комбинация (комбинированный отбор).

Средняя и предельная ошибки выборки

Основное преимущество выборочного наблюдения среди прочих других - возможность рассчитать случайную ошибку выборки.

Ошибки выборки бывают систематические и случайные.

Систематические - в том случае, когда нарушен основной принцип выборки - случайности. Случайные - возникают обычно ввиду того, что структура выборочной совокупности все­гда отличается от структуры генеральной совокупности, как бы правильно ни был произведен отбор, то есть, несмотря на принцип случайности отбора единиц совокупности, все же имеются расхо­ждения между характеристиками выборочной и генеральной сово­купности. Изучение и измерение случайных ошибок репрезента­тивности и является основной задачей выборочного метода.

Как правило, чаще всего рассчитывают ошибку средней и ошиб­ку доли. При расчетах используются следующие условные обо­значения:

Средняя, рассчитанная в пределах генеральной совокупности;

Средняя, рассчитанная в пределах выборочной совокупно­сти;

р - доля данной группы в генеральной совокупности;

w - доля данной группы в выборочной совокупности.

Используя условные обозначения, ошибки выборки для средней и для доли можно записать следующим образом:

Выборочная средняя и выборочная доля являются случайными величинами, которые могут принимать любые значения в зависимости от того, какие единицы совокупности попали в выборку. Следовательно, ошибки выборки также являются случайными величинами и могут принимать различные значения. Поэтому определяют среднюю из возможных ошибок μ.

В отличие от систематической, случайную ошибку можно опре­делить заранее, до проведения выборки, согласно предельных теорем, рассматриваемых в математической статистике.

Средняя ошибка определяется с вероятностью 0,683. В случае другой вероятности говорят о предельной ошибке.

Средняя ошибка выборки для средней и для доли определяется следующим образом:


В этих формулах дисперсия признака является характеристикой генеральной совокупности, которые при выборочном наблюдении неизвестны. На практике их заменяют аналогичными xapaктеристиками выборочной совокупности на основании закона больших чисел, по которому выборочная совокупность большом объеме точно воспроизводит характеристики генеральной совокупности.

Формулы определения средней ошибки для различных способ отбора:

Способ отбора Повторный Бесповторный
ошибка средней ошибка доли ошибка средней ошибка доли
Собственно-случайный и механиче­ский
Типический
Серийный

μ - средняя ошибка;

∆ - предельная ошибка;

п - численность выборки;

N - численность генеральной совокупности;

Общая дисперсия;

w - доля данной категории в общей численности выборки:

Средняя из внутригрупповых дисперсии;

Δ 2 - межгрупповая дисперсия;

r - число серий в выборке;

R - общее число серий.


Предельная ошибка для всех способов отбора связана со сред­ней ошибкой выборки следующим образом:

где t - коэффициент доверия, функционально связанный с веро­ятностью, с которой обеспечивается величина предельной ошиб­ки. В зависимости от вероятности коэффициент доверия t принимает следующие значения:

t P
0,683
1,5 0,866
2,0 0,954
2,5 0,988
3,0 0,997
4,0 0,9999

Например, вероятность ошибки равна 0,683. Это значит, что генеральная средняя отличается от выборочной средней по абсолютной величине не более чем на величину μ с вероятностью 0,683, то если - выборочная средняя, - генеральная средняя, то с вероятностью 0,683.

Если мы хотим обеспечить большую вероятность выводов, тем самым мы увеличиваем границы случайной ошибки.

Таким образом, величина предельной ошибки зависит от сле­дующих величин:

Колеблемости признака (прямая связь), которую характеризует величина дисперсии;

Численности выборки (обратная связь);

Доверительной вероятности (прямая связь);

Метода отбора.

Пример расчета ошибки средней и ошибки доли.

Для определения среднего числа детей в семье методом случайной бесповторной выборки из 1000 семей отобраны 100. Результаты приведены в таблице:

Определите: .

- с вероятностью 0,997 предельную ошибку выборки и границы, в которых находится средне число детей в семье;

- с вероятностью 0,954 границы, в которых находится удельный вес семей с двумя детьми.

1. Определим предельную ошибку средней с вероятностью 0,977. Для упрощения расчетов воспользуемся способом моментов:

p = 0,997 t = 3

средняя ошибка средней, 0,116 - предельная ошибка

2,12 – 0,116 ≤ ≤ 2,12+ 0,116

2,004 ≤ ≤ 2,236

Следовательно, с вероятностью 0,997 среднее число детей в семье в генеральной совокупности, то есть среди 1000 семей, находится в интервале 2,004 - 2,236.