Характеристика и природа космического излучения и его воздействие на природную среду.

Основную часть облучения человечество получает от естественных источников (земная и космическая радиация) и источников искусственного происхождения.

Человек облучается двумя способами: внешним и внутренним. В первом случае радиоактивные вещества находятся вне организма и облучают его вне организма и облучают его снаружи, во втором они могут оказаться в воздухе, которым дышит человек, в пище или воде, и попадают внутрь организма. Внешнее облучение составляет примерно 60% естественного фона и около 40% приходится на внутреннее облучение.

Радиоактивность на Земле существовала задолго до зарождения на ней жизни. Радиоактивные материалы вошли в состав Земли с самого ее возникновения. Поэтому и развитие жизни на Земле осуществлялась в постоянном присутствии радиоактивных излучений. Но о сосуществовании их раньше ничего не было известно. Полагают, что на определенных начальных стадиях развития Земли естественный радиационный фон был во много раз выше, чем в настоящее время. Однако в течении нескольких последних столетий интенсивность фона остается относительно постоянной. Следовательно, естественный радиационный фон складывается из космических излучений и радиоактивных элементов земного происхождения, а искусственный- из излучений от искусственных источников.

Под радиационным фоном принято понимать ионизирующее излучение от природных источников земного и космического происхождения, а также от искусственных радионуклидов, рассеянных в биосфере в результате деятельности человека.

Выделяются также технологически повышенный радиационный фон излучения, связанный с разработкой человека некоторых технологических процессов, приводящих к повышению естественного радиационного фона. Причинами такого повышенного фона являются: поступление в больших количествах в окружающую среду естественных радионуклидов вследствие добычи из глубин земли полезных ископаемых(угля, газа, нефти); широкое использование в строительстве материалов, содержащих повышенное количество радионуклидов уранового и ториевого рядов, сжигание ископаемого топлива, приводящее к выбросу таких изотопов, как радий, торий, уран; применение в сельском хозяйстве минеральных удобрений с повышенным содержанием радиоактивных веществ.

Космические излучения имеют три источника своего происхождения- галактическое, межгалактическое и солнечное. Их даже делят на первичное и вторичное.

Галактическое и межгалактическое космическое излучение – это поток протонов (90%) альфа- частиц (9%).Остальное(1%)- это в основном ядра легких элементов: лития, бериллия, азота, углерода, кислорода, фтора. Средний возраст галактического излучения от 1млн до 10 млн. лет.



Галактическое излучение обладает очень высокой энергией – 10 12 – 10 14 МэВ. Считается, что такая большая энергия объясняется разгоном частиц магнитными полями звезд. Такое излучение губительно для всего живого, к счастью, протоны задерживаются радиационными поясами Земли, их энергия несколько уменьшается. Существование поясов связано с наличием магнитного поля Земли. Заряженные частицы обычно движутся вдоль магнитных силовых линий по спирали. Имеется два радиационных пояса. Внешний находится на удалении от 1 до 8 0 радиусов Земли, внутренний на расстоянии 400-10000км. Наибольший прорыв космического излучения на полюсах, поэтому Северный и Южный полюса получают больше космической радиации.

Частично потерявшие энергию космические лучи попадают в атмосферу и ею поглощаются, вызывая вторичное излучение, представляющее почти все известные частицы и фотоны.

Первичное излучение преобладает на высотах 45км и выше, а вторичное излучение достигает максимальной величины на высотах 20-25км

На широте г. Минска человек получает на Земле 50мрад/год, но с ростом высоты интенсивность облучения с каждым километром увеличивается вдвое.

Космические лучи, проходя через атмосферу, вызывают появление космогенных радионуклидов, которых насчитывается около 20. Наиболее значительные из них – тритий, углерод-14, бериллий-7, сера-32, натрий22,24, наиболее опасный тритий(период полураспада 12,3 года) и углерод-14 (5730 лет). Оба радионуклида непрерывно возникают и непрерывно распадаются. Смешиваясь с углеродом и водородом, тритий и углерод-14 попадают в воду, в человека, в животных, в растения и представляют определенную угрозу для жизни и здоровья человека.

Такое понятие как солнечная радиация стало известным довольно-таки давно. Как показали многочисленные исследования, оно далеко не всегда виновно в повышении уровня ионизации воздуха.

Данная статья предназначена для лиц старше 18 лет

А вам уже исполнилось 18?

Космическая радиация: правда или миф?

Космические лучи — это излучение, которое появляется при взрыве сверхновой звезды, а также как следствие термоядерных реакций на Солнце. Разная природа происхождения лучей влияет и на их основные характеристики. Космические лучи, которые проникают из космоса вне нашей Солнечной системы условно можно поделить на два вида — галактические и межгалактические. Последний вид остается наименее изученным, так как концентрация первичной радиации в нем минимальна. То есть особого значения межгалактическое излучение не имеет, так как полностью нейтрализуется в нашей атмосфере.

К сожалению, так же немного можно сказать и о лучах, пришедших к нам из нашей галактики под названием Млечный Путь. Несмотря на то, что ее размер превышает 10000 световых лет, любые изменения радиационного поля в одном конце галактики немедленно аукнутся в другом.

Опасность радиации из космоса

Прямая космическая радиация губительна для живого организма, поэтому ее влияние крайне опасно для человека. К счастью, наша Земля надежно защищена от этих космических пришельцев плотным куполом из атмосферы. Он служит прекрасной защитой всего живого на земле, так как нейтрализует прямую космическую радиацию. Но не полностью. При столкновении с воздухом она распадается на более мелкие частички ионизирующего излучения, каждая из которых вступает в индивидуальную реакцию с его атомами. Таким образом, высокоэнергетическое излучение из космоса ослабевает, и образует вторичное излучение. При этом оно теряет свою смертоносность — уровень радиации становится приблизительно таким же, как и в рентгеновских лучах. Но пугаться не стоит — это излучение полностью исчезает во время прохождения через атмосферу Земли. Какими бы ни были источники космических лучей, и какую мощь они бы не имели — опасность для человека, который находится на поверхности нашей планеты, минимальна. Ощутимый вред она может принести только космонавтам. Они подвержены прямому космическому излучению, так как не имеют естественной защиты в виде атмосферы.

Энергия, выделяемая космическими лучами, в первую очередь влияет на магнитное поле Земли. Заряженные ионизирующие частицы буквально бомбардируют его и становятся причиной самого красивого атмосферного явления — . Но это еще не все — радиоактивные частицы, в виду своей природы, способны вызывать сбои в работе различной электроники. И если в прошлом веке это не вызывало особого дискомфорта, то в наше время это весьма серьезная проблема, так как на электрике завязаны самые важные аспекты современной жизни.

Люди также восприимчивы к этим гостям из космоса, хотя механизм воздействия космических лучей весьма специфичен. Ионизированные частички (то есть вторичное излучение) воздействует на магнитное поле Земли, вызывая тем самым бури в атмосфере. Всем известно, что организм человека состоит из воды, которая очень восприимчива к магнитным колебаниям. Таким образом, космическое излучение влияет на сердечнососудистую систему, и становится причиной плохого самочувствия у метеозависимых людей. Это, конечно же, неприятно, но отнюдь не смертельно.

Что защищает Землю от солнечной радиации?

Солнце — это звезда, в недрах которой постоянно проходят разнообразные термоядерные реакции, которые сопровождаются сильными энергетическими выбросами. Эти заряженные частицы называются солнечный ветер и достаточно сильно влияют на нашу Землю, вернее на ее магнитное поле. Именно с ним взаимодействуют ионизированные частицы, которые составляют основу солнечного ветра.

Согласно новейшим исследованиям ученых со всего мира, особую роль в нейтрализации солнечного ветра отыгрывает плазменная оболочка нашей планеты. Происходит это следующим образом: солнечное излучение сталкивается с магнитным полем Земли и рассеивается. Когда его слишком много, удар на себя принимает плазменная оболочка, происходит процесс взаимодействия, схожий с коротким замыканием. Следствием такой борьбы могут стать трещины в защитном щите. Но природа и это предусмотрела — потоки холодной плазмы поднимаются с поверхности Земли и устремляются в места ослабленной защитой. Таким образом, магнитное поле нашей планеты отражает удар из космоса.

Но стоит констатировать тот факт, что солнечная радиация, в отличие от космической, все же попадает на Землю. При этом не стоит переживать понапрасну, ведь по сути это энергия Солнца, которая должна попадать на поверхность нашей планеты в рассеянном состоянии. Таким образом, она нагревает поверхность Земли и помогает развивать жизнь на ней. Так, стоит четко разграничивать разные виды радиации, ведь некоторые из них не только не имеют негативного воздействия, но и необходимы для нормального функционирования живых организмов.

Однако на Земле далеко не все вещества одинаково восприимчивы к солнечной радиации. Существуют поверхности, которые больше других поглощают ее. Это, как правило, подстилающие поверхности с минимальным уровнем альбедо (способность к отражению солнечной радиации) — это земля, лес, песок.

Таким образом, температура на поверхности Земли, а также продолжительность светового дня напрямую зависит от того, какое количество солнечной радиации поглощает атмосфера. Хочется сказать, что основной объем энергии все же доходит до поверхности нашей планеты, ведь воздушная оболочка Земли служит преградой лишь для лучей инфракрасного спектра. А вот УФ лучи нейтрализуются лишь частично, что приводит к некоторым проблемам с кожными покровами у людей и животных.

Влияние солнечной радиации на организм человека

При воздействии лучей инфракрасного спектра солнечной радиации однозначно проявляется тепловой эффект. Он способствует расширению сосудов, стимуляции работы сердечнососудистой системы, активизирует кожное дыхание. Как следствие происходит расслабление основных систем организма, усиливается выработка эндорфинов (гормонов счастья), обладающих болеутоляющим и противовоспалительным эффектом. Тепло также влияет на обменные процессы, активизируя метаболизм.

Световое излучение солнечной радиации оказывает значительное фотохимическое воздействие, которое активизирует важные процессы в тканях. Этот вид солнечной радиации позволяет человеку использовать одну из самых важных систем осязания внешнего мира — зрение. Именно этим квантам мы должны быть благодарны за то, что видим все в красках.

Важные факторы влияния

Солнечное излучение инфракрасного спектра также стимулирует мозговую деятельность и отвечает за психическое здоровье человека. Немаловажно и то, что именно этот вид солнечной энергии влияет на наши биологические ритмы, то есть на фазы активной деятельности и сна.

Без световых частиц многие жизненно важные процессы оказались бы под угрозой, что чревато развитием различных заболеваний, в том числе бессонницы и депрессии. Так же при минимальном контакте со световой солнечной радиацией существенно снижается трудоспособность человека, а также замедляется большинство процессов в организме.

УФ-излучение достаточно полезно для нашего организма, так как оно запускает также иммунологические процессы, то есть стимулирует защитные силы организма. Также оно нужно для выработки порфирита — аналога растительного хлорофилла в нашей коже. Однако избыток УФ-лучей может привести к ожогам, поэтому очень важно знать, как правильно защититься от этого в период максимальной солнечной активности.

Как видите, польза солнечной радиации для нашего организма несомненна. Многие очень переживают, впитывает ли еда этот вид радиации и не опасно ли есть зараженные продукты. Повторюсь — солнечная энергия не имеет ничего общего с космическим или атомным излучением, а значит, и опасаться ее не стоит. Да и было бы бессмысленно избегать ее... Способа того, как спастись от Солнца никто пока не искал.

Текст, представленный ниже, нужно расценивать как личное мнение автора. Никакой секретной информацией (или доступом к ней) он не обладает. Всё, что изложено - это факты из открытых источников плюс немного здравого смысла («диванной аналитики», если угодно).

Научная фантастика - все эти бластеры и «пиу-пиу» в открытом космосе на крошечных одноместных истребителях - приучила человечество серьезно переоценивать доброжелательность Вселенной по отношению к теплым белковым организмам. Особенно сильно это проявляется, когда фантасты описывают путешествия к другим планетам. Увы, освоение «настоящего космоса» вместо привычных нам нескольких сотен «камэ» под защитой магнитного поля Земли будет более трудным предприятием, чем представлялось обывателю всего десятилетие назад.

Итак, вот мой главный тезис. Психологический климат и конфликты внутри экипажа далеко не главные проблемы, с которыми столкнется человек при организации пилотируемых полетов на Марс.

Главная проблема человека, путешествующего за пределы магнитосферы Земли - проблема с большой буквы «Р».

Что такое космическая радиация и почему мы не гибнем от нее на Земле

Ионизирующее излучение в космосе (за пределами нескольких сотен километров околоземельного пространства, которые человек действительно освоил) состоит из двух частей.

Излучение Солнца. Это, прежде всего, «солнечный ветер» - поток частиц, который постоянно «дует» во все стороны от светила и который чрезвычайно хорош для будущих космических парусников, потому что позволит им как следует разогнаться для путешествий за пределы Солнечной системы. Вот только для живых существ основная часть этого ветра не особо полезна. Замечательно, что нас от жесткой радиации защищают толстый слой атмосферы, ионосфера (та, где озоновые дыры), а еще мощное магнитное поле Земли.

Помимо ветра, который разлетается более-менее равномерно, наше светило еще периодически постреливает так называемыми солнечными вспышками. Последние представляют собой выбросы коронарного вещества Солнца. Они настолько серьезны, что время от времени приводят к проблемам у людей и техники даже на Земле, где самое веселье, повторюсь, недурственно экранируется.

Итак, у нас есть атмосфера и магнитное поле планеты. В уже довольно близком космосе, на расстоянии десятка-другого тысяч километров от Земли, солнечная вспышка (даже слабая, всего-то пара Хиросим), попав в корабль, гарантированно выведет его живую начинку из строя без малейших шансов на выживание. Помешать этому сегодня - при текущем уровне развития технологий и материалов - нам абсолютно нечем. По этой и только по этой причине многомесячное путешествие к Марсу человечеству придется отложить до времени, когда мы не решим эту проблему хотя бы частично. Также его придётся планировать в периоды наиболее спокойного солнца и много молиться всем техническим богам.

Космические лучи. Эти вездесущие злодейские штуки несут огромное количество энергии (больше, чем способен закачать в частицу БАК). Они приходят из других частей нашей галактики. Попадая в щит земной атмосферы, такой луч взаимодействует с ее атомами и расшибается на десятки менее энергичных частиц, которые каскадно порождают потоки еще менее энергичных (но тоже опасных) и в итоге все это великолепие проливается радиационным дождём на поверхность планеты. Примерно 15% от фонового излучения на Земле приходится на гостей из космоса. Чем выше ты живешь над уровнем моря, тем выше ловимая в течении жизни доза. И происходит это круглосуточно.

В качестве школьного упражнения попробуйте представить, что произойдёт с космическим кораблём и его «живой начинкой» в случае прямого попадании в них такого луча где-нибудь в открытом космосе. Лететь к Марсу, напомню, предстоит несколько месяцев, кораблик для этого предстоит строить здоровенный и вероятность описанного выше «контакта» (а то и не одного) достаточно велика. Просто пренебречь ею при длительных полетах с живым экипажем, увы, никак не получится.

Что ещё?

Помимо той радиации, что долетает до Земли от Солнца, есть ещё та солнечная радиация, которую магнитосфера планеты отталкивает, не пропускает внутрь и самое главное - накапливает*. Знакомьтесь, читатели. Это радиационный пояс Земли (РПЗ). Он же пояс Ван Аллена, как его называют за рубежом. Преодолеть его космонавтам предстоит что называется «на полных парах», чтобы не получить летальную дозу радиации всего за несколько часов. Повторный контакт с этим поясом - если мы вопреки здравому смыслу решим вернуть астронавтов с Марса на Землю - запросто может их добить.

*Значительная доля частиц пояса Ван Аллена приобретает опасную скорость уже в самом поясе. То есть он не только защищает нас от радиации извне, но еще и усиливает эту накопленную радиацию.

До сих пор речь шла об открытом космосе. Но не нужно забывать о том, что у Марса (в отличие от Земли) почти нет магнитного поля**, а атмосфера разрежённая и дохленькая, так что подвергаться воздействию этих негативных факторов люди будут не только в полёте.

**Ладно, немножко есть - в районе южного полюса.

Отсюда вывод. Жить будущим колонистам вероятнее всего предстоит не на поверхности планеты (как нам показывали в эпичном кино «Миссия на Марс»), а глубоко под ней.

Как быть?

Прежде всего, видимо, не питать иллюзий на скорое (в течение десятка-другого-третьего лет) разрешение всех этих проблем. Чтобы избежать гибели экипажа от лучевой болезни, нам придётся или вообще его туда не посылать и осваивать космос с помощью умных машин (кстати, не самое глупое решение), либо очень здорово поднапрячься, потому что, если я прав, то отправка людей на Марс с созданием там постоянной колонии - задача для одной страны (хоть США, хоть России, хоть Китая) в ближайшие полстолетия, а то и дольше совершенно неподъёмная. Один корабль для такой миссии обойдется в сумму, эквивалентную постройке и полному обслуживанию пары-тройки МКС (см. ниже).

И да, забыл сказать: пионеры Марса будут заведомо «смертниками», поскольку ни обратной дороги, ни долгой и комфортной жизни на Марсе обеспечить им в ближайшие полвека у нас, скорее всего, получится.

Как теоретически могла бы выглядеть миссия на Марс, имей мы для этого все ресурсы и технологии старушки-Земли? Сравните описанное ниже с тем, что вы видели в культовом фильме «Марсианин».

Миссия на Марс. Условно реалистичная версия

Во-первых, человечеству предстоит сильно напрячься и построить циклопических размеров космический корабль с мощной антирадиационной защитой, который сможет частично компенсировать адскую лучевую нагрузку на экипаж за пределами магнитного поля Земли и обеспечить доставку более-менее живых колонистов на Марс - в один конец.

Как может выглядеть такой корабль?

Это здоровенная махина в десятки (а лучше сотни) метров в поперечнике, обеспеченная собственным магнитным полем (сверхпроводящие электромагниты) и источниками энергии для его поддержания (атомные реакторы). Огромные размеры конструкции позволяют набить её изнутри поглощающими радиацию материалами (например, это может быть вспененный освинцованный пластик или герметичные контейнеры с простой либо «тяжелой» водой), которые десятилетиями (!) предстоит возить на орбиту и монтировать вокруг сравнительно крошечной капсулы жизнеобеспечения, куда потом мы поместим астронавтов.

Помимо размеров и дороговизны, марсианский корабль должен быть чертовски надежным и, главное, полностью автономным в плане управления. Чтобы доставить экипаж живым безопаснее всего будет погрузить его в искусственную кому и немного охладить (всего на пару-тройку градусов), чтобы замедлить метаболические процессы. В таком состоянии люди а) будут менее чувствительны к радиации, б) занимают меньше места и их дешевле экранировать от все той же радиации.

Очевидно, помимо корабля, нужен искусственный интеллект, способный уверенно доставить корабль на орбиту Марса, выгрузить колонистов на его поверхность, не повредив в процессе ни себя, ни груз, а потом ещё без участия людей вернуть астронавтов в сознание (уже на Марсе). Пока таких технологий у нас нет, но есть некоторая надежда, что подобный ИИ, а главное политические и экономические ресурсы для постройки описанного корабля, появятся у нас, допустим, ближе к середине столетия.

Хорошей новостью является то, что марсианский «паром» для колонистов вполне может быть многоразовым. Ему предстоит как челноку курсировать между Землёй и конечным пунктом, доставляя в колонию партии «живого груза» на замену выбывших «от естественных причин» людей. Для доставки «неживого» груза (еды, воды, воздуха и техники) противолучевая защита особо не нужна, так что марсианским грузовиком суперкорабль делать не обязательно. Он нужен исключительно для доставки колонистов и, возможно, семян растений / молоди сельскохозяйственных животных.

Во-вторых, нужно заранее забросить на Марс технику и запасы воды-еды-кислорода на экипаж из 6-12 человек на 12-15 лет (с учётом всех форс-мажоров). Это само по себе нетривиальная задачка, но допустим, что в ресурсах для ее решения мы не ограничены. Предположим, что войны и политические пертурбации Земли утихли, а на марсианскую миссию работает в едином порыве вся планета.

Забрасываемая на Марс техника, как вы уже должны догадаться, представляет собой полностью автономных роботов с искусственным интеллектом и питанием от компактных ядерных реакторов. Им предстоит методично в течение десятка-полутора лет отрыть сначала глубокий тоннель под поверхность красной планеты. Затем - ещё за несколько лет - небольшую сеть тоннелей, в которую предстоит втащить блоки жизнеобеспечения и запасы для будущей экспедиции, а потом все это герметично смонтировать в автономный подмарсианский поселок.

Метроподобное обиталище кажется оптимальным решением по двум причинам. Во-первых, оно экранирует космонавтов от космических лучей уже на самом Марсе. Во-вторых, из-за остаточной «марсотермальной» активности недр под поверхностью планеты на градус-другой теплее, чем снаружи. Это пригодится колонистам как для экономии энергии, так и для выращивания картошки на собственных фекалиях.

Уточним важный момент: строить колонию придётся в южном полушарии, где на планете ещё сохранилось остаточное магнитное поле.

Выходить на поверхность астронавтам в идеале не придётся вообще (Марс «вживую» они или не увидят совсем, или увидят один раз - при посадке). Всю работу на поверхности предстоит делать роботам, действиями которых колонистам предстоит руководить из своего бункера всю их недолгую жизнь (лет двадцать при удачном стечении обстоятельств).

В-третьих, надо поговорить о самом экипаже и методах его подбора.

Идеальной схемой последнего станет поиск по всей Земле… генетически идентичных (монозиготных) близнецов, один из которых только что превратился в донора органов (например, «удачно» попав в автокатастрофу). Звучит до крайности цинично, но пусть это не помешает вам дочитать текст до конца.

Что нам дает близнец-донор?

Погибший близнец даёт возможность своему брату (или сестре) стать идеальным колонистом на Марсе. Дело в том, что красный костный мозг первого, будучи доставлен на красную планету в дополнительно защищённом от радиации контейнере, можно будет перелить близнецу-астронавту. Тем самым повышаются шансы на выживание оного при лучевой болезни, остром лейкозе и других неприятностях, которые с колонистом весьма вероятно приключатся за годы миссии.

Итак, как выглядит процедура отсева будущих колонистов?

Отбираем несколько миллионов близнецов. Ждём, пока что-то происходит с одним из них, и делаем предложение оставшемуся. Набирается пул из, скажем, ста тысяч потенциальных кандидатов. Теперь внутри этого пула проводим итоговый отбор на психологическую совместимость и профпригодность.

Естественно, для расширения выборки отбирать астронавтов придётся по всей Земле, а не в одной или двух странах.

Ещё бы, конечно, здорово помогла некая технология выявления особо устойчивых к облучению кандидатов. Известно, что некоторая часть людей гораздо более устойчива к радиации, чем другая. Наверняка её можно выявить с помощью неких генетических маркеров. Если дополнить этим методом идею с близнецами, вместе они должны существенно повысить выживаемость марсианских колонистов.

Помимо этого, полезно было бы научиться переливать людям костный мозг в невесомости. Это не единственная штука, которую предстоит изобрести специально под этот проект, но, по счастью, время у нас ещё есть, а МКС пока что болтается на орбите Земли будто специально для отработки подобных технологий.

PS. Я должен специально оговориться, что принципиальным противником космических путешествий я не являюсь и верю, что рано или поздно «космос будет наш». Вопрос только в цене этого успеха, а также во времени, которое человечество затратит на отработку необходимых технологий. Мне кажется, под влиянием научной фантастики и массовой культуры многие из нас довольно беспечны в смысле понимания трудностей, которые на этом пути предстоит преодолеть. Чтобы несколько отрезвить эту часть «космооптимистов » и написан этот текст.

Во и частях я расскажу какие еще варианты у нас имеются в вопросе освоения космоса человеками в долгосрочной перспективе.

Кто же не мечтал о полётах в космос, даже зная, что такое космическая радиация? Хотя бы на орбиту Земли или на Луну улететь, а ещё лучше - подальше, на Орион какой-нибудь. На самом деле, человеческий организм очень мало приспособлен к подобным путешествиям. Даже при полёте на орбиту космонавты сталкиваются со многими опасностями, угрожающими их здоровью, а иногда и жизни. Все смотрели культовый сериал "Звёздный путь". Один из замечательных персонажей там дал очень точную характеристику такому явлению, как космическая радиация. "Это опасности и болезни во тьме и безмолвии" - сказал Леонард Маккой, он же Костлявый, он же Костоправ. Точнее выразиться очень трудно. Космическая радиация в путешествии сделает человека усталым, слабым, больным, страдающим от депрессии.

Ощущения в полёте

Человеческий организм к жизни в безвоздушном пространстве не приспособлен, поскольку эволюция не включала в свой арсенал такие способности. Об этом написаны книги, этот вопрос во всех подробностях изучается медициной, созданы во всём мире центры, исследующие проблемы медицины в космосе, в экстремальных условиях, на больших высотах. Конечно, забавно смотреть, как улыбается на экране космонавт, вокруг которого плавают в воздухе различные предметы. На самом деле, его экспедиция гораздо более серьёзна и чревата последствиями, чем представляется простому жителю с Земли, и здесь не только космическая радиация создаёт неприятности.

По просьбе журналистов астронавты, инженеры, учёные, на собственном опыте испытавшие всё, что происходит с человеком в космосе, рассказали о последовательности разнообразных новых ощущений в чуждой для организма искусственно созданной среде. Буквально через десять секунд после начала полёта неподготовленный человек теряет сознание, потому что ускорение космического аппарата возрастает, отделяя его от пускового комплекса. Человек пока не так сильно, как в открытом космосе, ощущает космические лучи - радиация поглощается атмосферой нашей планеты.

Основные неприятности

Но хватает и перегрузок: человек становится раза в четыре тяжелее собственного веса, в кресло его буквально вдавливает, даже рукой пошевелить трудно. Все видели эти специальные кресла, например, в космическом аппарате "Союз". Но не все поняли, почему у космонавта такая странная поза. Однако она необходима, потому что перегрузки отправляют почти всю кровь в организме вниз, в ноги, и мозг остаётся без кровоснабжения, отчего и случаются обмороки. Но изобретённое в Советском Союзе кресло помогает избежать хотя бы этой неприятности: поза с приподнятыми ногами заставляет кровь снабжать кислородом все участки головного мозга.

Через десять минут после начала полёта отсутствие гравитации заставит человека почти утратить чувство равновесия, ориентацию и координацию в пространстве, человек даже движущиеся объекты может не отследить. Его тошнит и рвёт. То же самое могут вызвать и космические лучи - радиация здесь уже значительно сильнее, а если случается выброс плазмы на солнце, угроза жизни космонавтов на орбите реальна, даже пассажиры авиалайнеров могут пострадать в полёте на большой высоте. Изменяется зрение, случаются отёк и изменения на сетчатке глаз, глазное яблоко деформируется. Человек становится слабым и не может выполнять задачи, которые перед ним стоят.

Загадки

Однако время от времени люди ощущают и на Земле высокую космическую радиацию, им для этого совершенно не обязательно бороздить космические просторы. Нашу планету постоянно бомбардируют лучи космического происхождения, и учёные предполагают, что далеко не всегда наша атмосфера обеспечивает достаточную защиту. Есть множество теорий, которые наделяют эти энергетические частицы такой силой, которая значительно ограничивает шансы планет на возникновение жизни на них. Во многом природа этих космических лучей всё ещё является для наших учёных неразрешимой загадкой.

Субатомные заряженные частицы в космосе движутся практически со скоростью света, их уже зарегистрировали неоднократно и на спутниках, и даже на Это ядра химических элементов, протоны, электроны, фотоны и нейтрино. Также не исключается присутствие в атаке космической радиации частиц - тяжёлой и сверхтяжёлой. Если бы удалось их обнаружить, был бы разрешён целый ряд противоречий в космологических и астрономических наблюдениях.

Атмосфера

Что нас защищает от космической радиации? Только наша атмосфера. Угрожающие гибелью всему живому космические лучи сталкиваются в ней и генерируют потоки других частиц - безвредных, в том числе и мюонов, значительно более тяжёлых родственников электронов. Потенциальная опасность всё-таки существует, поскольку некоторые частицы достигают поверхности Земли и проникают на многие десятки метров в её недра. Уровень радиации, который получает любая планета, показывает пригодность или непригодность её для жизни. Высокая которую несут с собой космические лучи, намного превышает излучение от собственной звезды, потому что энергия протонов и фотонов, например, нашего Солнца - ниже.

А с высокой жизнь невозможна. На Земле эта доза контролируется силой магнитного поля планеты и толщиной атмосферы, именно они значительно уменьшают опасность космической радиации. Например, на Марсе вполне могла бы быть жизнь, но атмосфера там ничтожно мала, собственного магнитного поля нет, а значит нет и защиты от космических лучей, которые пронизывают весь космос. Уровень радиации на Марсе огромен. А влияние космической радиации на биосферу планеты таково, что всё живое на ней погибает.

Что важнее?

Нам повезло, у нас есть и толща атмосферы, окутывающая Землю, и собственное достаточно мощное магнитное поле, поглощающее зловредные частицы, долетевшие до земной коры. Интересно, чья защита для планеты работает активнее - атмосферы или магнитного поля? Исследователи экспериментируют, создавая модели планет, снабжая их магнитным полем или не снабжая. И само магнитное поле отличается у этих моделей планет по силе. Ранее учёные были уверены, что именно оно является главной защитой от космической радиации, поскольку контролируют её уровень на поверхности. Однако обнаружилось, что количество облучения определяет в большей степени толщина атмосферы, которая укрывает планету.

Если на Земле "отключить" магнитное поле, доза облучения вырастет всего в два раза. Это очень много, но даже на нас отразится довольно малоощутимо. А если оставить магнитное поле и убрать атмосферу до одной десятой общего её количества, тогда доза возрастёт убийственно - на два порядка. Страшная космическая радиация убьёт на Земле всё и вся. Наше Солнце - желтая карликовая звезда, именно вокруг них планеты считаются основными претендентами на обитаемость. Это звёзды относительно тусклые, их много, около восьмидесяти процентов от общего количества звёзд в нашей Вселенной.

Космос и эволюция

Теоретики подсчитали, что такие планеты на орбитах желтых карликов, которые находятся в зонах, пригодных для жизни, имеют гораздо более слабые магнитные поля. Особенно этим отличаются так называемые супер-Земли - большие скалистые планеты массой в десять раз больше нашей Земли. Астробиологи были уверены, что слабость магнитных полей значительно снижает шансы на пригодность для жизни. И теперь новые открытия говорят о том, что это не настолько масштабная проблема, как привыкли думать. Главное - была бы атмосфера.

Учёными всесторонне изучается влияние возрастающего излучения на существующие живые организмы - животных, а также на разнообразные растения. Связанные с радиацией исследования заключаются в том, что их подвергают облучению в разной степени, от малых до предельных, и затем определяют - выживут ли они и насколько иначе будут себя чувствовать, если выживут. Микроорганизмы, на которые влияет постепенно возрастающая радиация, возможно, покажут нам, как происходила на Земле эволюция. Именно космические лучи, высокая радиация их когда-то заставили будущего человека слезть с пальмы и заняться изучением космоса. И больше уже никогда человечество на деревья не вернётся.

Космическая радиация 2017 года

В начале сентября 2017-го вся наша планета была сильно встревожена. Солнце внезапно выбросило тонны солнечного вещества после слияния двух больших групп тёмных пятен. И этот выброс сопровождался вспышками класса Х, которые заставили магнитное поле планеты работать буквально на износ. Последовала большая магнитная буря, вызвавшая недомогания у многих людей, а также исключительно редкие, практически небывалые природные явления на Земле. Например, под Москвой и в Новосибирске были зафиксированы мощные картины северного сияния, никогда не бывавшие в этих широтах. Однако красота таких явлений не заслонила последствия убийственной солнечной вспышки, пронизавшей планету космической радиацией, которая оказалась по-настоящему опасна.

Мощность её была близка к максимальной, Х-9,3, где буква - класс (экстремально большая вспышка), а число - сила вспышки (из десяти возможных). Вместе с этим выбросом появилась угроза отказа систем космической связи и всей техники, находящейся на Космонавты были вынуждены пережидать этот поток страшной космической радиации, которую несут космические лучи, в специальном убежище. Качество связи в эти двое суток значительно ухудшилось и в Европе, и в Америке, именно там, куда был направлен поток заряженных частиц из космоса. Примерно за сутки до момента, когда частицы достигли поверхности Земли, было сделано предупреждение о космической радиации, которое прозвучало на всех континентах и в каждой стране.

Мощь Солнца

Энергия, выбрасываемая нашим светилом в окружающее космическое пространство, поистине огромна. В течение нескольких минут в космос улетают многие миллиарды мегатонн, если считать в тротиловом эквиваленте. Человечество столько энергии сможет выработать современными темпами только за миллион лет. Всего лишь пятая часть всей энергии, излучаемой Солнцем в секунду. И это наш маленький и не слишком горячий карлик! Если только представить себе, сколько губительной энергии вырабатывают остальные источники космической радиации, рядом с которыми наше Солнышко покажется практически невидимой песчинкой, голова пойдёт кругом. Какое счастье, что у нас хорошее магнитное поле и отличная атмосфера, которые не дают нам погибнуть!

Люди ежедневно подвергаются такой опасности, поскольку радиоактивное излучение в космосе никогда не иссякает. Именно оттуда к нам приходит большая часть радиации - из чёрных дыр и от скоплений звёзд. Она способна убивать при большой дозе облучения, а при малой - делать из нас мутантов. Однако нужно помнить и то, что эволюция на Земле произошла благодаря таким потокам, радиация изменила структуру ДНК до того состояния, которое мы наблюдаем сегодня. Если же перебрать этого "лекарства", то есть, если испускаемая звёздами радиация превысит допустимые отметки, процессы будут необратимы. Ведь если существа мутируют, к первоначальному состоянию они уже не вернутся, нет здесь никакого обратного эффекта. Поэтому мы уже никогда не увидим те живые организмы, которые присутствовали в новорождённой на Земле жизни. Любой организм пытается подстроиться под изменения, происходящие в окружающей среде. Или погибает, или подстраивается. Но обратной дороги нет.

МКС и солнечная вспышка

Когда Солнце послало нам свой приветик с потоком заряженных частиц, МКС как раз проходила между Землёй и светилом. Высокоэнергичные протоны, высвобожденные при взрыве, создали абсолютно нежелательный радиационный фон в пределах станции. Эти частицы пробивают насквозь совершенно любой космический корабль. Тем не менее, космическую технику это излучение пощадило, поскольку удар был мощным, но слишком коротким, чтобы вывести её из строя. Однако экипаж всё это время прятался в специальном укрытии, потому что человеческий организм гораздо уязвимее современной техники. Вспышка была не одна, они шли целой серией, а началось всё это 4 сентября 2017 года, чтобы 6 сентября потрясти космос экстремальным выбросом. За последние двенадцать лет более сильного потока на Земле ещё не наблюдали. Облако плазмы, которое выбросило Солнце, настигло Землю гораздо раньше намеченного срока, значит, скорость и мощность потока превысили ожидаемую в полтора раза. Соответственно и удар по Земле был гораздо более сильным, чем рассчитывали. На двенадцать часов облако опередило все расчёты наших учёных, и соответственно сильнее возмутило магнитное поле планеты.

Мощность магнитной бури получилась на оценку четыре из пяти возможных, то есть - в десять раз больше предполагаемой. В Канаде полярные сияния тоже наблюдались даже в средних широтах, как и в России. Планетарного характера магнитная буря случилась на Земле. Можно себе представить, что там творилось в космосе! Радиация - самая значительная опасность из всех там существующих. Защита от неё нужна немедленно, как только космический корабль покидает верхние слои атмосферы и оставляет далеко внизу магнитные поля. Потоки незаряженных и заряженных частиц - радиационное излучение - постоянно пронизывают космос. Такие же условия нас ждут на любой планете Солнечной системы: магнитного поля и атмосферы на наших планетах нет.

Виды радиации

В космосе самой опасной считается ионизирующая радиация. Это гамма-излучение и рентгеновские лучи Солнца, это частицы, летящие после хромосферных солнечных вспышек, это внегалактические, галактические и солнечные космические лучи, солнечный ветер, протоны и электроны радиационных поясов, альфа-частицы и нейтроны. Есть и неионизирующая радиация - это ультрафолетовое и инфракрасное излучения от Солнца, это электромагнитное излучение и видимый свет. В них большой опасности нет. Нас защищает атмосфера, а космонавта - скафандр и обшивка корабля.

Ионизирующая радиация же доставляет непоправимые беды. Это вредное действие на все жизненные процессы, которые протекают в человеческом организме. Когда частица высокой энергии или фотон проходят через вещество, находящееся на их пути, они образуют в результате взаимодействия с этим веществом пару заряженных частиц - ион. Даже на неживом веществе это сказывается, а живое реагирует наиболее бурно, поскольку организация высокоспециализированных клеток требует обновления, и процесс этот, покуда жив организм, происходит динамически. И чем выше уровень эволюционного развития организма, тем более необратимым получается радиационное поражение.

Защита от облучения

Учёные ищут такие средства в самых разных областях современной науки, в том числе и в фармакологии. Пока что ни один препарат эффективных результатов не даёт, и подвергшиеся радиационному облучению люди продолжают погибать. Эксперименты проводятся на животных и на земле, и в космосе. Единственное, что стало понятно, - это то, что любой препарат должен быть принят человеком до начала облучения, а не после.

А если учесть, что все такие лекарства токсичны, то можно считать, что борьба с последствиями радиации пока ни к одной победе не привела. Даже если фармакологические средства приняты вовремя, они обеспечивают защиту только от гамма-излучения и рентгеновских лучей, но не защищают от ионизирующего излучения протонов, альфа-частиц и быстрых нейтронов.

07.12.2016

Марсоход Curiosity имеет на борту прибор RAD для определения интенсивности радиоактивного облучения. В ходе своего полета к Марсу Curiosity производил замеры радиационного фона, а сегодня об этих результатах рассказали ученые, которые работают с NASA. Поскольку марсоход летел в капсуле, а датчик радиации располагался внутри, то эти замеры практически соответствуют тому радиационному фону, который будет присутствовать в пилотируемом космическом корабле.

Прибор RAD состоит из трех кремниевых твердотельных пластин, выступающих в качестве детектора. Дополнительно он имеет кристалл йодида цезия, который используется в качестве сцинтилятора. RAD установлен так, чтобы во время посадки смотреть в зенит и захватывать поле в 65 градусов.

Фактически это радиационный телескоп, который фиксирует ионизирующие излучения и заряженные частицы в широком диапазоне.

Эквивалентная доза поглощенного радиационного облучения в 2 раза превосходит дозу МКС.

Шестимесячный полет к Марсу примерно равносилен 1 году проведенному на околоземной орбите. Учитывая, что общая длительность экспедиции должна составить около 500 суток, перспектива открывается не оптимистичная.

Для человека накопленная радиация в 1 Зиверт повышает риск раковых заболеваний на 5%. NASA позволяет своим астронавтам за свою карьеру, набирать не более 3% риска или 0,6 Зиверта.

Длительность жизни космонавтов ниже, чем средняя в их странах. Не менее четверти смертности приходится на онкологию.

Из 112 летавших российских космонавтов 28 уже нет с нами. Пять человек погибли: Юрий Гагарин - на истребителе, Владимир Комаров, Георгий Добровольский, Владислав Волков и Виктор Пацаев - при возвращении с орбиты на Землю. Василий Лазарев умер от отравления некачественным спиртом.

Из 22 остальных покорителей звездного океана для девяти причиной смерти стала онкология. От рака скончались Анатолий Левченко (47 лет), Юрий Артюхин (68), Лев Демин (72), Владимир Васютин (50), Геннадий Стрекалов (64), Геннадий Сарафанов (63), Константин Феоктистов (83), Виталий Севастьянов (75). Официальная причина смерти еще одного космонавта, умершего от рака, не раскрывается. Для полетов за пределы Земли отбирают самых здоровых, самых крепких.

Итак, девять умерших от рака из 22 космонавтов составляют 40,9%. Теперь обратимся к аналогичной статистике в целом по стране. В прошлом году покинули сей мир 1 млн 768 тысяч 500 россиян (данные Росстата). При этом от внешних причин (транспортных ЧП, отравлений алкоголем, самоубийств, убийств) умерли 173,2 тысячи. Остается 1 млн 595 тысяч 300. Скольких граждан загубила онкология? Ответ: 265,1 тысячи человек. Или 16,6%. Сравним: 40,9 и 16,6%. Выходит, обычные граждане от рака умирают в 2,5 раза реже, чем космонавты.

По отряду астронавтов США аналогичных сведений нет. Но даже отрывочные данные свидетельствуют: онкология косит и американских звездоплавателей. Вот неполный список жертв страшной болезни: Джон Свайгерт-младший - рак костного мозга, Дональд Слейтон - рак мозга, Чарлз Вич - рак мозга, Дэвид Уолкер - рак, Алан Шепард - лейкемия, Джордж Лоу - рак толстой кишки, Рональд Пэриз - опухоль головного мозга.

За один полет на орбиту Земли каждый член экипажа получает такое облучение, как если бы 150–400 раз побывал на обследовании в рентгеновском кабинете.

С учетом того, что на МКС ежедневная доза составляет до 1 мЗв (годовая допустимая доза для человека на земле), то предельный срок пребывания астронавтов на орбите ограничивается примерно 600 сутками за всю карьеру.

На самом Марсе радиация должна быть примерно в два раза ниже, чем в космосе, из-за атмосферы и пылевой взвеси в ней т. е. соответствовать уровню МКС, но точных показателей еще не публиковали. Интересны будут показатели RAD в дни пылевых бурь - узнаем насколько марсианская пыль является хорошим радиационным экраном.

Сейчас рекорд пребывания на околоземной орбите принадлежит 55-летнему Сергею Крикалеву - на его счету 803 суток. Но он набрал их с перерывами - всего он совершил 6 полетов с 1988 по 2005 год.

Радиация в космосе возникает в основном из двух источников: от Солнца - во время вспышек и коронарных выбросов, и от космических лучей, которые возникают во время взрывов сверхновых или других высокоэнергетических событий в нашей и других галактиках.

На иллюстрации: взаимодействие солнечного «ветра» и магнитосферы Земли.

Космические лучи составляют основную долю радиации в межпланетном путешествии. На них приходится доля излучения в 1,8 мЗв в сутки. Лишь три процента облучения накоплено Curiosity от Солнца. Это связано еще и с тем, что полет проходил в сравнительно спокойное время. Вспышки повышают суммарную дозу, и она приближается к 2 мЗв в сутки.

Пики приходятся на солнечные вспышки.

Нынешние технические средства более эффективны против солнечной радиации, которая имеет невысокую энергию. Например, можно оборудовать защитную капсулу, где космонавты смогут скрываться во время солнечных вспышек. Однако, от межзвездных космических лучей не защитят даже 30 см алюминиевые стены. Свинцовые, вероятно, помогли бы лучше, но это значительно повысит массу корабля, а значит затраты на его выведение и разгон.

Возможно, придется собирать межпланетный космический корабль на орбите вокруг Земли - навешивать тяжелые свинцовые пластины для защиты от радиации. Или использовать для сборки Луну, где вес космолета будет ниже.

Наиболее эффективным средством минимизации облучения должны стать новые типы двигателей, которые существенно сократят время полета до Марса и обратно. NASA сейчас работает над солнечным электрореактивным двигателем и ядерным тепловым. Первый может в теории разогнаться до 20 раз быстрее современных химических двигателей, но разгон будет очень долгим из-за малой тяги. Аппарат с таким двигателем предполагается направить для буксировки астероида, который NASA хочет захватить и перевести на окололунную орбиту для последующего посещения астронавтами.

Наиболее перспективные и обнадеживающие разработки по электрореактивным двигателям ведутся по проекту VASIMR. Но для путешествия к Марсу солнечных панелей будет недостаточно - понадобится реактор.

Ядерный тепловой двигатель развивает удельный импульс примерно втрое выше современных типов ракет. Суть его проста: реактор нагревает рабочий газ (предполагается водород) до высоких температур без использования окислителя, который требуется химическим ракетам. При этом предел температуры нагрева определяется только материалом из которого изготовлен сам двигатель.

Но такая простота вызывает и сложности - тягой очень сложно управлять. NASA пытается решить эту проблему, но не считает разработку ЯРД приоритетной работой.

Применение ядерного реактора еще перспективно тем, что часть энергии можно было бы пустить на генерацию электромагнитного поля, которое бы дополнительно защищало пилотов и от космической радиации, и от излучения собственного реактора. Эта же технология сделала бы рентабельной добычу воды на Луне или астероидах, то есть дополнительно стимулировала коммерческое применение космоса.

Хотя сейчас это не более чем теоретические рассуждения, не исключено, что именно такая схема станет ключом к новому уровню освоения Солнечной системы.

Дополнительные требования к космическим и военными микросхемам.

В первую очередь - повышенные требования к надежности (как самого кристалла, так и корпуса), устойчивости к вибрации и перегрузкам, влажности, температурный диапазон - существенно шире, т. к. военная техника и в -40С должна работать, и при нагреве до 100С.

Затем - стойкость к поражающим факторам ядерного взрыва - ЭМИ, большой мгновенной дозе гамма/нейтронного излучения. Нормальная работа в момент взрыва может быть невозможна, но по крайней мере прибор не должен необратимо выйти из строя.

И наконец - если микросхема для космоса - стабильность параметров по мере медленного набора суммарной дозы облучения и выживание после встречи с тяжелым заряженным частицами космической радиации.

Как же влияет радиация на микросхемы?

В «штуках частиц» космическое излучение состоит на 90% из протонов (т.е. ионов dодорода), на 7% из ядер гелия (альфа-частиц), ~1% более тяжелые атомы и ~1% электроны. Ну и звезды (включая Cолнце), ядра галактик, Млечный путь - обильно освещают все не только видимым светом, но и рентгеновским и гамма излучением. Во время вспышек на солнце - радиация от солнца увеличивается в 1000-1000000 раз, что может быть серьёзной проблемой (как для людей будущего, так и нынешних космических аппаратов за пределами магнитосферы земли).

Нейтронов в космическом излучении нет по очевидной причине - свободные нейтроны имеют период полураспада 611 секунд, и превращаются в протоны. Даже от солнца нейтрону не долететь, разве что с совсем уж релятивистской скоростью. Небольшое количество нейтронов прилетает с земли, но это мелочи.

Вокруг земли есть 2 пояса заряженных частиц - так называемые радиационные : на высоте ~4000 км из протонов, и на высоте ~17000 км из электронов. Частицы там движутся по замкнутым орбитам, захваченные магнитным полем земли. Также есть бразильская магнитная аномалия - где внутренний радиационный пояс ближе подходит к земле, до высоты 200 км.

Электроны, гамма и рентгеновское излучение.

Когда гамма и рентгеновское излучение (в том числе вторичное, полученное из-за столкновения электронов с корпусом аппарата) проходит через микросхему - в подзатворном диэлектрике транзисторов начинает постепенно накапливаться заряд, и соответственно начинают медленно изменятся параметры транзисторов - пороговое напряжение транзисторов и ток утечки. Обычная гражданская цифровая микросхема уже после 5000 рад может перестать нормально работать (впрочем, человек может перестать работать уже после 500-1000 рад).

Помимо этого, гамма и рентгеновское излучение заставляет все pn переходы внутри микросхемы работать как маленькие «солнечные батареи» - и если в космосе обычно радиация недостаточна, чтобы это сильно повлияло на работу микросхемы, во время ядерного взрыва потока гамма и рентгеновского излучения уже может быть достаточно, чтобы нарушить работу микросхемы за счет фотоэффекта.

На низкой орбите 300-500км (там где и люди летают) годовая доза может быть 100 рад и менее, соответственно даже за 10 лет набранная доза будет переносима гражданскими микросхемами. А вот на высоких орбитах >1000km годовая доза может быть 10000-20000 рад, и обычные микросхемы наберут смертельную дозу за считанные месяцы.

Тяжелые заряженные частицы (ТЗЧ) - протоны, альфа-частицы и ионы больших энергий

Это самая большая проблема космической электроники - ТЗЧ имеют такую высокую энергию, что «пробивают» микросхему насквозь (вместе с корпусом спутника), и оставляют за собой «шлейф» заряда. В лучшем случае это может привести к программной ошибке (0 стать 1 или наоборот - single-event upset, SEU), в худшем - привести к тиристорному защелкиванию (single-event latchup, SEL). У защелкнутого чипа питание закорачивается с землей, ток может идти очень большой, и привести к сгоранию микросхемы. Если питание успеть отключить и подключить до сгорания - то все будет работать как обычно.

Возможно именно это было с Фобос-Грунтом - по официальной версии нерадиационностойкие импортные микросхемы памяти дали сбой уже на втором витке, а это возможно только из-за ТЗЧ (по суммарной набранной дозе излучения на низкой орбите гражданский чип мог бы еще долго работать).

Именно защелкивание ограничивает использование обычных наземных микросхем в космосе со всякими программными хитростями для увеличения надежности.

Что будет, если защитить космический аппарат свинцом?

С галактическими космическими лучами к нам иногда прилетают частицы с энергией 3*1020 eV, т.е. 300000000 TeV. В человеко-понятных единицах, это около 50Дж, т.е. в одной элементарной частице энергия как у пули мелкокалиберного спортивного пистолета.

Когда такая частица сталкивается например с атомом свинца радиационной защиты - она просто разрывает его в клочья. Осколки также будут иметь гигантскую энергию, и также будут разрывать в клочья все на своём пути. В конечном итоге - чем толще защита из тяжелых элементов - тем больше осколков и вторичной радиации мы получим. Свинцом можно сильно ослабить только относительно мягкую радиацию земных ядерных реакторов.

Аналогичным эффектом обладает и гамма-излучение высоких энергий - оно также способно разрывать тяжелые атомы в клочья за счет фотоядерной реакции.

Происходящие процессы можно рассмотреть на примере рентгеновской трубки.


Электроны от катода летят в сторону анода из тяжелого металла, и при столкновении с ним - генерируется рентгеновское излучение за счет тормозного излучения.

Когда электрон космического излучения прилетит к нашему кораблю - то наша радиационная защита и превратится в естественную рентгеновскую трубку, рядом с нашими нежными микросхемами и еще более нежными живыми организмами.

Из-за всех этих проблем радиационную защиту из тяжелых элементов, как на земле - в космосе не используют. Используют защиту большей частью состоящую из алюминия, водорода (из различных полиэтиленов и проч), т. к. его разбить можно только на субатомные частицы - а это намного сложнее, и такая защита генерирует меньше вторичной радиации.

Но в любом случае, от ТЗЧ защиты нет, более того - чем больше защиты - тем больше вторичной радиации от высокоэнергетических частиц, оптимальная толщина получается порядка 2-3мм алюминия. Самое сложное что есть - это комбинация защиты из водорода, и чуть более тяжелых элементов (т.н. Graded-Z) - но это не сильно лучше чисто «водородной» защиты. В целом, космическую радиацию можно ослабить примерно в 10 раз, и на этом все.