«Вещество соль» - Средние. Химические свойства солей. Физические свойства солей. Способы получения солей. Сложные. Рассмотрим пример ионной кристаллической решетки: Например: MgSO4- сульфит натрия. Металлы. Кислые соли: KHSO4; MgHPO4; NaSO3. Б) mn. NaCl. а) Хлор калия. Комплексные соли. Гидролиз солей. а) К основным солям.

«Получение серной кислоты» - Выводы. 2-я стадия. Концентрированная серная кислота. I стадия – получение сернистого газа SO2. Цель урока. Производство серной кислоты. Изучить химические свойства и стадии получения серной кислоты. Получение из пирита. Хлорид бария является качественным реактивом на H2SO4. С металлами (стоящие в ряду напряжения до водорода) Zn + H2SO4 -> ZnSO4 + H2.

«Карбоновые кислоты в природе» - Н2SO4(конц.), t НСООН? CО +Н2О. …Карбоновые кислоты в природе: И разлагается под действием водоотнимающих средств: … При увеличении молярной массы температура кипения возрастает. С6Н5СООН – гвоздичное масло. Формулы и названия кислотных остатков. Простейшие карбоновые кислоты. Карбоновые кислоты. С3Н7СООН – сливочное масло.

«Кислоты карбоновые» - Хлоруксусная кислота. HO. Нумерация атомов углерода начинается с карбоксильной группы. Химические свойства. Катализатор. [O]. Метановая (муравьиная) кислота. Карбоновые кислоты, содержащие две карбоксильные группы, называются двухосновными. Карбоновые кислоты. Щавелевая кислота.

«Применение кислот» - Соляная кислота - важнейший продукт химической промышленности. 8. В металлургии ею обрабатывают руды, в кожевенной промышленности - кожу перед дублением. Фрукты, овощи, содержат яблочную, лимонную, винную кислоты. 9. Лишь грозная «царская водка» способна растворить золото. Москва 2002. Серная кислота – хлеб химии.

«Хлеб да соль» - Соли повсеместно используются как в производстве, так и в повседневной жизни. Взаимодействие солей с кислотами. Применение солей. Карбонат натрия (соду) применяют в производстве стекла и при варке мыла. Сказка про соль. Почему соли обладают сходными свойствами? Аu, zn, cuo, CO2 , naoh, kcl, na2sio3, HCI, mg.

Всего в теме 19 презентаций

Напишите отзыв о статье "Стеарат калия"

Отрывок, характеризующий Стеарат калия

– Мы хотим дать новую судебную власть Сенату, а у нас нет законов. Поэтому то таким людям, как вы, князь, грех не служить теперь.
Князь Андрей сказал, что для этого нужно юридическое образование, которого он не имеет.
– Да его никто не имеет, так что же вы хотите? Это circulus viciosus, [заколдованный круг,] из которого надо выйти усилием.

Через неделю князь Андрей был членом комиссии составления воинского устава, и, чего он никак не ожидал, начальником отделения комиссии составления вагонов. По просьбе Сперанского он взял первую часть составляемого гражданского уложения и, с помощью Code Napoleon и Justiniani, [Кодекса Наполеона и Юстиниана,] работал над составлением отдела: Права лиц.

Года два тому назад, в 1808 году, вернувшись в Петербург из своей поездки по имениям, Пьер невольно стал во главе петербургского масонства. Он устроивал столовые и надгробные ложи, вербовал новых членов, заботился о соединении различных лож и о приобретении подлинных актов. Он давал свои деньги на устройство храмин и пополнял, на сколько мог, сборы милостыни, на которые большинство членов были скупы и неаккуратны. Он почти один на свои средства поддерживал дом бедных, устроенный орденом в Петербурге. Жизнь его между тем шла по прежнему, с теми же увлечениями и распущенностью. Он любил хорошо пообедать и выпить, и, хотя и считал это безнравственным и унизительным, не мог воздержаться от увеселений холостых обществ, в которых он участвовал.
В чаду своих занятий и увлечений Пьер однако, по прошествии года, начал чувствовать, как та почва масонства, на которой он стоял, тем более уходила из под его ног, чем тверже он старался стать на ней. Вместе с тем он чувствовал, что чем глубже уходила под его ногами почва, на которой он стоял, тем невольнее он был связан с ней. Когда он приступил к масонству, он испытывал чувство человека, доверчиво становящего ногу на ровную поверхность болота. Поставив ногу, он провалился. Чтобы вполне увериться в твердости почвы, на которой он стоял, он поставил другую ногу и провалился еще больше, завяз и уже невольно ходил по колено в болоте.
Иосифа Алексеевича не было в Петербурге. (Он в последнее время отстранился от дел петербургских лож и безвыездно жил в Москве.) Все братья, члены лож, были Пьеру знакомые в жизни люди и ему трудно было видеть в них только братьев по каменьщичеству, а не князя Б., не Ивана Васильевича Д., которых он знал в жизни большею частию как слабых и ничтожных людей. Из под масонских фартуков и знаков он видел на них мундиры и кресты, которых они добивались в жизни. Часто, собирая милостыню и сочтя 20–30 рублей, записанных на приход, и большею частию в долг с десяти членов, из которых половина были так же богаты, как и он, Пьер вспоминал масонскую клятву о том, что каждый брат обещает отдать всё свое имущество для ближнего; и в душе его поднимались сомнения, на которых он старался не останавливаться.
Всех братьев, которых он знал, он подразделял на четыре разряда. К первому разряду он причислял братьев, не принимающих деятельного участия ни в делах лож, ни в делах человеческих, но занятых исключительно таинствами науки ордена, занятых вопросами о тройственном наименовании Бога, или о трех началах вещей, сере, меркурии и соли, или о значении квадрата и всех фигур храма Соломонова. Пьер уважал этот разряд братьев масонов, к которому принадлежали преимущественно старые братья, и сам Иосиф Алексеевич, по мнению Пьера, но не разделял их интересов. Сердце его не лежало к мистической стороне масонства.
Ко второму разряду Пьер причислял себя и себе подобных братьев, ищущих, колеблющихся, не нашедших еще в масонстве прямого и понятного пути, но надеющихся найти его.
К третьему разряду он причислял братьев (их было самое большое число), не видящих в масонстве ничего, кроме внешней формы и обрядности и дорожащих строгим исполнением этой внешней формы, не заботясь о ее содержании и значении. Таковы были Виларский и даже великий мастер главной ложи.
К четвертому разряду, наконец, причислялось тоже большое количество братьев, в особенности в последнее время вступивших в братство. Это были люди, по наблюдениям Пьера, ни во что не верующие, ничего не желающие, и поступавшие в масонство только для сближения с молодыми богатыми и сильными по связям и знатности братьями, которых весьма много было в ложе.
Пьер начинал чувствовать себя неудовлетворенным своей деятельностью. Масонство, по крайней мере то масонство, которое он знал здесь, казалось ему иногда, основано было на одной внешности. Он и не думал сомневаться в самом масонстве, но подозревал, что русское масонство пошло по ложному пути и отклонилось от своего источника. И потому в конце года Пьер поехал за границу для посвящения себя в высшие тайны ордена.

УДК 66.095.262.3:66.063.612

Г. И. Султанова, Г. А. Сайфетдинова, А. П. Рахматуллина,

Р. А. Ахмедьянова, А. Г. Лиакумович

ВЛИЯНИЕ КАЛИЕВЫХ СОЛЕЙ СТЕАРИНОВОЙ И ОЛЕИНОВОЙ КИСЛОТ НА ЭМУЛЬСИОННУЮ СОПОЛИМЕРИЗАЦИЮ СТИРОЛА И АЛЬФА-МЕТИЛСТИРОЛА

Исследован процесс эмульсионной сополимеризации стирола с б-метилстиролом в присутствии калиевых солей стеариновой, олеиновой кислот и их смесей различного состава. Определены кинетические параметры процесса, средневязкостная молекулярная масса сополимера и его выход.

Известно, что при получении латексов чаще всего применяют анионоактивные эмульгаторы - натриевые или аммониевые соли природных или синтетических высших жирных кислот, калиевые соли кислот канифоли, алкилсульфонат натрия и др.; в некоторых случаях их вводят в смеси с неионогенными ПАВ . Использование смесей поверхностно-активных веществ (ПАВ) различной природы приводит к получению эффективных эмульгирующих систем для синтеза диен-стирольных и стирол-акрилатных дисперсий . В качестве ПАВ возможно сочетание, например, калиевых солей синтетических жирных кислот и диспропорционированной канифоли или калиевых солей жирных кислот и алкилсульфатов. А наличие примесей в составе олеата калия калиевых солей миристино-вой, пальмитиновой, стеариновой и линолевой кислот снижает скорость полимеризации и механическую устойчивость бутадиен-стирольного латекса СКС-30 .

Нами впервые было установлено, что смеси стеариновой (Ст) и олеиновой (Ол) кислот состава 40:60 % мас. характеризуются максимальной поверхностной активностью по сравнению с индивидуальными кислотами , а их калиевые соли являются эффективными эмульгаторами в эмульсионной полимеризации стирола, оказывая синергическое влияние на кинетические параметры процесса .

В связи с этим, можно предположить, что эмульгаторы на основе этой смеси кислот проявят себя и в процессах эмульсионной сополимеризации непредельных мономеров, в качестве которых были выбраны стирол и б-метилстирол. Выбор этой пары мономеров обусловлен и тем обстоятельством, что сополимеры стирола и а-метилстирола, описанные в литературе, содержат от 10 до 40 % мас. структурных звеньев а-метилстирола и обладают высокой теплостойкостью наряду с хорошими диэлектрическими показателями.

Результаты и их обсуждение

В процессе эмульсионной сополимеризации стирола и б-метилстирола наблюдается экзотермический эффект, причем в присутствии смесевого эмульгатора (калиевая соль смеси стеариновой (40 %) и олеиновой (60 %) кислот - К (Ст:Ол)) наблюдается максимальное увеличение температуры реакционной смеси (табл. 1), что свидетельствует о более высокой скорости реакции и, следовательно, о синергическом влиянии этого эмульгатора на процесс сополимеризации.

Таблица 1 - Изменение температуры (АТ) реакционной массы в процессе сополиме-ризации стирола и б-метилстирола

Ст: Ол, % мас. АТ, °С

Поэтому для дальнейших исследований использован именно этот смесевой эмульгатор, а также для сравнения индивидуальные мыла - стеарат калия (КСт) и олеат калия (КОл).

Начальная скорость реакции (Wo) одинакова в присутствии КСт и смесевого эмульгатора, а в присутствии КОл ниже на 13 % (табл. 2). Более низкая Wo в присутствии КОл, возможно, обусловлена участием этого эмульгатора в сополимеризации. В пользу такого предположения служат данные ИК-спектров полистиролов (ПС), полученных эмульсионной полимеризацией в присутствии КОл и КСт. На ИК-спектрах ПС, полученного в присутствии КОл в отличие от ПС, полученного в присутствии КСт, имеется полоса поглощения в области 1560 см-1, характерная для валентных колебаний карбонильной группы карбоксилатного аниона, что свидетельствует об участии олеата калия в сополимеризации со стиролом. Полученные результаты коррелируют с данными работы , в которой установлено, что при блочной полимеризации стирола в присутствии добавок олеиновой кислоты скорость образования полистирола на начальной стадии ниже по сравнению со скоростью полимеризации чистого полистирола. Авторы предположили, что возможно константа сополимеризации стирола выше, чем олеиновой кислоты, поэтому скорость полимеризации чистого стирола до автоускорения выше, чем с добавкой олеиновой кислоты.

Из рис. 1, видно, что кинетика процесса сополимеризации зависит от типа использованного эмульгатора: конверсия мономеров выше в случае смесевого эмульгатора (рис.

1, кривая 3).

Таблица 2 - Влияние соотношения стеариновой и олеиновой кислот в составе калиевых солей на начальную скорость реакции (Wo), выход и средневязкостную мо-

лекулярную массутополимера (М п) стирола и б-метилстирола

Ст: Ол, % мас. Wo 102, моль/л*с-1 Выход сополимера в %, через М п"10"3

30 мин. 180 мин. 360 мин.

0:100 1,25 63,1 76,8 77,0 63

40:60 1,43 65,9 85,0 91,5 110

100:0 1,43 59,9 74,2 75,6 94

Рис. 1 - Зависимость конверсии мономеров п от типа использованного эмульгатора: 1 - КСт; 2 - Кол; 3 - К(Ст:Ол)

Изменение средней скорости реакции (WCр) от конверсии (рис. 2) зависит от типа использованного эмульгатора: максимальное значение достигается в случае использования смесевого эмульгатора. Кроме того, сохраняется высокая Wср на глубоких степенях превращения мономера по сравнению с индивидуальными ПАВ.

Рис. 2 - Зависимость средней скорости реакции Wср от конверсии мономеров п:

1 - КСт; 2 - Кол; 3 - К(Ст:Ол)

Значение средневязкостной молекулярной массы (М п) образующегося сополимера максимально также при использовании смесевого эмульгатора (табл. 2).

Теплофизические свойства полученного на смесевом эмульгаторе сополимера исследовали методами дифференциального термического анализа (ДТА) и термогравимет-

рии. Для сравнения использовали полистирол, полученный в присутствии смесевого эмульгатора .

ДТА полимеров, не содержащих стабилизаторы, показал, что температура 5% потери веса (Тдт=5%) полистирола и сополимера стирола с б-метилстиролом одинаковы и равны 287 0С.

Таким образом, в результате проведенных исследований было показано неаддитивное влияние смесевого эмульгатора на эмульсионную сополимеризацию стирола с а-метилстиролом.

Экспериментальная часть

Массовое соотношение мономеров составило стирол:а-метилстирол = 70:30 (% мас.). Контроль за ходом процесса осуществляли по количеству образующегося полимера, определяемого гравиметрическим методом по сухому остатку. Эмульсионную сополимеризацию стирола с б-метилстиролом проводили в трехгорлой круглодонной колбе, снабженной термометром, капельной воронкой и мешалкой, при температуре 90°С в течение 360 мин по рецептуре (в мас.ч) : стирол (70), а-метилстирол (30), вода дистиллированная (160), персульфат калия (0,5), жирная кислота (2,4), гидроксид калия (0,48). Через определенные промежутки времени отбирали пробы и определяли выход (N) сополимера в % по формуле :

N = Pn 100/Рм,

где Pn - масса полимера в пробе, (г); Рм - масса мономера в пробе, рассчитанная по исходной концентрации мономера, (г).

Молекулярную массу выделенного сополимера определяли по визкозиметрическому методу .

ИК-спектры получали на Фурье-спектрометре «Perkin Elmer» 16 РС FT-IR с точностью фиксации частоты ИК-излучения ±10 см-1. Препарирование образцов полистирола осуществляли следующим образом. Эмульгатор из полимера удаляли путем многократной промывки толуольно-го раствора ПС дистиллированной водой. После чего полимер высушивали, затем растворяли в хлороформе и получали пленки для анализа методом ИК-спектроскопии.

Термо- и дериватограммы образцов были сняты на дериватографе системы Paulik-Paulik-Erdey при скорости нагревания 3 оС/мин. в интервале от 20 до 500 оС. Масса образцов равнялась

Заключение

1. Установлено, что калиевая соль смеси стеариновой (40%) и олеиновой (60%) кислот позволяет сохранить высокую скорость эмульсионной сополимеризации при глубоких степенях превращения мономеров, максимальные значения средневязкостной молекулярной массы сополимера стирола с а-метилстиролом и его выход по сравнению с калиевыми солями индивидуальных кислот.

2. Показано, что в процессе эмульсионной сополимеризации стирола с а-метилстиролом олеат калия является сомономером.

3. Методом ДТА выявлено, что нестабилизированные сополимер стирола с а-метилстиролом и полистирол, полученные на смесевом эмульгаторе, обладают одинаковой термостойкостью (Тдт=5% = 287 0С).

Литература

1. Энциклопедия полимеров / Под ред. В.А. Кабанова. М.: Советская энциклопедия, 1974. Т.2. С.52-53.

2. Петухова А.В. Синтез диен-стирольных летексов в присутствии смесей ПАВ: Автореферат дис...канд. хим. наук/ М.: МГАТХТ, 2003. 22с.

3. И.Ю. Аверко-Антонович. Синтетические латексы. Химико-технологические аспекты синтеза, модификации, применения. М.: Альфа-М, 2005. 680 с.

4. Лебедева Т.А., Миронова Н.М. // Тез. докл. 2-й межресп. научн. конф. студ. вузов СССР «Синтез, исследование свойств, модификация и переработка высокомолекулярных соединений». Казань, 1981. С.17.

5. Рахматуллина А.П., Заварихина Л.А., Мохнаткина О.Г. и др. Влияние композиций высших жирных кислот на межфазные характеристики и физико-механические свойства резин // Журнал прикладной химии. 2003. Т. 76. № 4. С. 680-684.

6. Султанова Г.И., Рахматуллина А.П., Ахмедьянова Р.А. и др. Эмульсионная полимеризация стирола в присутствии калиевых солей смесей стеариновой и олеиновой кислот // Журнал прикладной химии. 2005. Т. 78. № 8. С. 1353-1356.

7. Алексеева Т.Т., Липатов С.И, Грищук Ю.С. Кинетика образования взаимопроникающих полимерных сеток (полиуретан-полистирол) в присутствии совмещающих добавок // Высокомолекулярные соед. Серия А. 2005. Т. 47. № 3. С. 461-472.

8. Торопцева А.М., Белогородская К.В., Бондаренко В.М. Лабораторный практикум по химии и технологии высокомолекулярных соединений. Л.: Химия, 1972. 416 с.

9. Аверко-Антонович Ю.О. Методические указания к лабораторному практикуму по химии и физике высокомолекулярных соединений. Казань: Казан. гос. технол. ун-т, 2001. 60 с.

© Г. И. Султанова - асп. каф. технологии синтетического каучука КГТУ; Г. А. Сайфет-

динова - студ. КГТУ; А. П. Рахматуллина - канд. хим. наук, доц. каф. технологии синтетического каучука КГТУ; Р. А. Ахмедьянова - д-р техн. наук, проф. той же кафедры;

А. Г. Лиакумович - д-р техн. наук, проф. той же кафедры.

Стеариновая кислота (октадециловая кислота, октадекановая кислота) – одноосновная карбоновая кислота алифатического ряда.

Физико-химические свойства.

Брутто-формула: C 18 H 36 O 2 .

Структурная формула:

C O O H

Химически чистая стеариновая кислота имеет вид бесцветных моноклинных кристаллов. Не имеет запаха. Распадается при нагревании, образуя оксиды углерода. Растворяется в водных растворах щелочей (с образованием стеаратов). Температура плавления 69,4÷72°C. Температура разложения 370°C. Температура кипения 370°C.

Входит в состав жиров и масел. В виде глицеридов является важнейшей составляющей твердых жиров, преимущественно триглицеридов животного происхождения, которые выполняют функцию энергетического накопителя в организме животного. Стеариновая кислота синтезируется в животном организме из пальмитиновой кислоты под воздействием элонгаз – ферментов, ответственных за длину алифатической цепи. Она также находится в полужидких жирах, в частности в пальмовом масле, однако в значительно меньшем количестве, чем в жирах животного происхождения. В малых количествах эту кислоту можно встретить в некоторых видах нефти. Широкому кругу потребителей техническая стеариновая кислота известна также как стеарин, который представляет собой смесь стеариновой и пальмитиновой кислот.

Применение.

В настоящее время стеариновая кислота используется в различных областях промышленности. Полифункциональный характер стеариновой кислоты позволяет использовать ее в качестве активатора ускорителей вулканизации, диспергатора наполнителей резиновых смесей, мягчителя (пластификатора). При непосредственном введении в каучук она улучшает распределение ингредиентов и обрабатываемость резиновых смесей. Склонность стеарина к миграции способствует снижению клейкости резиновых смесей.

Фармакопейная стеариновая кислота широко применяется в фармацевтической промышленности. В косметической промышленности стеариновая кислота используется в качестве структурообразующего и эмульгирующего компонента в кремах, мыле и моющих средствах.

Стеариновую кислоту используют в аналитической химии при нефелометрическом определении кальция, магния и лития, а также качестве жидкой фазы в распределительной газо-жидкостной хроматографии для разделения смеси жирных кислот. При полировании металлов стеариновая кислота является компонентом полировальных паст.

Это соединение применяется не только в качестве функционального химиката, но и как химическое сырье. Например, для получения октадецилового (стеарилового) спирта, который употребляется как структурообразователь и эмолент в кремах и пеногаситель в моющих средствах. В промышленности стеариновая кислота используется также для синтеза октадециламина.

Производные и соли октадециламина применяются в качестве эмульгаторов и добавок к битумам в дорожном строительстве; флотоагентов прямой и обратной флотации при обогащении калийных и фосфоритных руд, полевого шпата, слюды; антислеживателей неорганических солей и удобрений; ингибиторов коррозии в кислых средах; деэмульгаторов необработанной нефти в нефтяной промышленности; компонентов антистатиков; отвердителей эпоксидных смол.

Из солей стеариновой кислоты применяют стеарат натрия как анионное ПАВ, в качестве моющего средства и компонента косметических изделий, загустителя смазок, стабилизатора при формовании полиамидов и антивспенивающей добавки в пищевой промышленности, а также стеарат кальция – в качестве загустителя смазок, стабилизатора поливинилхлорида и наружной смазки при формовании изделий из него, вспомогательного сиккатива и матирующего вещества в лакокрасочных материалах, гидрофобизатора для цемента и тканей, добавки, препятствующей слеживанию муки, эмульгатора для косметических препаратов. Кроме того, в производстве масляных лаков используется стеарат магния. Стеарат цинка применяют в медицине, производстве каучука, пластмасс и клеенки. Стеарат меди используется для бронзирования гипса и в качестве агента, препятствующего обрастанию. Стеарат свинца применяют в качестве сиккатива. Водорастворимые соли стеариновой кислоты, в частности стеараты натрия, калия и аммиака, являются мылами. Эфиры стеариновой кислоты применяют в качестве компонентов клеящих паст, антиоксидантов, эмульсий для обработки текстиля и кожи, стабилизаторов пищевых продуктов. Сложные эфиры стеариновой кислоты представлены этил- и бутилстеаратами, применяемыми в качестве пластификаторов, и гликольстеаратом, который используется как заменитель натурального воска.

Опасность стеариновой кислоты для здоровья.

Ингаляция: кашель, затрудненное дыхание.

Глаза: покраснение, боли.

Прием внутрь: задержка стула.

Получение.

В настоящее время основным способом производства стеариновой кислоты в мире остается гидролиз животных и растительных жиров, а также растительных масел. Основным сырьем при этом является пальмовое масло, кокосовое масло, рапсовое масло, стеариновую кислоту также можно выделять из соевого и подсолнечного масла.

Также перспективным возобновляемым источником сырья для получения стеариновой кислоты считается талловое масло – побочный продукт переработки крафт-целлюлозы. Сырое талловое масло в равных пропорциях содержит жирные и смоляные кислоты и в меньших количествах, неомыляемые вещества. Очищенное талловое масло имеет повышенное содержание жирных кислот, в том числе ненасыщенных – линолевой (45–50%), олеиновой (30–35%) и насыщенных – стеариновой (10%) и пальмитиновой (5%).

Остановимся на основных методах получения стеариновой кислоты: гидролиз жиров и гидрирование непредельных кислот. Животные жиры – непревзойденные помощники в деле извлечения стеариновой кислоты. Для получения конечного продукта жир должен пройти обработку щелочными растворами, кислотой или просто водой при высокой температуре для расщепления глицеридов на глицерин и свободные кислоты, включая стеариновую.

Наиболее распространенный метод получения чистой стеариновой кислоты предполагает применение раствора щелочи. В результате образуется мыло, расщепляющееся под воздействием соляной или серной кислоты, затем смесь кипятится, пока выделившаяся смесь жирных кислот не сделается совершенно прозрачной. После охлаждения застывшую твердую массу промывают водой.

В настоящее время производство стеариновой кислоты происходит в гидролизном цехе, или так называемомй гидрозаводе. В качестве сырьевой базы используется подсолнечное или растительное неочищенное масло (или другие растительные или животные жиры). При использовании рапсового масла качество стеарина хуже – выше йодное число. На первой стадии производства сырье разделяют на фракции – жиры и воду. На второй стадии идет процесс образования соапстока, который затем насыщают водородом, в результате чего образуется саломас. При температуре 200°С и с помощью катализатора саломас расщепляют до воды и масла. Заключительная стадия предполагает извлечение стеарина из полученной жирной кислоты.

Технология производства стеариновой кислоты из нефтехимического сырья.

В условиях роста спроса на стеариновую кислоту возникает проблема нехватки природного сырья, в связи с чем, растет популярность синтетических жирных кислот (СЖК), получаемых из нефтехимического сырья. Стеариновая кислота, полученная методом синтеза, является химически чистым продуктом и применяется в тех же областях, что и кислота полученная гидролизом растительных и животных жиров.

Одним из способов получения жирных кислот является синтез из олефинов в присутствии карбонила кобальта:

Гидрокарбоксилирование при 145–165°С и 5–30 МПа:
R-CH=CH 2 + CO + H 2 O> RCH 2 CH 2 COOH;

Гидрокарбоалкоксилирование при 165–175°С и 5–15 Мпа с последующим гидролизом образующегося эфира:

R-CH=CH 2 + СО + R"OH> RCH 2 CH 2 COOR"> RCH 2 CH 2 COOH + R"OH.

Преимуществами этой технологии являются малостадийность и высокий выход кислот. Однако довольно жесткие условия и образование большого количества кислот изо-строения осложняют процесс. СЖК можно синтезировать также гидрокарбоксилированием олефинов в присутствии кислот, например, H 2 SO 4 , HF, ВF 3 , при 50–100 °С, давлении 5–15 МПа. При использовании сокатализаторов (карбонилов Сu и Ag) реакцию можно вести при 0–30 °С и 0,1 МПа. Получают в основном смеси кислот изостроения. Они отличаются низкими температурами плавления и кипения, высокой вязкостью, хорошей растворимостью. Недостаток метода – высокоагрессивная среда. СЖК фракции С 12 –С 15 , C 16 –С 18 также получают методом оксосинтеза. На первой стадии с помощью гидроформилирования получают альдегиды, которые впоследствии могут быть превращены в спирты и/или окислены до жирных кислот. Получаемые кислоты содержат меньше побочных продуктов, чем кислоты, синтезируемые из парафинов. Однако данный способ в СНГ утратил свою актуальность в связи с отсутствием сырья и закрытием всех производств жирных спиртов.

В 1959 году в СССР было принято решение о внедрении в производство мыла на основе СЖК в качестве альтернативы природным жирным кислотам. В 1966 году мировой объем выпуска СЖК фракций С5–С30 составил 204,5 тыс. тонн, в том числе фракций С 10 – С 20 – 107,5 тыс. тонн. 14,9 тыс. тонн СЖК перерабатывалось в жирные спирты, которые впоследствии использовались при изготовлении синтетических моющих средств. Согласно некоторым данным, в СССР было запланировано в течение одной пятилетки произвести порядка 373 тыс. тонн СЖК. На то время основным способом получения СЖК в СССР было низкотемтературное жидкофазное окисление парафинов. Недостатки приведенного выше процесса: невысокий выход целевой фракции С 10 – С 20 (около 50% на сырье), низкое качество кислот, обусловленное присутствием до 3% побочных продуктов (дикарбоновых, кето- и гидроксикарбоновых кислот и др.).

А также большой объем сточных вод (до 8 м 3 на 1 т кислот), загрязненных Na 2 SO 4 и низкомолекулярными кислотами. В советские времена в России и Украине объемы выпуска синтетических жирных кислот исчислялись сотнями тысяч тонн. Однако в начале 90-х гг. волна повсеместного закрытия цехов по выпуску этой продукции охватила такие крупные промышленные предприятия, как Шебекинский химический завод (Белгородская область, Россия), Волгоградский НПЗ (Россия), Волгодонский НПЗ (Россия), «Омскнефтеоргсинтез» (Омская область, Россия), Надворненский НПЗ (Ивано-Франковская область, Украина) и Бердянский опытный нефтемаслозавод (Запорожская область, Украина). Последним, в 2001 году, было закрыто производство СЖК на предприятии ОАО «Уфанефтехим» (Республика Башкортостан, Россия). Ликвидация данных производств была обусловлена, прежде всего, нерентабельностью существующих технологий: низкое качество кислот, с присутствием до 3% побочных продуктов (дикарбоновых, кето- и гидроксикарбоновых кислот и др.), большой объем сточных вод (до 8 м 3 на 1 т кислот), загрязненных Na 2 SO 4 и низкомолекулярными кислотами. Кроме того, дефицитной является сырьевая база узких фракций С 16 – С 18 . Сейчас уже можно сказать, что промышленное производство СЖК как в мире в целом, так и в странах Содружества в частности, прекратило существование.

Знаком Е470 маркируются вещества, или даже группа веществ, которые используются как пищевые добавки. Эти синтетические концентраты применяются для предотвращения слеживания или склеивания некоторых сыпучих продуктов. Относятся по большей части к категории эмульгаторов, диспергаторов, разделителей, стабилизаторов пены.

Основные характеристики веществ

Другими названиями данной пищевой добавки являются: кальциевые, алюминиевые, натриевые, магниевые, аммонийные и калиевые соли карбоновых жирных кислот, стеараты кальция, магния, аммония, калия, натрия и алюминия, Е470, Salts of fatty acids (with base Ca, Al, Mg, Na, К and NH4), Salts of myristic, соли алифатических жирных кислот, Palmitic and stearic fatty acids.

Такие вещества обычно на внешний вид напоминают зерна, чешуйки или порошок. Цвет их варьируется от белого, до желто-коричневого и даже бурого. Некоторые соли очень хорошо растворяются в , а вот кальциевая соль нерастворима ни в воде, ни в этиловом , ни в эфирах.

В натуральном виде в природе чаще всего Е470 встречается при омылении в процессе их расщепления в человеческом организме при метаболизме.

Химическим путем такую пищевую добавку получают при помощи молекулярных реакций, причем при этом не играет роли отгонка жирных пищевых кислот. В процессе производства образуются различные примеси: глицерин, моноглицериды, вода, диглицериды, неомыляемые жиры и жирные кислоты.

Данные вещества быстро, легко и в полном количестве усваиваются человеческим организмом.

Применение солей жирных кислот

Основным назначением группы таких веществ является препятствование слеживанию сыпучих продуктов: сухих супов и сухих бульонов, сахарной пудры, и других видов пищевой продукции. Наименование стеарат чаще всего употребляют для названия всех солей , а олеат, в свою очередь, – для .

Хорошо зарекомендовала себя такая добавка в фармакологической отрасли, способствуя лучшему спрессовыванию и скольжению гранулятов, таблеток, экструзионных продуктов.

Применимы соли алифатических карбоновых кислот и в косметологической промышленности, при производстве моющих и чистящих средств, бытовой химии, а также при переработке макулатуры.

По законам Российской Федерации производство таких веществ не запрещено, но жестко ограничено рамками допустимого количества. В европейских странах и на Украине такая пищевая добавка запрещена для изготовления.

Полезные и вредные свойства пищевой добавки Е470

По сути своей соли алифатических карбоновых кислот не несут организму человека никакой опасности, но несмотря на это существуют жестко установленные и контролируемые нормы на ее употребление. Их разрешено добавлять в пищевые продукты лишь в количестве шести процентов от общей массы готовой продукции.

В основном это связано с образованием и наличием в них множества различных вредных примесей. Соответственно вред организму наносят лишь те добавки, примеси в которых остаются при их образовании. Поэтому категорически противопоказано употреблять такие вещества людям, страдающими нарушениями обменных процессов в организме. В некоторых случаях может спровоцировать возникновение и развитие заболеваний органов желудочно-кишечного тракта.

Безопасность же данных продуктов гарантирована полным усвоением веществ в организме, отсутствием побочных реакций при соблюдении правил и норм употребления.

Подводя итоги

Пищевая добавка Е470 является синтетически выведенным веществом, применяющимся в медицинской, пищевой, косметологической и фармацевтической промышленности. Употребляемая в допустимых нормируемых дозировках не причиняет никакого вреда организму и не вызывает негативных побочных реакций после использования. Нежелательно применять такую добавку людям с нарушениями обмена веществ. При приеме повышенных доз возможно развитие заболеваний желудочно-кишечного тракта.