Геометрия наука непростая, но полезная. Все мы в школе проходили вычисление объемов трехмерных тел, но не все хорошо помнят формулы этих вычислений. Эта статья поможет вам освежить в памяти знания о том, как найти объем конуса. Данная трехмерная фигура образована круговым вращением прямоугольного треугольника. Вычислить его объем можно разными способами, в зависимости от того, какими исходными данными вы владеете.

Инструкция:

  • В большинстве случаев для вычисления используется радиус окружности основания и высота. Формула объема конуса в таком случае имеет вид: V= πRh , где π=3.14 , R – радиус основания, h – высота фигуры. Проще говоря, этой формулой мы вычисляем площадь основания, и умножаем ее на высоту. Однако, вычисление объема конуса может иметь другой вид в том случае, если вам известны другие параметры вашей фигуры.
  • Если вызнаете длину боковой стороны конуса и радиус основания, для нахождения объема фигуры вам потребуется выяснить, какова ее высота. В этом нам поможет теорема Пифагора , потому как радиус основания в данном случае является катетом прямоугольного треугольника, а боковая сторона, соответственно, гипотенузой . Для того, чтобы найти длину второго катета, который представляет собой высоту конуса, воспользуемся хорошо всем знакомой формулой a^2+b^2=c^2.
  • Но, как найти объем конуса, если ни длина боковой стороны, ни радиус основания неизвестны? В таком случае вам необходимо знать градус угла при вершине конуса и его высоту. Владея этими данными, вы можете вычислить радиус основания. Не забываем о том, что конус – фигура, образованная вращением прямоугольного треугольника вокруг одного из его катетов. Если угол при вершине разделить надвое, вы получите градус одного из двух острых углов этого треугольника. Используя определения тригонометрических функций, мы можем выяснить длину стороны противоположной этому углу, то есть, в нашем случае, радиуса основания. Он, в этом случае будет равен l*sin(α) , где l – длина от вершины конуса до основания, высота, соответственно, будет равна l*cos(α) , используя эти значения, выводим следующую формулу радиуса основания R= h/cos(α)*sin(α) или, равнозначно, R = h*tg(α) .

1. Расчет объема куба

a — сторона куба

Формула объема куба, (V ):

2. Найти по формуле, объем прямоугольного параллелепипеда

a , b , c — стороны параллелепипеда

Еще иногда сторону параллелепипеда, называют ребром.

Формула объема параллелепипеда, (V ):

3. Формула для вычисления объема шара, сферы

R радиус шара

По формуле, если дан радиус, можно найти объема шара, (V ):

4. Как вычислить объем цилиндра?

h — высота цилиндра

r — радиус основания

По формуле найти объема цилиндра, есди известны — его радиус основания и высота, (V ):

5. Как найти объем конуса?

R — радиус основания

H — высота конуса

Формула объема конуса, если известны радиус и высота (V ):

7. Формула объема усеченного конуса

r — радиус верхнего основания

R — радиус нижнего основания

h — высота конуса

Формула объема усеченного конуса, если известны — радиус нижнего основания, радиус верхнего основания и высота конуса (V ):

8. Объем правильного тетраэдра

Правильный тетраэдр — пирамида у которой все грани, равносторонние треугольники.

а — ребро тетраэдра

Формула, для расчета объема правильного тетраэдра (V ):

9. Объем правильной четырехугольной пирамиды

Пирамида, у которой основание квадрат и грани равные, равнобедренные треугольники, называется правильной четырехугольной пирамидой.

a — сторона основания

h — высота пирамиды

Формула для вычисления объема правильной четырехугольной пирамиды, (V ):

10. Объем правильной треугольной пирамиды

Пирамида, у которой основание равносторонний треугольник и грани равные, равнобедренные треугольники, называется правильной треугольной пирамидой.

a — сторона основания

h — высота пирамиды

Формула объема правильной треугольной пирамиды, если даны — высота и сторона основания (V ):

11. Найти объем правильной пирамиды

Пирамида в основании, которой лежит правильный многоугольник и грани равные треугольники, называется правильной.

h — высота пирамиды

a — сторона основания пирамиды

n — количество сторон многоугольника в основании

Формула объема правильной пирамиды, зная высоту, сторону основания и количество этих сторон (V ):

Все формулы объемов геометрических тел
Геометрия, Алгебра, Физика

Формулы объема

Объём геометрической фигуры количественная характеристика пространства, занимаемого телом или веществом. В простейших случаях объём измеряется числом умещающихся в теле единичных кубов, т. е. кубов с ребром, равным единице длины. Объём тела или вместимость сосуда определяется его формой и линейными размерами.

Формула объема куба

1) Объем куба равен кубу его ребра.

V — объем куба

H — высота ребра куба

Формула объема пирамиды

1) Объем пирамиды равен одной трети произведения площади основания S (ABCD) на высоту h (OS).

V — объем пирамиды

S — площадь основания пирамиды

h — высота пирамиды

Формулы объема конуса

1) Объем конуса равен одной трети произведения площади основания на высоту.

2) Объем конуса равен одной трети произведения числа пи (3.1415) на квадрат радиуса основания на высоту.

V — объем конуса

S — площадь основания конуса

h — высота конуса

π — число пи (3.1415)

r — радиус конуса

Формулы объема цилиндра

1) Объем цилиндра равен произведению площади основания на высоту.

2) Объем цилиндра равен произведению числа пи (3.1415) на квадрат радиуса основания на высоту.

V — объем цилиндра

S — площадь основания цилиндра

h — высота цилиндра

π — число пи (3.1415)

r — радиус цилиндра

Формула объема шара

1) Объем шара вычисляется по приведенной ниже формуле.

V — объем шара

π — число пи (3.1415)

R — радиус шара

Формула объема тетраэдра

1) Объем тетраэдра равен дроби в числителе которой корень квадратный из двух помноженный на куб длины ребра тетраэдра, а в знаменателе двенадцать.

Формулы объема
Формулы объема и онлайн программы для вычисления объема


Формула объема.

Формула объема необходима для вычисления параметров и характеристик геометрической фигуры.

Объем фигуры — это количественная характеристика пространства, занимаемого телом или веществом. В простейших случаях объём измеряется числом умещающихся в теле единичных кубов, т. е. кубов с ребром, равным единице длины. Объём тела или вместимость сосуда определяется его формой и линейными размерами.

Параллелепипед .

Объем прямоугольного параллелепипеда равен произведению площади основания на высоту.

Цилиндр .

Объем цилиндра равен произведению площади основания на высоту.

Объем цилиндра равен произведению числа пи (3.1415) на квадрат радиуса основания на высоту.

Пирамида .

Объем пирамиды равен одной трети произведения площади основания S (ABCDE) на высоту h (OS).

Правильная пирамида - это пирамида, в основании, которой лежит правильный многоугольник, а высота проходит через центр вписанной окружности в основание.

Правильная треугольная пирамида - это пирамида, у которой основанием является равносторонний треугольник и грани равные равнобедренные треугольники.

Правильная четырехугольная пирамида - это пирамида, у которой основанием является квадрат и грани равные равнобедренные треугольники.

Тетраэдр - это пирамида, у которой все грани - равносторонние треугольники.

Усеченная пирамида .

Объем усеченной пирамиды равен одной трети произведения высоты h (OS) на сумму площадей верхнего основания S 1 (abcde), нижнего основания усеченной пирамиды S 2 (ABCDE) и средней пропорциональной между ними.

Вычислить объем куба легко – нужно перемножить длину, ширину и высоту. Так как у куба длина равна ширине и равна высоте, то объем куба равен s 3 .

Конус - это тело в евклидовом пространстве, полученное объединением всех лучей, исходящих из одной точки (вершины конуса) и проходящих через плоскую поверхность.

Усеченный конус получится, если в конусе провести сечение, параллельное основанию.

V = 1/3 πh (R 2 + Rr + r 2)

Объем шара в полтора раза меньше, чем объем описанного вокруг него цилиндра.

Призма .

Объем призмы равен произведению площади основания призмы, на высоту.

Сектор шара .

Объем шарового сектора равен объему пирамиды, основание которой имеет ту же площадь, что и вырезаемая сектором часть шаровой поверхности, а высота равна радиусу шара.

Шаровой слой - это часть шара, заключенная между двумя секущими параллельными плоскостями.

Сегмент шара — это часть шара, осекаемая от него какой-нибудь плоскостью, называется шаровым или сферическим сегментом

Формула объема
Формула объема куба, шара, пирамиды, параллелограмма, цилиндра, тетраэдра, конуса, призмы и объемы других геометрических фигур.


В курсе стереометрии один из главных вопросов — как рассчитать объем того или иного геометрического тела. Все начинается с простого параллелепипеда и заканчивается шаром.

В жизни тоже часто приходится сталкиваться с подобными задачами. Например, чтобы рассчитать объем воды, которая помещается в ведро или бочку.

Свойства, справедливые для объема каждого тела

  1. Это значение — всегда положительное число.
  2. Если тело удается разделить на части так, чтобы не было пересечений, то общий объем оказывается равным сумме объемов частей.
  3. У равных тел одинаковые объемы.
  4. Если меньшее тело полностью помещается в большем, то объем первого меньше, чем второго.

Общие обозначения для всех тел

В каждом из них есть ребра и основания, в них строятся высоты. Поэтому такие элементы для них одинаково обозначены. Именно так они записаны в формулах. Как рассчитать объем каждого из тел — узнаем дальше и применим на практике новые умения.

В некоторых формулах имеются другие величины. Об их обозначении будет сказано при появлении такой необходимости.

Призма, параллелепипед (прямой и наклонный) и куб

Эти тела объединены, потому что внешне очень похожи, и формулы того, как рассчитать объем, идентичны:

V = S * h.

Различаться будет только S . В случае с параллелепипедом она рассчитывается, как для прямоугольника или квадрата. В призме основанием может оказаться треугольник, параллелограмм, произвольный четырехугольник или другой многоугольник.

Для куба формула существенно упрощается, потому что все его измерения равны:

V = а 3 .

Пирамида, тетраэдр, усеченная пирамида

Для первого из указанных тел существует такая формула, чтобы вычислить объем:

V = 1/3 * S * н.

Тетраэдр является частным случаем треугольной пирамиды. В нем все ребра равны. Поэтому снова получается упрощенная формула:

V = (а 3 * √2) / 12, или V = 1/ 3 S h

Усеченной пирамида становится тогда, когда у нее срезана верхняя часть. Поэтому ее объем равен разности двух пирамид: той, которая была бы целой, и удаленной верхушки. Если есть возможность узнать оба основания такой пирамиды (S 1 - большее и S 2 - меньшее), то удобно пользоваться такой формулой для расчета объема:

Цилиндр, конус и усеченный конус

V =π * r 2 * h.

Несколько сложнее обстоит дело с конусом. Для него существует формула:

V = 1/3 π * r 2 * h. Она очень похожа на ту, что указана для цилиндра, только значение уменьшено в три раза.

Так же, как с усеченной пирамидой, дело обстоит непросто с конусом, который имеет два основания. Формула для вычисления объема усеченного конуса выглядит так:

V = 1/3 π * h * (r 1 2 + r 1 r 2 + r 2 2). Здесь r 1 - радиус нижнего основания, r 2 - верхнего (меньшего).

Шар, шаровые сегменты и сектор

Это самые сложные для запоминания формулы. Для объема шара она выглядит так:

V = 4/3 π *r 3 .

В задачах часто есть вопрос о том, как рассчитать объем шарового сегмента - части сферы, которая как бы срезана параллельно диаметру. В этом случае на выручку придет такая формула:

V = π h 2 * (r — h/3). В ней за h взята высота сегмента, то есть та часть, которая идет по радиусу шара.

Сектор делится на две части: конус и шаровой сегмент. Поэтому его объем определяется как сумма этих тел. Формула после преобразований выглядит так:

V = 2/3 πr 2 * h. Здесь h также высота сегмента.

Примеры задач

Про объемы цилиндра, шара и конуса

Условие: диаметр цилиндра (1 тело) равен его высоте, диаметру шара (2 тело) и высоте конуса (3 тело), проверить пропорциональность объемов V 1: V 2: V 3 = 3:2:1

Решение. Сначала потребуется записать три формулы для объемов. Потом учесть, что радиус - это половина диаметра. То есть высота будет равна двум радиусам: h = 2r. Произведя простую замену получается, что формулы для объемов будут иметь такой вид:

V 1 = 2 π r 3 , V 3 = 2/3 π r 3 . Формула для объема шара не изменяется, потому что в ней не фигурирует высота.

Теперь осталось записать отношения объемов и произвести сокращение 2π и r 3 . Получается, что V 1: V 2: V 3 = 1: 2/3: 1/3. Эти числа легко привести к записи 3: 2: 1.

Про объем шара

Условие: имеется два арбуза радиусами 15 и 20 см, как их выгоднее съесть: первый вчетвером или второй ввосьмером?

Решение. Чтобы ответить на этот вопрос, потребуется найти отношение объемов частей, которые достанутся от каждого арбуза. Принимая во внимание, что они - шары, нужно записать две формулы для объемов. Потом учесть, что от первого каждому достанется только четвертая часть, а от второго — восьмая.

Осталось записать отношение объемов частей. Оно будет выглядеть так:

(V 1: 4) / (V 2: 8) = (1/3 π r 1 3) / (1/6 π r 2 3). После преобразования остается только дробь: (2 r 1 3) / r 2 3 . После подстановки значений и вычисления получается дробь 6750/8000. Из нее ясно, что часть от первого арбуза будет меньше, чем от второго.

Ответ. Выгоднее съесть восьмую часть от арбуза с радиусом 20 см.

Про объемы пирамиды и куба

Условие: имеется пирамида из глины с прямоугольным основанием 8Х9 см и высотой 9 см, из этого же куска глины сделали куб, чему равно его ребро?

Решение. Если обозначить стороны прямоугольника буквами в и с, то площадь основания пирамиды вычисляется, как их произведение. Тогда формула для ее объема:

Формула для объема куба написана в статье выше. Эти два значения равны: V 1 = V 2 . Осталось приравнять правые части формул и сделать необходимые вычисления. Получается, что ребро куба будет равно 6 см.

Про объем параллелепипеда

Условие: требуется сделать ящик вместимостью 0,96 м 3 , известны его ширина и длина — 1,2 и 0,8 метра, какой должна быть его высота?

Решение. Поскольку основание параллелепипеда — прямоугольник, его площадь определяется как произведение длины (а) на ширину (в). Поэтому формула для объема выглядит так:

Из нее легко определить высоту, разделив объем на площадь. Получится, что высота должна быть равна 1 м.

Ответ. Высота ящика равна одному метру.

Как рассчитать объем различных геометрических тел?
В курсе стереометрии одна из главных задач — как рассчитать объем того или иного геометрического тела. Все начинается с простого параллелепипеда и заканчивается шаром.

Геометрия как наука сформировалась в Древнем Египте и достигла высокого уровня развития. Известный философ Платон основал Академию, где пристальное внимание уделялось систематизации имеющихся знаний. Конус как одна из геометрических фигур впервые упоминается в известном трактате Евклида "Начала". Евклид был знаком с трудами Платона. Сейчас мало кто знает, что слово "конус" в переводе с греческого языка обозначает "сосновая шишка". Греческий математик Евклид, живший в Александрии, по праву считается основоположником геометрической алгебры. Древние греки не только стали преемниками знаний египтян, но и значительно расширили теорию.

История определения конуса

Геометрия как наука появилась из практических требований строительства и наблюдений за природой. Постепенно опытные знания обобщались, а свойства одних тел доказывались через другие. Древние греки ввели понятие аксиом и доказательств. Аксиомой называется утверждение, полученное практическим путем и не требующее доказательств.

В своей книге Евклид привел определение конуса как фигуры, которая получается вращением прямоугольного треугольника вокруг одного из катетов. Также ему принадлежит основная теорема, определяющая объем конуса. А доказал эту теорему древнегреческий математик Евдокс Книдский.

Другой математик древней Греции, Аполлоний Пергский, который был учеником Евклида, развил и изложил теорию конических поверхностей в своих книгах. Ему принадлежит определение конической поверхности и секущей к ней. Школьники наших дней изучают Евклидову геометрию, сохранившую основные теоремы и определения с древних времен.

Основные определения

Прямой круговой конус образован вращением прямоугольного треугольника вокруг одного катета. Как видно, понятие конуса не изменилось со времен Евклида.

Гипотенуза AS прямоугольного треугольника AOS при вращении вокруг катета OS образует боковую поверхность конуса, поэтому называется образующей. Катет OS треугольника превращается одновременно в высоту конуса и его ось. Точка S становится вершиной конуса. Катет AO, описав круг (основание), превратился в радиус конуса.

Если сверху провести плоскость через вершину и ось конуса, то можно увидеть, что полученное осевое сечение представляет собой равнобедренный треугольник, в котором ось является высотой треугольника.

где C — длина окружности основания, l — длина образующей конуса, R — радиус основания.

Формула расчета объема конуса

Для расчета объема конуса используется следующая формула:

где S является площадью основания конуса. Так как основание — круг, его площадь рассчитывается так:

Отсюда следует:

где V — объем конуса;

n — число, равное 3,14;

R — радиус основания, соответствующий отрезку AO на рисунке 1;

H — высота, равная отрезку OS.

Усеченный конус, объем

Имеется прямой круговой конус. Если плоскостью, перпендикулярной высоте, отсечь верхнюю часть, то получится усеченный конус. Два его основания имеют форму круга с радиусами R 1 и R 2 .

Если прямой конус образуется вращением прямоугольного треугольника, то усеченный конус — вращением прямоугольной трапеции вокруг прямой стороны.

Объем усеченного конуса рассчитывается по следующей формуле:

V=n*(R 1 2 +R 2 2 +R 1 *R 2)*H/3.

Конус и его сечение плоскостью

Перу древнегреческого математика Аполлония Пергского принадлежит теоретический труд «Конические сечения». Благодаря его работам в геометрии появились определения кривых: параболы, эллипса, гиперболы. Рассмотрим, причем здесь конус.

Возьмем прямой круговой конус. Если плоскость пересекает его перпендикулярно оси, то в разрезе образуется круг. Когда секущая пересекает конус под углом к оси, то в разрезе получается эллипс.

Секущая плоскость, перпендикулярная основанию и параллельная оси конуса, образует на поверхности гиперболу. Плоскость, разрезающая конус под углом к основанию и параллельная касательной к конусу, создает на поверхности кривую, которую назвали параболой.

Решение задачи

Даже простая задача о том, как изготовить ведро определенного объема, требует знаний. Например, необходимо рассчитать размеры ведра, чтобы оно имело объем 10 литров.

V=10 л=10 дм 3 ;

Развертка конуса имеет вид, схематически приведенный на рисунке 3.

L - образующая конуса.

Чтобы узнать площадь поверхности ведра, которая вычисляется по следующей формуле:

S=n*(R 1 +R 2)*L,

необходимо вычислить образующую. Ее находим из величины объема V=n*(R 1 2 +R 2 2 +R 1 *R 2)*H/3.

Отсюда H=3V/n*(R 1 2 +R 2 2 +R 1 *R 2).

Усеченный конус образуется вращением прямоугольной трапеции, в которой боковая сторона является образующей конуса.

L 2 =(R 2- R 1) 2 +H 2 .

Теперь у нас имеются все данные, чтобы построить чертеж ведра.

Почему пожарные ведра имеют форму конуса?

Кто задумывался, почему пожарные ведра имеют, казалось бы, странную коническую форму? А это не просто так. Оказывается, коническое ведро при тушении пожара имеет много преимуществ перед обычным, имеющим форму усеченного конуса.

Во-первых, как оказывается, пожарное ведро быстрее наполняется водой и при переноске она не расплескивается. Конус, объем которого больше обычного ведра, за один раз позволяет перенести больше воды.

Во-вторых, воду из него можно выплеснуть на большее расстояние, чем из обычного ведра.

В-третьих, если коническое ведро сорвется с рук и упадет в огонь, то вся вода выливается на очаг возгорания.

Все перечисленные факторы позволяют сэкономить время — главный фактор при тушении пожара.

Практическое применение

У школьников часто возникает вопрос о том, зачем учить, как рассчитывать объем разных геометрических тел, в том числе конуса.

А инженеры-конструкторы постоянно сталкиваются с необходимостью рассчитать объем конических частей деталей механизмов. Это наконечники сверл, части токарных и фрезерных станков. Форма конуса позволят сверлам легко входить в материал, не требуя первоначальной наметки специальным инструментом.

Объем конуса имеет куча песка или земли, высыпанная на землю. При необходимости, проведя несложные измерения, можно рассчитать ее объем. У некоторых вызовет затруднение вопрос о том, как узнать радиус и высоту кучи песка. Вооружившись рулеткой, измеряем окружность холмика C. По формуле R=C/2n узнаем радиус. Перекинув веревку (рулетку) через вершину, находим длину образующей. А вычислить высоту по теореме Пифагора и объем не составит труда. Конечно, такой расчет приблизителен, но позволяет определить, не обманули вас, привезя тонну песка вместо куба.

Некоторые здания имеют форму усеченного конуса. Например, Останкинская телебашня приближается к форме конуса. Ее можно представить состоящей из двух конусов, поставленных друг на друга. Купола старинных замков и соборов представляют собой конус, объем которого древние зодчие рассчитывали с удивительной точностью.

Если внимательно присмотреться к окружающим предметам, то многие из них являются конусами:

  • воронки-лейки для наливания жидкостей;
  • рупор-громкоговоритель;
  • парковочные конусы;
  • абажур для торшера;
  • привычная новогодняя елочка;
  • духовые музыкальные инструменты.

Как видно из приведенных примеров, умение рассчитать объем конуса, площадь его поверхности необходимо в профессиональной и повседневной жизни. Надеемся, что статья придет вам на помощь.

Объём конуса выражается такой же формулой, что и объём пирамиды: V = 1 / 3 Sh ,

где V - объём конуса, S - площадь основания конуса, h - его высота.

Окончательно V = 1 / 3 πR 2 h , где R - радиус основания конуса.

Получение формулы объёма конуса можно пояснить таким рассуждением:

Пусть дан конус (рис). Впишем в него правильную пирамиду, т. е. построим внутри конуса такую пирамиду, вершина которой совпадает с вершиной конуса, а основанием служит правильный многоугольник, вписанный в основание конуса.

Объём этой пирамиды выразится формулой: V’ = 1 / 3 S’h , где V - объём пирамиды,

S’ - площадь её основания, h - высота пирамиды.

Если при этом за основание пирамиды взять многоугольник с очень большим числом сторон, то площадь основания пирамиды будет весьма мало отличаться от площади круга, а объём пирамиды - весьма мало отличаться от объёма конуса. Если, пренебречь этими различиями в размерах, то объём конуса выразится следующей формулой:

V = 1 / 3 Sh , где V - объём конуса, S - площадь основания конуса, h - высота конуса.

Заменив S через πR 2 , где R - радиус круга, получим формулу: V = 1 / 3 πR 2 h , выражающую объём конуса.

Примечание. В формуле V = 1 / 3 Sh поставлен знак точного, а не приближённого равенства, хотя на основании проведённого рассуждения мы могли бы его считать приближённым, но в старших классах средней школы доказывается, что равенство

V = 1 / 3 Sh точное, а не приближённое.

Объем произвольного конуса

Теорема. Объем произвольного конуса равен одной трети произведения площади основания на высоту, т.е.

V = 1 / 3 QH, (1)

где Q - площадь основания, а Н - высота конуса.

Рассмотрим конус с вершиной S и основанием Ф (рис.).

Пусть площадь основания Ф равна Q, а высота конуса равна Н. Тогда существуют последовательности многоугольников Ф n и Ф’ n с площадями Q n и Q’ n таких, что

Ф n ⊂ Ф n ⊂ Ф’ n и \(\lim_{n \rightarrow \infty}\) Q’ n = \(\lim_{n \rightarrow \infty}\) Q n = Q.

Очевидно, что пирамида с вершиной S и основанием Ф’ n будет вписанной в данный конус, а пирамида с вершиной S и основанием Ф n - описанной около конуса.

Объемы этих пирамид соответственно равны

V n = 1 / 3 Q n H , V’ n = 1 / 3 Q’ n H

\(\lim_{n \rightarrow \infty}\) V n = \(\lim_{n \rightarrow \infty}\) V’ n = 1 / 3 QH

то формула (1) доказана.

Следствие. Объем конуса, основанием которого является эллипс с полуосями а и b, вычисляется по формуле

V = 1 / 3 π ab H (2)

В частности, объем конуса, основанием которого является круг радиуса R, вычисляется по формуле

V = 1 / 3 π R 2 H (3)

где Н - высота конуса.

Как известно, площадь эллипса с полуосями а и b равна π ab , и поэтому формула (2) получается из (1) при Q = π ab . Если а = b = R, то получается формула (3).

Объем прямого кругового конуса

Теорема 1. Объем прямого кругового конуса с высотой Н и радиусом основания R вычисляется по формуле

V = 1 / 3 π R 2 H

Данный конус можно рассматривать как тело, полученное вращением треугольника с вершинами в точках О(0; 0),В(Н; 0), А(Н; R) вокруг оси Ох (рис.).

Треугольник ОАВ является криволинейной трапецией, соответствующей функции

у = R / H х , х ∈ . Поэтому, используя известную формулу, получаем

$$ V=\pi\int_{0}^{H}(\frac{R}{H}x)^2dx=\\=\frac{\pi R^2}{H^2}\cdot\frac{x^3}{3}\left|\begin{array}{c}H\\\\ 0\end{array}\right.=\\=\frac{1}{3}\pi R^2H $$

Следствие. Объем прямого кругового конуса равен одной трети произведения площади основания на высоту, т. е.

где Q - площадь основания , а H - высота конуса.

Теорема 2. Объем усеченного конуса с радиусами оснований r и R и высотой H вычисляется по формуле

V = 1 / 3 πH(r 2 + R 2 + r R).

Усеченный конус можно получить вращением вокруг оси Ох трапеции О ABC (рис.).

Прямая АВ проходит через точки (0; r ) и (H; R), поэтому она имеет уравнение

$$ y=\frac{R-r}{H}x + r $$

получаем

$$ V=\pi\int_{0}^{H}(\frac{R-r}{H}x + r)^2dx $$

Для вычисления интеграла сделаем замену

$$ u=\frac{R-r}{H}x + r, du=\frac{R-r}{H}dx $$

Очевидно, когда х изменяется в пределах от 0 до H, переменная и изменяется от r до R, и поэтому

$$ V=\pi\int_{r}^{R}u^2\frac{H}{R-r}du=\\=\frac{\pi H}{R-r}\cdot\frac{u^3}{3}\left|\begin{array}{c}R\\\\ r\end{array}\right.=\\=\frac{\pi H}{3(R-r)}(R^3-r^3)=\\=\frac{1}{3}\pi H(R^2 + r^2 + Rr) $$

МБОУ «МСОШ им. Н.В.Архангельского»

Конспект урока по русскому языку

по теме:

«Изменение имён прилагательных по родам и числам»

Учитель начальных классов: Рогозина Екатерина Николаевна

Методический паспорт урока.

Тема : “Изменение имён прилагательных по родам и числам”

Цель. Формировать представления учащихся об основных грамматических признаках имен прилагательных (роде и числе); о том, что род прилагательного совпадает с родом, числом существительного, к которому данное прилагательное относиться.

Задачи.

Обучающие: учить исследовать слово, в частности имя прилагательное, как самостоятельную часть речи, раскрыть его семантику, некоторые морфологические и синтаксические особенности, показать его речевую функцию, организовать разные виды проверки для формирования рефлексивных компетенций.

Развивающие: создать проблемную ситуацию, чтобы активизировать творческую, речевую и мыслительную деятельность, использовать различные формы работы и различные источники, включая ИКТ для развития интереса учащихся к языку и учебной деятельности.

Воспитательные: подготовить разноуровневые задания для повышения самооценки слабоуспевающих учащихся, воспитывать интерес и уважение к родному языку, организовать работу в парах для формирования коммуникативных компетенций, воспитания настойчивости при выполнении учебных задач.

Тип урока – усвоение новых знаний

Предмет – русский язык

Возраст детей – 9 -11лет, класс – 3

По содержанию – с элементами межпредметной интеграции (окружающий мир, чтение)

По форме организации – комбинированный (парная, индивидуальная, фронтальная, самостоятельная)

По видам деятельности – поисково-исследовательский

По результатам выполнения – практический

Оборудование: Пк, мультимедийный проэктор.

Материалы: Презентация «Изменение имён прилагательных по родам и числам», учебники, словари, индивидуальные карточки.

Структура урока

1. Орг. момент.

3. Орфографическая минутка.

4. Введение в тему урока.

6. «Открытие» нового знания.

1)

Гимнастика для глаз

2) Связь имён прилагательных с существительными

3)

Физкультминутка.

7. Первичное закрепление.

8. Рефлексия. Итог урока. Оценки.

Ход урока.

1. Орг. момент.

-Приветствие гостей.

Если хмуримся с утра,

Нам поможет доброта.

Встаньте, дети, подтянитесь,

И друг другу улыбнитесь!

Садитесь.

- Записываем число, классная работа.(Слайд №2)

2. Минутка чистописания. Словарная работа.

Звучит музыка, приходит Весна (девочка, наряженная в костюм весны)

Пришла, улыбнулась – утихли метели.

Позванивать стал колокольчик капели.

Река пробудилась, растаяли льды,

Наряд белоснежный надели сады.

Кто же пришёл? (весна) (Слайд № 3)

Назовите первый звук в слове «весна»? ([в])

Дайте ему характеристику. (согласный, мягкий, звонкий, парный, обозначен буквой «вэ»)

Эта буква и будет хозяйкой минутки чистописания.

В в

Запишите по памяти словарные слова на букву в.

Взаимопроверка.

3. Орфографическая минутка.

Весна – замечательное и прекрасное время года. В это время природа просыпается и оживает после зимнего сна. Хотите увидеть как это происходит?

Составьте слова из данных слогов. Запишите эти слова и объясните орфограммы. Дети называют слово, записывают в тетрадь, объясняют орфограмму) (Слайд №4)

ЛАНДЫШ

ТРАВА

СОЛНЦЕ

ВЕТЕРОК

ТЁПЛОЕ

ПТИЦЫ

Посмотрите, какая красивая картина у нас получилась. Даже у нас в классе повеяло весной. (Слайд №5)

4. Введение в тему урока.

Обратите внимание на получившийся ряд слов.

Назовите «лишнее» слово.(тёплое)

Что общего у оставшихся слов? (это имена существительные) Докажите. (отвечают на вопросы кто? что? и обозначают предмет)

Определите род и число имен существительных. (Слайд №6)

На доске опорные слова : слово, вопрос, часть речи, значение, род, число.

    Ландыш – м.р., ед.ч.

    Трава –,ж.р.,ед.ч.

    Солнце – с.р.; ед.ч.

    Ветерок – м.р.; ед.ч.

    Птицы – мн.ч.

Давайте обобщим наши знания об имени существительном.

(слайд № 7)

5. Постановка проблемной ситуации.

А теперь давайте обратимся к слову, которое мы назвали «лишним»: слово тёплое (Слайд №8)

- Скажите, а сможем ли мы определить род и число этого слова?

- Почему возникло затруднение? (Другая часть речи).

Вспомните, а что мы повторяли, разбор каких слов уже делали сегодня?

А могут ли изменяться по родам и числам прилагательные?

Сегодня мы и попытаемся ответить на эти вопросы.

6. «Открытие» нового знания.

Какой частью речи является наше слово ТЕПЛЫЙ? (Имя прилагательное).

1) -Что мы уже знаем о прилагательном? (самостоятельная часть речи, обозначают признак предмета, отвечают на вопросы какой? какая? какое? какие?, украшают нашу речь)

Только ли они украшают нашу речь? Давайте понаблюдаем.

Представим такую ситуацию: трёх художников попросили нарисовать лес. Вот что у них получилось.(Слайд № 9)

Как вы думаете, почему рисунки получились разные? (не было сказано, какой лес надо рисовать)

Опишите одну картинку, какой лес изображён? (еловый лес, зимний лес, ели высокие, тёмно-зелёного цвета, лес густой, тёмный).

Какие слова помогли нарисовать картинку елового леса?

Следовательно, только прилагательные сделали задание понятным.

Каково же значение прилагательных в русском языке? (они делают нашу речь понятной, более точной) По количеству употребляемых слов прилагательные занимают 3 место(после существительных и глаголов) (Слайд№10)

Гимнастика для глаз (Слайд №11)

2) Связь имён прилагательных с существительными.

Предлагаю понаблюдать, как использует прилагательные А.Толстой в своём стихотворении.

Вот уж снег последний в поле тает,
Тёплый пар восходит от земли,
И кувшинчик синий расцветает,
И зовут друг друга журавли.


Юный лес, в зелёный дым одетый,
Тёплых гроз нетерпеливо ждёт;
Всё весны дыханием согрето,
Всё кругом и любит и поёт;

Работа по учебнику. Упражнение 18 (стр.107)

а) выразительное чтение

б) разбор стихотворения по вопросам

Какое время года описывает поэт? Какие слова и выражения вам помогли понять это? Почему лес назван юным, а молодая листва – зелёным дымом?

в) находим прилагательные, признаки каких предметов они обозначают, запись на доске и в тетради. (Слайд №13)

снег (какой?) последний

пар (какой?) тёплый

кувшинчик (какой?) синий

лес (какой?) юный

дым (какой?) зелёный

гроз (каких?) летних (Слайд № 14)

!!! Мы видим, что прилагательное тесно связано с существительным.

Почему же прилагательные связаны именно с существительными? Послушайте сказку «Скромные просители»

Родились Прилагательные с очень покладистым характером. Они с удовольствием согласовывались бы во всём с существительными, да вот незадача: не было у прилагательных собственных рода, числа.

-А что если нам попросить их у Существительных, ну хотя бы на время, - мечтали Прилагательные и решили поговорить об этом с Существительными. Тем пришлись по душе скромные просители, и они одолжили Прилагательным свои формы. Существительные были очень рады иметь новых друзей. Так и живут до сих пор Прилагательные. Чтобы согласовываться с Существительными, берут у них напрокат формы рода и числа. Вместе – служба, вместе – дружба.

!!! Такая связь в русском языке называется согласованием . Говорят, что прилагательное согласуется с существительным. (Слайд №15)

3) В чём же согласуются прилагательные с существительными? Какие признаки берут они у имени существительного?

Давайте понаблюдаем. (Слайд №16)

Подберите к нашему слову тёплый существительные женского рода, мужского рода, среднего рода и множественного числа.(у доски).

Проверим (Слайд №17)

тёплый… день (м.р., ед.ч.)

тёплая …погода (ж,р., ед.ч.)

тёплое… солнце(ср.р., ед.ч.)

тёплые …лучи (мн.ч.) !!! У прилагательных множественного числа род не определяем.

У прилагательных выделить окончание и основу. Что заметили?

Признаки рода и числа у прилагательного непостоянные, так как одно слово может быть в форме м.р., ж.р., ср.р., и мн.ч.

Физкультминутка. (Слайд №18)

Спал цветок и вдруг проснулся (наклоны вправо, влево)

Больше спать не захотел(наклоны вперёд, назад)

Шевельнулся, потянулся (руки вверх, потянуться)

Взвился вверх и полетел.(руки вверх, встать на носочки)

Солнце утром лишь проснётся (руки вверх. в стороны, вниз)

Бабочка кружит и вьётся. (покружится)

7. Первичное закрепление.

1)Упражнение 20.

Определите род и число имён прилагательных? (Слайд № 19)

Проверка. (Слайд №20)

2 ) Чтение правила (с.108)

Так как же определить род и число имени прилагательного? (Слайд №21)

3) Дополнительное задание.

Весна приготовила для нас ещё одно задание.(Слайд №22)

Тест. (слайд № 23,24 и проверка №25)

8. Рефлексия. Итог урока. Оценки. (Слайд №26)

Наш урок заканчивается. Мы получили новые знания. Но у меня остались к вам вопросы.

Понравился вам урок?

Научились ли вы чему- то новому?

Почему прилагательные назвали именно так? (прилагаются к существительному)

Как называется такая связь в русском языке, когда прилагательное связано с существительным? (согласование)

Что нового вы узнали об имени прилагательном? (изменяются по родам и числам).

9. Домашнее задание: (Слайд №27) Спасибо за урок!

Весна подарила нам свои тёплые лучики. А вы опишите своё настроение прилагательными.

Начало формы