Принципы неопределенности Гейзенберга являются одной из проблем квантовой механики, однако прежде мы обратимся к развитию физической науки в целом. Еще в конце XVII века Исааком Ньютоном была заложена современная классическая механика. Именно он сформулировал и описал ее основные законы, при помощи которых можно предсказать поведение окружающих нас тел. К концу XIX века эти положения казались нерушимыми и применимыми ко всем законам природы. Задачи физики как науки, казалось, были решены.

Нарушение законов Ньютона и рождение квантовой механики

Но, как выяснилось, на тот момент о свойствах Вселенной было известно существенно меньше, чем казалось. Первым камнем, нарушившим стройность классической механики, стало неподчинение ее законам распространения световых волн. Таким образом, совсем молодая на тот момент наука электродинамика была вынуждена выработать совершенно иной свод правил. А для физиков-теоретиков возникла проблема: как привести две системы к единому знаменателю. Кстати, наука и сегодня работает над ее решением.

Миф о всеобъемлющей ньютоновской механике был окончательно разрушен с более глубоким изучением строения атомов. Британец Эрнест Резерфорд обнаружил, что атом не является неделимой частицей, как считалось ранее, а сам имеет в своем составе нейтроны, протоны и электроны. Более того, их поведение также совершенно не вязалось с постулатами классической механики. Если в макромире гравитация в значительной степени определяет природу вещей, то в мире квантовых частиц она является крайне малой силой взаимодействия. Так были заложены основы квантовой механики, в которой тоже действовали собственные аксиомы. Одним из показательных отличий этих мельчайших систем от привычного нам мира стал принцип неопределенности Гейзенберга. Он наглядно продемонстрировал необходимость отличного подхода к этим системам.

Принцип неопределенности Гейзенберга

В первой четверти XX века квантовая механика совершала свои первые шаги, а физики всего мира лишь осознавали, что же вытекает для нас из ее положений, и какие она открывает перспективы. Немецкий физик-теоретик Вернер Гейзенберг свои знаменитые принципы сформулировал в 1927 г. Заключаются принципы Гейзенберга в том, что невозможно просчитать одновременно и пространственное положение, и скорость квантового объекта. Основной причиной этому является тот факт, что при измерении мы уже воздействуем на измеряемую систему, тем самым нарушая ее. Если в знакомом нам макромире мы оцениваем объект, то, бросая на него даже взгляд, мы видим отражение света от него.

Но принцип неопределенности Гейзенберга говорит о том, что хоть в макромире свет никак не влияет на измеряемый объект, а в случае с квантовыми частицами фотоны (или любые другие производные измерения) оказывают значительное влияние на частицу. При этом интересно отметить, что отдельно скорость или отдельно положение тела в пространстве квантовая физика измерить вполне может. Но чем более точными будут наши показания скорости, тем меньше нам будет известно о пространственном положении. И наоборот. То есть принцип неопределенности Гейзенберга создает известные сложности в предсказании поведения квантовых частиц. Буквально это выглядит так: они меняют свое поведение, когда мы пытаемся за ними наблюдать.

Невозможно одновременно с точностью определить координаты и скорость квантовой частицы.

В обыденной жизни нас окружают материальные объекты, размеры которых сопоставимы с нами: машины, дома, песчинки и т. д. Наши интуитивные представления об устройстве мира формируются в результате повседневного наблюдения за поведением таких объектов. Поскольку все мы имеем за плечами прожитую жизнь, накопленный за ее годы опыт подсказывает нам, что раз всё наблюдаемое нами раз за разом ведет себя определенным образом, значит и во всей Вселенной, во всех масштабах материальные объекты должны вести себя аналогичным образом. И когда выясняется, что где-то что-то не подчиняется привычным правилам и противоречит нашим интуитивным понятиям о мире, нас это не просто удивляет, а шокирует.

В первой четверти ХХ века именно такова была реакция физиков, когда они стали исследовать поведение материи на атомном и субатомном уровнях. Появление и бурное развитие квантовой механики открыло перед нами целый мир, системное устройство которого попросту не укладывается в рамки здравого смысла и полностью противоречит нашим интуитивным представлениям. Но нужно помнить, что наша интуиция основана на опыте поведения обычных предметов соизмеримых с нами масштабов, а квантовая механика описывает вещи, которые происходят на микроскопическом и невидимом для нас уровне, — ни один человек никогда напрямую с ними не сталкивался. Если забыть об этом, мы неизбежно придем в состояние полного замешательства и недоумения. Для себя я сформулировал следующий подход к квантово-механическим эффектам: как только «внутренний голос» начинает твердить «такого не может быть!», нужно спросить себя: «А почему бы и нет? Откуда мне знать, как всё на самом деле устроено внутри атома? Разве я сам туда заглядывал?» Настроив себя подобным образом, вам будет проще воспринять статьи этой книги, посвященные квантовой механике.

Принцип Гейзенберга вообще играет в квантовой механике ключевую роль хотя бы потому, что достаточно наглядно объясняет, как и почему микромир отличается от знакомого нам материального мира. Чтобы понять этот принцип, задумайтесь для начала о том, что значит «измерить» какую бы то ни было величину. Чтобы отыскать, например, эту книгу, вы, войдя в комнату, окидываете ее взглядом, пока он не остановится на ней. На языке физики это означает, что вы провели визуальное измерение (нашли взглядом книгу) и получили результат — зафиксировали ее пространственные координаты (определили местоположение книги в комнате). На самом деле процесс измерения происходит гораздо сложнее: источник света (Солнце или лампа, например) испускает лучи, которые, пройдя некий путь в пространстве, взаимодействуют с книгой, отражаются от ее поверхности, после чего часть из них доходит до ваших глаз, проходя через хрусталик, фокусируется, попадает на сетчатку — и вы видите образ книги и определяете ее положение в пространстве. Ключ к измерению здесь — взаимодействие между светом и книгой. Так и при любом измерении, представьте себе, инструмент измерения (в данном случае, это свет) вступает во взаимодействие с объектом измерения (в данном случае, это книга).

В классической физике, построенной на ньютоновских принципах и применимой к объектам нашего обычного мира, мы привыкли игнорировать тот факт, что инструмент измерения, вступая во взаимодействие с объектом измерения, воздействует на него и изменяет его свойства, включая, собственно, измеряемые величины. Включая свет в комнате, чтобы найти книгу, вы даже не задумываетесь о том, что под воздействием возникшего давления световых лучей книга может сдвинуться со своего места, и вы узнаете ее искаженные под влиянием включенного вами света пространственные координаты. Интуиция подсказывает нам (и, в данном случае, совершенно правильно), что акт измерения не влияет на измеряемые свойства объекта измерения. А теперь задумайтесь о процессах, происходящих на субатомном уровне. Допустим, мне нужно зафиксировать пространственное местонахождение электрона. Мне по-прежнему нужен измерительный инструмент, который вступит во взаимодействие с электроном и возвратит моим детекторам сигнал с информацией о его местопребывании. И тут же возникает сложность: иных инструментов взаимодействия с электроном для определения его положения в пространстве, кроме других элементарных частиц, у меня нет. И, если предположение о том, что свет, вступая во взаимодействие с книгой, на ее пространственных координатах не сказывается, относительно взаимодействия измеряемого электрона с другим электроном или фотонами такого сказать нельзя.

В начале 1920-х годов, когда произошел бурный всплеск творческой мысли, приведший к созданию квантовой механики, эту проблему первым осознал молодой немецкий физик-теоретик Вернер Гейзенберг. Начав со сложных математических формул, описывающих мир на субатомном уровне, он постепенно пришел к удивительной по простоте формуле, дающий общее описание эффекта воздействия инструментов измерения на измеряемые объекты микромира, о котором мы только что говорили. В результате им был сформулирован принцип неопределенности , названный теперь его именем:

неопределенность значения координаты x неопределенность скорости > h /m ,

математическое выражение которого называется соотношением неопределенностей Гейзенберга :

Δx х Δv > h /m

где Δx — неопределенность (погрешность измерения) пространственной координаты микрочастицы, Δv — неопределенность скорости частицы, m — масса частицы, а h — постоянная Планка , названная так в честь немецкого физика Макса Планка, еще одного из основоположников квантовой механики. Постоянная Планка равняется примерно 6,626 x 10 -34 Дж·с, то есть содержит 33 нуля до первой значимой цифры после запятой.

Термин «неопределенность пространственной координаты» как раз и означает, что мы не знаем точного местоположения частицы. Например, если вы используете глобальную систему рекогносцировки GPS, чтобы определить местоположение этой книги, система вычислит их с точностью до 2-3 метров. (GPS, Global Positioning System — навигационная система, в которой задействованы 24 искусственных спутника Земли. Если у вас, например, на автомобиле установлен приемник GPS, то, принимая сигналы от этих спутников и сопоставляя время их задержки, система определяет ваши географические координаты на Земле с точностью до угловой секунды.) Однако, с точки зрения измерения, проведенного инструментом GPS, книга может с некоторой вероятностью находиться где угодно в пределах указанных системой нескольких квадратных метров. В таком случае мы и говорим о неопределенности пространственных координат объекта (в данном примере, книги). Ситуацию можно улучшить, если взять вместо GPS рулетку — в этом случае мы сможем утверждать, что книга находится, например, в 4 м 11 см от одной стены и в 1м 44 см от другой. Но и здесь мы ограничены в точности измерения минимальным делением шкалы рулетки (пусть это будет даже миллиметр) и погрешностями измерения и самого прибора, — и в самом лучшем случае нам удастся определить пространственное положение объекта с точностью до минимального деления шкалы. Чем более точный прибор мы будем использовать, тем точнее будут полученные нами результаты, тем ниже будет погрешность измерения и тем меньше будет неопределенность. В принципе, в нашем обыденном мире свести неопределенность к нулю и определить точные координаты книги можно.

И тут мы подходим к самому принципиальному отличию микромира от нашего повседневного физического мира. В обычном мире, измеряя положение и скорость тела в пространстве, мы на него практически не воздействуем. Таким образом, в идеале мы можем одновременно измерить и скорость, и координаты объекта абсолютно точно (иными словами, с нулевой неопределенностью).

В мире квантовых явлений, однако, любое измерение воздействует на систему. Сам факт проведения нами измерения, например, местоположения частицы, приводит к изменению ее скорости, причем непредсказуемому (и наоборот). Вот почему в правой части соотношения Гейзенберга стоит не нулевая, а положительная величина. Чем меньше неопределенность в отношении одной переменной (например, Δx ), тем более неопределенной становится другая переменная (Δv ), поскольку произведение двух погрешностей в левой части соотношения не может быть меньше константы в правой его части. На самом деле, если нам удастся с нулевой погрешностью (абсолютно точно) определить одну из измеряемых величин, неопределенность другой величины будет равняться бесконечности, и о ней мы не будем знать вообще ничего. Иными словами, если бы нам удалось абсолютно точно установить координаты квантовой частицы, о ее скорости мы не имели бы ни малейшего представления; если бы нам удалось точно зафиксировать скорость частицы, мы бы понятия не имели, где она находится. На практике, конечно, физикам-экспериментаторам всегда приходится искать какой-то компромисс между двумя этими крайностями и подбирать методы измерения, позволяющие с разумной погрешностью судить и о скорости, и о пространственном положении частиц.

На самом деле, принцип неопределенности связывает не только пространственные координаты и скорость — на этом примере он просто проявляется нагляднее всего; в равной мере неопределенность связывает и другие пары взаимно увязанных характеристик микрочастиц. Путем аналогичных рассуждений мы приходим к выводу о невозможности безошибочно измерить энергию квантовой системы и определить момент времени, в который она обладает этой энергией. То есть, если мы проводим измерение состояния квантовой системы на предмет определения ее энергии, это измерение займет некоторый отрезок времени — назовем его Δt . За этот промежуток времени энергия системы случайным образом меняется — происходят ее флуктуация , — и выявить ее мы не можем. Обозначим погрешность измерения энергии ΔЕ. Путем рассуждений, аналогичных вышеприведенным, мы придем к аналогичному соотношению для ΔЕ и неопределенности времени, которым квантовая частица этой энергией обладала:

ΔЕ Δt > h

Относительно принципа неопределенности нужно сделать еще два важных замечания:

он не подразумевает, что какую-либо одну из двух характеристик частицы — пространственное местоположение или скорость — нельзя измерить сколь угодно точно;

принцип неопределенности действует объективно и не зависит от присутствия разумного субъекта, проводящего измерения.

Иногда вам могут встретиться утверждения, будто принцип неопределенности подразумевает, что у квантовых частиц отсутствуют определенные пространственные координаты и скорости, или что эти величины абсолютно непознаваемы. Не верьте: как мы только что видели, принцип неопределенности не мешает нам с любой желаемой точностью измерить каждую из этих величин. Он утверждает лишь, что мы не в состоянии достоверно узнать и то, и другое одновременно. И, как и во многом другом, мы вынуждены идти на компромисс. Опять же, писатели-антропософы из числа сторонников концепции «Новой эры» иногда утверждают, что, якобы, поскольку измерения подразумевают присутствие разумного наблюдателя, то, значит, на некоем фундаментальном уровне человеческое сознание связано с Вселенским разумом, и именно эта связь обусловливает принцип неопределенности. Повторим по этому поводу еще раз: ключевым в соотношении Гейзенберга является взаимодействие между частицей-объектом измерения и инструментом измерения, влияющим на его результаты. А тот факт, что при этом присутствует разумный наблюдатель в лице ученого, отношения к делу не имеет; инструмент измерения в любом случае влияет на его результаты, присутствует при этом разумное существо или нет.

См. также:

Werner Karl Heisenberg, 1901-76

Немецкий физик-теоретик. Родился в Вюрцбурге. Его отец был профессором византологии Мюнхенского университета. Помимо блестящих математических способностей с детства проявлял склонность к музыке и вполне состоялся как пианист. Еще школьником был членом народной милиции, поддерживавшей порядок в Мюнхене в смутное время, наступившее после поражения Германии в I мировой войне. В 1920 году стал студентом кафедры математики Мюнхенского университета, однако, столкнувшись с отказом в посещении интересующего его семинара по актуальным в те годы вопросам высшей математики, добился перевода на кафедру теоретической физики. В те годы весь мир физиков жил под впечатлением нового взгляда на строение атома (см. Атом Бора), и все теоретики из их числа понимали, что внутри атома происходит нечто странное.

Защитив диплом в 1923 году, Гейзенберг приступил к работе в Гёттингене над проблемами строения атома. В мае 1925 года у него случился острый приступ сенной лихорадки, вынудивший молодого ученого провести несколько месяцев в полном уединении на маленьком, отрезанном от внешнего мира острове Гельголанд, и этой вынужденной изоляцией от внешнего мира он воспользовался столь же продуктивно, как Исаак Ньютон многомесячным заключением в карантинном чумном бараке в далеком 1665 году. В частности, за эти месяцы ученым была разработана теория матричной механики — новый математический аппарат зарождающейся квантовой механики . Матричная механика, как показало время, в математическом понимании эквивалентна появившейся год спустя квантово-волновой механике, заложенной в уравнении Шрёдингера , с точки зрения описания процессов квантового мира. Однако на практике использовать аппарат матричной механики оказалось труднее, и сегодня физики-теоретики, в основном, пользуются представлениями волновой механики.

В 1926 году Гейзенберг стал ассистентом Нильса Бора в Копенгагене. Именно там в 1927 году он и сформулировал свой принцип неопределенности — и можно с основанием утверждать, что это стало его самым большим вкладом в развитие науки. В том же году Гейзенберг стал профессором Лейпцигского университета — самым молодым профессором в истории Германии. Начиная с этого момента, он вплотную занялся созданием единой теории поля (см. Универсальные теории) — по большому счету, безуспешно. За ведущую роль в разработке квантово-механической теории в 1932 году Гейзенберг был удостоен Нобелевской премии по физике за создание квантовой механики.

С исторической же точки зрения личность Вернера Гейзенберга, вероятно, навсегда останется синонимом неопределенности несколько иного рода. С приходом к власти партии национал-социалистов в его биографии открылась самая труднопонимаемая страница. Во-первых, будучи физиком-теоретиком, он оказался вовлеченным в идеологическую борьбу, в которой теоретическая физика, как таковая, получила ярлык «жидовской физики», а сам Гейзенберг был публично назван новыми властями «белым евреем». Лишь после ряда личных обращений к самым высокопоставленным лицам в рядах нацистского руководства ученому удалось остановить кампанию публичной травли в свой адрес. Гораздо проблематичнее выглядит роль Гейзенберга в германской программе разработки ядерного оружия в годы второй мировой войны. В то время, когда большинство его коллег эмигрировали или вынуждены были бежать из Германии под давлением гитлеровского режима, Гейзенберг возглавил германскую национальную ядерную программу.

Под его руководством программа всецело сконцентрировалась на постройке ядерного реактора, однако у Нильса Бора при его знаменитой встрече с Гейзенбергом в 1941 году сложилось впечатление, что это лишь прикрытие, а на самом деле в рамках этой программы разрабатывается ядерное оружие. Так что же произошло на самом деле? Действительно ли Гейзенберг умышленно и по велению совести завел германскую программу разработки атомной бомбы в тупик и направил ее на мирные рельсы, как он впоследствии утверждал? Или просто он допустил какие-то просчеты в своем понимании процессов ядерного распада? Как бы то ни было, Германия атомного оружия создать не успела. Как показывает блестящая пьеса Майкла Фрэйна (Michael Frayn) «Копенгаген», эта историческая загадка, вероятно, даст достаточно материалов еще не для одного поколения беллетристов.

После войны Гейзенберг выступил активным сторонником дальнейшего развития западногерманской науки и ее воссоединения с международным научным сообществом. Его влияние послужило важным инструментом, позволившим добиться безъядерного статуса вооруженных сил Западной Германии в послевоенный период.

Само наличие у частицы волновых свойств накладывает определенные ограничения на возможность корпускулярного описания ее поведения. Для классической частицы всегда можно указать ее точное положение и импульс. Для квантового объекта имеем иную ситуацию.

Представим цуг волн пространственной протяженностью - образ локализованного электрона, положение которого известно с точностью . Длину волны де Бройля для электрона можно определить, подсчитав число N пространственных периодов на отрезке :

Какова точность определения ? Ясно, что для слегка отличающейся длины волны мы получим примерно то же самое значение N. Неопределенность в длине волны ведет к неопределенности

в числе узлов, причем измерению доступны лишь . Так как

то отсюда немедленно следует знаменитое соотношение неопределенностей В. Гейзенберга для координат - импульсов (1927 г.):

Точности ради надо заметить, что, во-первых, величина в данном случае означает неопределенность проекции импульса на ось OX и, во-вторых, приведенное рассуждение имеет скорее качественный, нежели количественный характер, поскольку мы не дали строгой математической формулировки, что понимается под неопределенностью измерения. Обычно соотношение неопределенностей для координат-импульсов записывается в виде

Аналогичные соотношения справедливы для проекций радиуса-вектора и импульса частицы на две другие координатные оси:

Представим теперь, что мы стоим на месте и мимо проходит электронная волна. Наблюдая за ней в течение времени , хотим найти ее частоту n . Насчитав колебаний, определяем частоту с точностью

откуда имеем

или (с учетом соотношения )

Аналогично неравенству (3.12) соотношение неопределенностей Гейзенберга для энергии системы чаще используется в виде

Рис. 3.38. Ве́рнер Карл Ге́йзенберг (1901–1976)

Поговорим о физическом смысле этих соотношений. Может сложиться представление, что в них проявляется «несовершенство» макроскопических приборов. Но приборы совсем не виноваты: ограничения носят принципиальный, а не технический характер. Сам микрообъект не может быть в таком состоянии, когда определенные значения одновременно имеют какая-то из его координат и проекция импульса на ту же ось.

Смысл второго соотношения: если микрообъект живет конечное время, то его энергия не имеет точного значения, она как бы размыта. Естественная ширина спектральных липни - прямое следствие формул Гейзенберга. На стационарной орбите электрон живет неограниченно долго и энергия определена точно. В этом - физический смысл понятия стационарного состояния. Если неопределенность в энергии электрона превышает разность энергий соседних состояний

то нельзя точно сказать, на каком уровне находится электрон. Иными словами, на короткое время порядка

электрон может перескочить с уровня 1 на уровень 2 , не излучая фотона, и затем вернуться назад. Это - виртуальный процесс, который не наблюдается и, следовательно, не нарушает закона сохранения энергии.

Похожие соотношения существуют и для других пар так называемых канонически сопряженных динамических переменных. Так, при вращении частицы вокруг некоторой оси по орбите радиусом R неопределенность ее угловой координаты влечет за собой неопределенность ее положения на орбите . Из соотношений (3.12) следует, что неопределенность импульса частицы удовлетворяет неравенству

Учитывая связь момента импульса электрона L с его импульсом L = Rp, получаем , откуда следует еще одно соотношение неопределенностей

Некоторые следствия соотношений неопределенностей

    Отсутствие траекторий частиц. Для нерелятивистской частицы p = mv и

Для массивных объектов правая часть исчезающе мала, что позволяет одновременно измерить скорость и положение объекта (область справедливости классической механики). В атоме же Бора импульс электрона

и неопределенность положения оказывается порядка радиуса орбиты.

    Невозможность состояния покоя в точке минимума потенциальной энергии.

Например, для осциллятора (тело на пружине) энергию Е можно записать в виде

Основное состояние в классической механике это состояние покоя в положении равновесия:

Поэтому величина неопределенностей и имеет порядок самих значений импульса и координаты, откуда получаем

Минимум энергии достигается в точке

Вообще говоря, такие оценки не могут претендовать на точный ответ, хотя в данном случае (как и для атома водорода) он действительно точен. Мы получили так называемые нулевые колебания : квантовый осциллятор, в отличие от классического, не может оставаться в покое - это противоречило бы соотношению неопределенностей Гейзенберга. Точные расчеты показывают, что формулу Планка для уровней энергии осциллятора надо было бы писать в виде

где n = 0, 1, 2, 3, ... - колебательное квантовое число.

При решении задач на применение соотношения неопределенностей следует иметь в виду, что в основном состоянии в классической физике электрон покоится в точке, соответствующей минимуму потенциальной энергии. Соотношения неопределенностей не позволяют ему это делать в квантовой теории, так что электрон должен иметь некоторый разброс импульсов. Поэтому неопределенность импульса (его отклонение от классического значения 0 ) и сам импульс по порядку величины совпадают

В квантовой механике состояние частицы определяется заданием значений координат, импульса, энергии и других подобных величин, которые называются динамическими переменными .

Строго говоря, микрообъекту не могут быть приписаны динамические переменные. Однако информацию о микрообъекте мы получаем в результате их взаимодействия с макроприборами. Поэтому необходимо результаты измерений выражаются в динамических переменных. Поэтому, например, говорят о состоянии электрона с определенной энергией.

Своеобразие свойств микрообъектов заключается в том, что не для всех переменных получаются при изменениях определенные значения. Так в мысленном эксперименте мы видели, что при попытке уменьшить неопределенность координаты электронов в пучке путем уменьшения ширины щели приводит к появлению у них неопределенной составляющей импульса в направлении соответствующей координаты. Между неопределенностями координаты и импульса имеет место соотношение

(33.4)

Аналогичное соотношение имеет место для других осей координат и соответствующих проекций импульса, а также для ряда других пар величин. В квантовой механике такие пары величин называются канонически сопряженными . Обозначив канонически сопряженными величины А и В , можно записать:

(33.5)

Соотношение (33.5) было установлено в 1927 году Гейзенбергом и называется соотношением неопределенности .

Само утверждение о том, что произведение неопределенностей значений двух сопряженных переменных не может быть по порядку величины меньше принципом неопределенности Гейзенберга . Принцип неопределенности Гейзенберга является одним из фундаментальных положений квантовой механики.

Важно отметить, что канонически сопряженными являются энергия и время, и справедливо соотношение:

(33.6) в частности, означает, что для измерения энергии с погрешностью не более (порядка) необходимо затратить время не менее . С другой стороны, если известно, что в некотором состоянии частица не может находиться более , то можно утверждать что энергия частицы в этом состоянии не может быть определена с погрешностью менее



Соотношение неопределенностей определяет возможность использования классических понятий для описания микрообъектов. Очевидно, что чем больше масса частицы, тем меньше произведение неопределенностей ее координаты и скорости . Для частиц с размерами порядка микрометра неопределенности координаты и скорости становятся столь малы, что оказываются за пределами точности измерений, и движение таких частиц можно рассматривать происходящим по определенной траектории.

При определённых условиях даже движение микрочастицы может рассматриваться, как происходящее по траектории. Например, движение электрона в ЭЛТ.

Соотношение неопределенностей, в частности, позволяет объяснить, почему электрон в атоме не падает на ядро. При падении электрона на ядро его координаты и импульс приняли бы одновременно определенные, а именно нулевые значения, что запрещено принципом неопределенности. Важно отметить, что принцип неопределенности – это базовое положение, которое определяет невозможность падения электрона на ядро наряду с рядом других следствий без принятия дополнительных постулатов.

Оценим на основе соотношения неопределенностей минимальные размеры атома водорода. Формально, с классической точки зрения, энергия должна быть минимальна при падении электрона на ядро, т.е. при и . Поэтому для оценки минимальной размеров атома водорода можно считать что, что его координата и импульс совпадают с неопределенностями этих величин: . Тогда они должны быть связаны соотношением:

Энергия электрона в атоме водорода выражается формулой:

(33.8)

Выразим импульс из (33.7) и подставим в (33.8):

. (33.9)

Найдем радиус орбиты , при котором энергия минимальна. Дифференцируя (33.9) и приравнивая производную нулю, получаем:

. (33.10)

Поэтому радиус расстояние от ядра, на котором электрон имеет минимальную энергию в атоме водорода, можно оценить по соотношению

Это значение совпадает с радиусом воровской орбиты.

Подставив найденное расстояние в формулу (33.9), получим выражение для минимальной энергии электрона в атоме водорода:

Это выражение также совпадает с энергией электрона на орбите минимального радиуса в теории Бора.

Уравнение Шрёдингера

Поскольку, по идее Де-Бройля, движение микрочастицы связано с некоторым волновым процессом, Шрёдингер сопоставил ее движению комплексную функцию координат и времени, которую он назвал волновой функцией и обозначил . Часто это функцию так и называют – «пси-функция». В 1926 году Шрёдингер сформулировал уравнение, которому должна удовлетворять :

. (33.13)

В этом уравнении:

m – масса частицы;

;

– функция координат и времени, градиент, который с обратным знаком определяет силу, действующую на частицу.

Уравнение (33.13) называется уравнением Шрёдингера . Отметим, что уравнение Шрёдингера не выводится из каких-либо дополнительных соображений. Фактически оно является постулатом квантовой механики, сформулированным на основе аналогии уравнений оптики и аналитической механики. Фактическим обоснованием уравнения (33.13) Является соответствие результатов, полученных на его основе экспериментальным фактам.

Решая (33.13), получают вид волновой функции, описывающей рассматриваемую физическую систему, например, состояния электронов в атомах. Конкретный вид - функции определяется характером силового поля, в котором находится частица, т.е. функцией .

Если силовое поле стационарно , то не зависит явно от времени и имеет смысл потенциальной энергии . В этом случае решение уравнения Шрёдингера распадается на два множителя, один из которых зависит только от координат, другой – только от времени:

где – полная энергия системы, которая в случае стационарного поля остаётся постоянной.

Подставив (33.14) в (33.13), получим:

После сокращения на ненулевой множитель получаем уравнение Шредингера, справедливое в указанных ограничениях:

. (33.15)

Уравнение (33.15) называется уравнением Шрёдингера для стационарных состояний , которое обычно записывают в виде.

Соотношения неопределённости Гейзенберга

В классической механике состояние материальной точки (классической частицы определяется заданием значений координат, импульса, энергии и т.д.). Микрообъекту не могут быть приписаны перечисленные переменные. Однако, информацию о микрочастицах мы получаем, наблюдая их взаимодействие с приборами представляющие собой макроскопические тела. Поэтому результаты измерений поневоле выражаются в терминах, разработанных для характеристики макротел, следовательно, приписываются и микрочастицам. Например, говорят о состоянии электрона, в котором он имеет какое-то значение энергии или импульса.

Своеобразие свойств микрочастиц проявляется в том, что не для всех переменных получается при измерениях точные значения. Так, например, электрон (и любая другая микрочастица) не может одновременно иметь точных значений координаты х и компоненты импульса Р х. Неопределённость значений x и Р х удовлетворяет соотношению:

Из уравнения (1) следует, что чем меньше неопределённость одной из переменных, тем больше неопределённость другой. Возможно, такое состояние, в котором одна из переменных имеет точное значение, другая переменная при этом оказывается совершенной неопределенной (ее неопределённость равна бесконечности).

– классические в механике пары называются

канонически сопряженными

т.е.

Произведение неопределённостей значений двух сопряженных переменных не может быть по порядку величины меньше постоянной Планка .

Гейзенберг (1901-1976 гг.), немец, Нобелевский лауреат 1932 г., в 1927 г. сформулировал принцип неопределенности, ограничивающий применение к микрообъектам классических понятий и представлений:

– это соотношение означает, что определение энергии с точностью до E должно занять интервал времени, равный по меньшей мере

Попытаемся определить значение координаты х свободно летящей микрочастицы, поставив на ее пути щель шириной х, расположенную перпендикулярно к направлению движения частицы. До прохождения через щель, Р х =0 Þ , зато координата х является совершенно неопределенной. В момент прохождения щель положение меняется. Вместо полной неопределенности х появляется неопределенность х, но это достигается ценой утраты определенности значения P х. Вследствие дифракции появляется некоторая вероятность того, что частица будет двигаться в пределах угла 2j, j – угол, соответствующий первому дифракционному min (интенсивностью высших порядков можно пренебречь).

Краю центрального дифракционного max (первому min) получающемуся от щели шириной х, соответствует угол j, для которого

Соотношение неопределённости показывает в какой мере можно пользоваться понятиями классической механики, в частности, с какой степенью точности можно говорить о траектории микрочастиц.

Подставим вместо

Мы видим, что чем больше масса частицы, тем меньше неопределённости её координаты и скорости, следовательно, c тем большей точностью применимо для неё понятие траектории.

Соотношение неопределённости является одним из фундаментальных положений квантовой механики.

В частности, оно позволяет объяснить тот факт, что электрон не падает на ядро атома, а также оценить размеры простейшего атома и минимальную возможную энергию электрона в таком атоме.

Если бы электрон упал на ядро, его координаты и импульс приняли бы определенные (нулевые) значения, что несовместимо с принципом неопределенности (доказательство от обратного).

Пример Хотя соотношение неопределённости распространяется на частицы любых масс, для макрочастиц оно принципиального значения не имеет. Например, для тела m=1 г., движущегося с =600 м/с, при определении скорости с очень высокой точностью 10 -6 %, неопределенность координаты:

Т.е. очень и очень мала.

Для электрона движущегося с (что соответствует его энергии в 1эВ).

При определении скорости с точностью до 20%

Это очень большая неопределенность, т.к. расстояние между узлами кристаллической решетки твердых тел порядка единиц ангстрем.

Таким образом, любая квантовая система не может находится в состояниях, в которых координаты ее центра инерции (для частицы – координаты частицы) и импульс одновременно принимает вполне определенные значения.

В квантовой механике теряет смысл понятие траектории, т.к. если мы точно определим значения координат, то ничего не можем сказать о направлении ее движения (т.е. импульса), и наоборот.

Вообще говоря, принцип неопределенности справедлив как для макро-, так и для микрообъектов. Однако для макрообъектов значения неопределенности, оказывается пренебрежимо малыми по отношению к значениям самих этих величин, тогда как в микромире эти неопределённости оказываются существенными.