На бумаге написано следующее:

Три и два - это пять.

К трем прибавить два будет пять.

Складываем три и два, в результате получаем пять.

Три увеличить на два станет пять.

Сумма чисел три и два равна пяти.

Кстати, «роли», которые играют числа в этой записи, имеют такие названия:

первое слагаемое + второе слагаемое = сумма

Подобным же образом,

это не только «пять минус два равно три», но и:

Пять без двух - это три.

От пяти отнять два будет три.

Из пяти вычесть два получится три.

Пять уменьшить на два составит три.

Разность чисел пять и два равна трем.

Если уменьшаемое равно 5, а вычитаемое равно 2, то разность равна 3.

«Роли» чисел в примерах на вычитание называются так:

уменьшаемое − вычитаемое = разность

Семь - это столько же, сколько четыре плюс три.

Рассмотрим такую ситуацию. У Дениса есть 5 конфет. Его младший брат Матвей просит:

Денис раскладывает конфеты на две кучки. Одну кучку оставляет себе, другую дает Матвею. Спрашивается: как 5 конфет можно поделить на две кучки? Возможные ответы:

5 = 1 + 4 (Денис оставляет одну конфету себе, а четыре дает Матвею);
5 = 2 + 3;
5 = 3 + 2;
5 = 4 + 1.

Но это еще не все возможные варианты. Может оказаться так, что Денису эти конфеты вообще не нравятся, и он все их отдает Матвею:

А, может быть, Денис вовсе не захочет делиться конфетами, и тогда следует написать так:

Все эти ответы можно объединить в одну строчку:

Допустим, что какой-нибудь взрослый дядя - непрошеный экзаменатор - спросит у Дениса:

Денис теперь смело может ответить:

Это равно три плюс два.

И Денис будет совершенно прав. Действительно,

Но как же тогда грамотно попросить вычислить «два плюс три», чтобы ответом было одно-единственное число?

Грамотный вопрос звучит так:

Чему равно значение выражения 2 + 3?

Математическим выражением называется всё, про что можно спросить: «Это сколько? Какому числу это равно?» Мы уже встречались с такими выражениями, как «2 + 3», «5 − 2». Числа сами по себе тоже являются выражениями. Ведь не будет ошибкой утверждать, что

Значит, «2» - это выражение.

Ответ на вопрос: «Это сколько? Какому числу это равно?» - называется значением выражения. Например, значением выражения «2 + 3» является «5». Записывается это уже знакомым нам способом:

Если два выражения имеют одно и то же значение, то между ними ставится знак «=» и полученная запись называется равенством , например:

1 + 4 = 2 + 3;
7 = 2 + 5.

Мы уже знаем, что равенства могут образовывать цепочки:

5 = 0 + 5 = 1 + 4 = 2 + 3 = 3 + 2 = 4 + 1 = 5 + 0.

Если два выражения имеют разные значения, то ставить знак «=» между ними было бы неверно, но можно поставить другой знак, а именно «≠». Например,

1 ≠ 2 (читается: один не равен двум);
3 + 2 ≠ 4 (три плюс два не равно четырем);
10 ≠ 7 − 3 (десять не равно семи минус три).

Такие записи называются неравенствами . Однако такого рода неравенства часто оставляют некоторую неудовлетворенность. Вряд ли Денис скажет:

Мой возраст неравен возрасту Матвея.

Скорее всего, он выразится так:

Я старше Матвея. Мне больше лет, чем ему. Матвей младше меня. Ему меньше лет, чем мне.

Мы знаем, что Денису 7 лет, а Матвею 5. Мы можем записать так:

7 > 5 (читается: семь больше пяти; или: семь больше, чем пять)

5 < 7 (пять меньше семи; пять меньше, чем семь).

Через три года оба будут взрослее, но Денис так и останется старше Матвея:

7 + 3 > 5 + 3 (семь плюс три больше, чем пять плюс три);
5 + 3 < 7 + 3 (пять плюс три меньше, чем семь плюс три).

Записи, в которых присутствует символ «>» («больше») или «<» («меньше») тоже называются неравенствами . Неравенства могут образовывать цепочки:

0 < 1 < 2 < 3;
3 > 2 > 1 > 0.

Допустимы также смешанные цепочки, в которых присутствуют как равенства, так и неравенства. Пусть, например, спрашивается: что больше:

7 + 3 или 5 + 3?

Ответ на этот вопрос удобно представить в следующем виде:

7 + 3 = 10 > 8 = 5 + 3.

Вероятно, иногда Денису захочется сказать так:

Я старше Матвея на два года. Мне на два года больше, чем ему. Матвей младше меня на два года. Ему на два года меньше, чем мне.

Чтобы это записать с помощью чисел, снова понадобятся равенства. Такую запись можно сделать разными способами:

7 = 5 + 2;
5 = 7 − 2;
2 = 7 − 5.

Теперь поговорим о словах, которые принято употреблять, когда мы говорим об умножении и делении нацело. Пусть дано равенство

3 умножить на 5 равно 15;
произведение чисел 3 и 5 равно 15;
число 3 увеличили в 5 раз и получили 15;
число 5 увеличили в 3 раза и получили 15;
число 15 в 5 раз больше числа 3;
число 3 в 5 раз меньше числа 15;

«Роли» распределяются таким образом:

первый сомножитель ∙ второй сомножитель = произведение

В школе произведения всех чисел, которые меньше или равны десяти, записывают в виде большой скучной таблицы, называемой таблицей умножения. Эту таблицу заставляют учить наизусть. Для облегчения зубрежки, в русском языке для произведений из таблицы умножения имеются специальные названия, например,

2 ∙ 2 - дважды два;
3 ∙ 6 - трижды шесть;
4 ∙ 5 - четырежды пять;
5 ∙ 8 - пятью восемь
и тому подобное.

Рассмотрим теперь равенство

Прочесть эту запись можно так:

15 поделить на 3 равно 5;
15 разделить на 3 равно 5;
частное от деления числа 15 на число 3 равно 5;
отношение чисел 15 и 3 равно 5;
число 15 в 3 раза больше числа 5;
число 5 в 3 раза меньше числа 15.

«Роли» распределяются так:

делимое / делитель = частное

Задачи

2.1.1. Какие два числа надо сложить, чтобы результат был равен четырем? Выписать все возможные ответы.

2.1.2. Какое число надо вычесть из какого, чтобы результат был равен двум? Написать один из возможных ответов.

2.1.3. Указать, что из следующих записей является выражением, что равенством, что неравенством, что бессмыслицей. Какие из равенств и неравенств являются верными, а какие нет?

1
10
10 +
10 + 8
10 + 8 =
10 + 8 = 1
10 + 8 = 18
2
25
25 −
25 − 5
25 − 5 >
25 − 5 > 1
25 − 5 > 10
25 − 5 > 10 +
25 − 5 > 10 + 2
25 − 5 > 10 + 20

2.1.4. Найти значение выражений

37 + 54
98 − 73
и т.п.

2.1.5. Сравнить выражения (поставить между ними знак «=», «>» или «<»):

45 + 18 __ 71 − 16
78 − 14 __ 13 + 56
и т.п.

Пример записи решения:

63 = 45 + 18 > 71 − 16 = 55.

2.1.6. У Дениса 25 конфет, а у Матвея на 3 конфеты меньше. Сколько конфет у Матвея?

2.1.7. У Дениса 25 конфет, а у Матвея на 3 конфеты больше. Сколько конфет у Матвея?

2.1.8. У Дениса 25 конфет, а у Матвея 23 конфеты. У кого конфет больше и насколько?

2.1.9. У Дениса 33 конфеты, а у Матвея 35 конфет. У кого конфет меньше и насколько?

2.1.10. У Дениса было 25 конфет, а у Матвея было 23 конфеты. Денис съел 4 конфеты. У кого конфет теперь больше и насколько?

2.1.11. (Маленькая провокация) У Дениса было 25 конфет, а у Матвея было 23 конфеты. Денис съел 2 конфеты. У кого конфет теперь меньше и насколько?

2.1.12. У Дениса было 25 конфет, а у Матвея 23 конфеты. Денис съел 14 конфет, а Матвей съел 10 конфет. У кого конфет стало больше и насколько?

2.1.14. Денису 7 лет, а Матвею 5 лет. Сколько лет будет Матвею, когда Денису будет 10 лет? Сколько лет будет Денису, когда Матвею будет 10 лет?

2.1.15. У Дениса 20 конфет, а у Матвея в два раза меньше. Сколько конфет у Матвея?

2.1.16. У Дениса 5 конфет, а у Матвея в 3 раза больше. Сколько конфет у Матвея?

2.1.17. Начиная с этого этапа, задачи можно брать из пособий и задачников, официально рекомендованных для школьников и продающихся в книжных магазинах. Однако такие задачи часто сформулированы весьма заумно и требуют дополнительного редактирования. Например, имеется следующая задача (О. В. Узорова. 3000 задач и примеров по математике: 3-4 кл. Москва, 2001):

«Камни, которые врезаются в атмосферу Земли и полностью в ней сгорают, называются метеорами. Они загораются на высоте 100 км, и, горя, летят еще 30 км. Сколько километров до Земли остается пролететь пыли и пеплу от этого метеора?»

Если предложить ребенку задачу именно в таком виде, то есть риск погрязнуть в объяснениях относительно того, откуда берутся метеоры, чем они отличаются от метеоритов, что такое атмосфера, почему тела нагреваются при трении о воздух, и, вообще, как устроена Вселенная. Это всё вещи, конечно, интересные, но, раз уж мы решили заниматься математикой, то лучше ту же самую задачу перевести на более привычный язык. Вот один из возможных вариантов:

«От подъезда дома до магазина, где продается мороженое, 100 шагов. Папа отправился в магазин, чтобы купить Денису мороженое. Он прошел уже 30 шагов. Сколько шагов ему осталось пройти?»

социальное, один из основных, наряду со свободой, идеалов справедливого обществ. устройства. Понятие Р. имело различное содержание в разные историч. эпохи и у разных классов.

Проблема Р. возникла на заре истории человеч. об­щества вместе с делением на классы, появлением рабо­владения. Для рабовладельч. системы было характерно глубокое неравенство, полное бесправие рабов, к-рые считались «говорящим орудием». Обществ. неравенст­во в антич. эпоху распространялось также на бедные слои господствующего класса. В эпоху феодализма обществ. неравенство приняло иной вид, выступая в форме сословного. Наиболее бесправным классом было крестьянство, зависевшее от феодалов не только эко­номически, но и политически. Наряду с этим сущест­вовала иерархия в самом господствующем классе - от мелких до крупных феодалов и стоявшего над ними монарха.

Будучи самым ясным, простым и понятным массам, лозунг борьбы против неравенства служил вдохнов­ляющим стимулом восстаний рабов и крест. войн. Од­новременно развивалось теоретич. осмысление причин обществ. неравенства и путей его преодоления. В чис­ле первых, кто прямо связал его с частной собствен­ностью на средства произ-ва, были Мор и Кампанелла. Особенно четко эта связь была показана Руссо в его работе «Об общественном договоре». Взгляды утопис­тов и просветителей оказали огромное воздействие на обществ. практику; в Английской бурж. революции 17 в. и Великой франц. революции действовали радикальные течения, провозгласившие своей целью утверждение всеобщего социального Р. - левеллеры, т. е. уравни­тели, в Англии, бабувисты (последователи Бабефа) во Франции.

Бурж. революция и утверждение капиталистич. строя привели к значит. изменениям в обществ. отно­шениях. Впервые были отменены сословия и сослов­ные привилегии, провозглашен принцип Р. граждан перед законом. Вместе с тем обществ. практика обнару­жила ограниченный и иллюзорный характер Р. в ус­ловиях капитализма. Бурж. равноправие действитель­но лишь постольку, поскольку условием существова­ния частного предпринимательства является наличие на рынке свободной рабочей силы и право продавать и покупать ей. Не может быть и речи о социальном Р. в обществе, разделенном на антагонистич. классы эксплу­ататоров и эксплуатируемых.

В эпоху гос.-монополистич. капитализма, когда благодаря борьбе рабочего класса и достижениям науч.-технич. революции повысился уровень жизни в развитых капиталиотич. странах, бурж. пропаганда использует это в спекулятивных целях, утверждая, будто проблема Р. успешно решается в т. н. государст­ве благоденствия. Практика опровергает эти утвержде­ния. В странах капитала продолжает увеличиваться неравенство между осн. массой трудового населения и узким верхушечным слоем монополистов. Острота этой проблемы постоянно дает о себе знать в классовых столк­новениях, усиливающих общее кризисное состояние совр. капитализма. Растет разрыв между экономически развитыми капиталистич. странами и развивающимися странами, к-рые являются жертвами неоколониального грабежа.

Марксизм-ленинизм указал практич. пути преодо­ления обществ. неравенства, утверждения справедли­вых отношений между людьми в условиях социализма, а затем и коммунизма. Социалистич. революция совер­шает коренной переворот в системе обществ. отношений. Все члены общества становятся в одинаковые условия в главном - в отношении к средствам произ-ва. С лик­видацией эксплуататорских классов, построением со­циализма решается ряд др. кардинальных задач, свя­занных с проблемой обществ. Р.: утверждается полное и подлинное политич. равноправие граждан независи­мо от их происхождения, социального положения, религ. верований и т. д.; на основе ленинского решения национального вопроса устраняются вражда и недоверие между нациями, устанавливается полное равноправие в сфере нац. отношений; ликвидация дискриминации женщин и женского труда, целенаправленная работа об­щества по охране материнства, вовлечение женщин в активную трудовую деятельность способствуют преодо­лению их неравноправного положения. При социализ­ме обеспечивается равное право всех трудиться и по­лучать оплату по труду, широкий комплекс социальных и политич. прав, гарантируемых гос-вом, создаются обществ. фонды потребления, распределяемые, как правило, вне зависимости от трудового вклада челове­ка. Принципиальное значение имеет ликвидация про­тивоположности между городом и деревней, умствен­ным и физич. трудом.

Означая крупнейший прогресс в деле утверждения подлинного Р., социализм в то же время не решает проблемы полностью.В силу сохранившихся социальных различий (в т. ч. между городом и деревней, трудом умственным и физи­ческим, более и менее квалифицированным) остает­ся и определ. имущественное неравенство (хотя, ко­нечно, оно не идет ни в какое сравнение с гигантским разрывом в материальном положении людей, сущест­вующим в эксплуататорском обществе). Полностью эта проблема может быть решена только при коммунизме, когда будет введен принцип распределения по потреб­ности.

Коммунистич. Р. не имеет ничего общего с вульгар­ными представлениями об уравнении способностей, вкусов и потребностей людей. Именно в условиях изобилия и высокой сознательности людей возможно полное развитие их индивидуальности, раскрытие все­го разнообразия их творч. способностей. В конечном счете марксизм-ленинизм понимает под Р. полное унич­тожение классов, создание условий для всестороннего развития всех членов общества.

Марксистско-ленинская теория решительно отрицает уравниловку - лозунг, с к-рым, как правило, высту­пают последователи различных направлений мелкобурж. социализма. Равное распределение продукта независимо от трудового вклада и квалификации людей в совр. условиях неизбежно оборачивается пре­пятствием для роста производит. сил, ведет не к накоп­лению обществ. богатства (и, следовательно, не к рос­ту благосостояния масс), а к его оскудению. Иначе го­воря, уравниловка в конечном счете означает Р. в ни­щете. Попытки введения уравнит. распределения неиз­менно заканчивались крахом.

Наиболее адекватной религиозной формой выражения фундаментального этического Р. стала иудео-христианская монотеистическая концепция Р. людей как творений единого Создателя. Вместе с тем в христианской религиозно-этической доктрине наряду с положительным Р. духовных способностей, позволяющих стремиться к спасению, присутствует всеобщее отрицательное Р., порожденное последствиями первородного греха. В антич. традиции идея этического Р. впервые появляется в стоической философии в связи с признанием равной природной причастности всех индивидов к Божественному Логосу. В дальнейшей истории философско-этической мысли к указанным основаниям концепции равного достоинства человеческих личностей (Р. душ и потенциально равной природной рациональной способности) добавились вне-рациональное природное Р. (Р. в стремлении к счастью, в объеме потребностей и т.д.), а также Р. с т.зр. сверхприродной (трансцендентальной) рациональности.

Наиболее строгим выражением идеи этического Р. в новоевропейской философии следует считать второй практический принцип воли И. Канта, согласно которому к человечеству (в своем лице и в лице др.) следует относиться как к цели и никогда - только как к средству. При этом утверждение разного (неравного) достоинства существ, обладающих рациональной способностью, понимается Кантом как явная логическая ошибка.

Современные теоретики стремятся точнее обозначить тот комплекс общих свойств, которые в достаточной мере закрепляли бы признание Р. В него входят: специфически человеческие эмоции и желания, способность к мышлению и использованию языка, способность вести счастливую жизнь, способность к составлению жизненных планов и моральной автономии, способность к вынесению справедливых суждений и т.д. (Б. Уильяме, Г. Властос, В. Франкена и др.). Однако некоторые исследователи считают, что, избавляя общество от «сексизма», «расизма» и «национализма», указанный список порождает др. вид неравноправия - «видизм» («speciesism») по отношению к иным живым существам (П. Сингер).

Идея общественного Р. может быть представлена как попытка распространить абстрактный идеал равного достоинства, глубоко укорененный фактически во всех современных духовных традициях, на различные сферы общественной жизни. В их формировании задействована т.н. презумпция Р., высказанная еще Аристотелем и состоящая в том, что именно социальное неравенство, а не Р. нуждается в оправдании перед лицом справедливости (Л. Стефен, И. Берлин, Р. Хэар и др.). Др. словами, для признания неравенства легитимным следует привести основательные аргументы, отталкивающиеся от самой морали, религии, метафизики или беспристрастного анализа действительных условий существования. В легально-политической области процедура, конституирующая эгалитарные и антиэгалитарные концепции, создает следующие полярные т.зр.: идея Р. политических гражданских прав, Р. перед законом и идея естественной иерархии. В социально-экономической области возникают иные два полюса: идея волюнтаристски-уравнительного распределения благ и идея полного санкционирования любого вида автоматически сложившегося неравного их распределения. Промежуточную позицию занимают проекты уравнивания граждан (подданных) через ограничение автоматических распределительных процессов (теории Р.стартовых возможностей, контроля над Р. условий соревнования и, наконец, уравнительной коррекции его результатов).

Существует ряд интеллектуальных традиций, со времен античности специфически использующих понятие Р. Первая традиция восходит к представлению об общине, где отсутствуют институционализированная власть и собственность, царствуют семейные (братские) отношения и гарантировано всеобщее одинаковое изобилие (подчас за счет невзыскательности и простоты). Эта традиция достигает своего пика в разработке социалистической идеи.

Вторая традиция исходит из приватного потребления благ и состязательного Р. при их достижении, неизбежного из-за невозможности найти априорную процедуру выделения достойнейших. Такая (либеральная) модель присутствует уже в некоторых рассуждениях Аристотеля и стоиков. В ее рамках ведущей проблемой оказывается вопрос о совместимости понятий Р. и свободы. Классическая либеральная концепция Р., созданная Дж. Локком, исходит из их бесконфликтного совмещения. Это вызвано тем, что исторически проблематичность отношений свободы и Р. выявляется только тогда, когда освобождение от конкретных форм иерархического порядка не является основной тенденцией политической жизни. Однако уже с кон. 18 в. формируется противоположное мнение о том, что Р. есть результат зависти, эгоизма, омассовления культуры и управления обществом, а значит, оно явно противостоит свободе (Э. Берк, А. Токвиль и др.).

Неполное определение


Получив общее представление о равенствах в математике , можно переходить к более детальному изучению этого вопроса. В этой статье мы, во-первых, разъясним, что такое числовые равенства, а, во-вторых, изучим .

Навигация по странице.

Что такое числовое равенство?

Знакомство с числовыми равенствами начинается на самом начальном этапе изучения математики в школе. Обычно это происходит в 1 классе сразу после того, как становятся известными первые числа от 1 до 9 и после того, как обретает смысл фраза «столько же». Тогда то и появляются первые числовые равенства, например, 1=1 , 3=3 и т.п., которые на этом этапе обычно называют просто равенствами без уточняющего определения «числовые».

Равенствам указанного вида на этом этапе придается количественный или порядковый смысл, который вкладывается в . К примеру, числовое равенство 3=3 отвечало картинке, на которой изображены две ветки дерева, на каждой из которых сидят по 3 птицы. Или когда в двух очередях третьими по порядку стоят наши товарищи Петя и Коля.

После изучения арифметических действий, появляются более разнообразные записи числовых равенств, например, 3+1=4 , 7−2=5 , 3·2=6 , 8:4=2 и т.п. Дальше начинают встречаться числовые равенства еще более интересного вида, содержащие в своих частях различные , к примеру, (2+1)+3=2+(1+3) , 4·(4−(1+2))+12:4−1=4·1+3−1 и тому подобные. Дальше происходит знакомство с другими видами чисел, и числовые равенства приобретают все более и более разнообразный вид.

Итак, достаточно ходить вокруг да около, пора уже дать определение числового равенства:

Определение.

Числовое равенство – это равенство, в обеих частях которого находятся числа и/или числовые выражения.

Свойства числовых равенств

Принципы работы с числовыми равенствами определяются их свойствами. А на свойствах числовых равенств в математике завязано очень многое: от свойств решения уравнений и некоторых методов решения систем уравнений до правил работы с формулами, связывающими различные величины. Этим объясняется необходимость подробного изучения свойства числовых равенств.

Свойства числовых равенств полностью согласуются с тем, как определены действия с числами, а также находятся в согласии с определением равных чисел через разность : число a равно числу b тогда и только тогда, когда разность a−b равна нулю. Ниже при описании каждого свойства мы будем прослеживать эту связь.

Основные свойства числовых равенств

Обзор свойств числовых равенств стоит начать с трех основных свойств, характерных всем без исключения равенствам. Итак, основные свойства числовых равенств это:

  • свойство рефлексивности: a=a ;
  • свойство симметричности: если a=b , то b=a ;
  • и свойство транзитивности: если a=b и b=c , то a=c ,

где a , b и c – произвольные числа.

Свойство рефлексивности числовых равенств относится к тому факту, что число равно самому себе. Например, 5=5 , −2=−2 , и т.п.

Несложно показать, что для любого числа a справедливо равенство a−a=0 . Действительно, разность a−a можно переписать в виде суммы a+(−a) , а из свойств сложения чисел мы знаем, что для любого числа a существует единственное −a , и сумма противоположных чисел равна нулю.

Свойство симметричности числовых равенств утверждает, что если число a равно числу b , то число b равно числу a . Например, если 2 3 =8 (смотрите ), то 8=2 3 .

Обоснуем это свойство через разность чисел. Условию a=b отвечает равенство a−b=0 . Покажем, что b−a=0 . Правило раскрытия скобок, перед которыми стоит знак минус, позволяет переписать разность b−a как −(a−b) , она в свою очередь равна −0 , а число, противоположное нулю, есть нуль. Следовательно, b−a=0 , откуда следует, что b=a .

Свойство транзитивности числовых равенств утверждает равенство двух чисел, когда они оба равны третьему числу. Например, из равенств (смотрите ) и 4=2 2 следует, что .

Это свойство также согласуется с определением равных чисел через разность и свойствами действий с числами. Действительно, равенствам a=b и b=c отвечают равенства a−b=0 и b−c=0 . Покажем, что a−c=0 , откуда будет следовать равенство чисел a и c . Так как прибавление нуля не изменяет число, то a−c можно переписать как a+0−c . Нуль заменим суммой противоположных чисел −b и b , при этом последнее выражение примет вид a+(−b+b)−c . Теперь можно выполнить группировку слагаемых следующим образом: (a−b)+(b−c) . А разности в скобках есть нули, следовательно, и сумма (a−b)+(b−c) равна нулю. Этим доказано, что при условии a−b=0 и b−c=0 справедливо равенство a−c=0 , откуда a=c .

Другие важные свойства

Из основных свойств числовых равенств, разобранных в предыдущем пункте, вытекает еще ряд свойств, имеющих ощутимую практическую ценность. Давайте разберем их.

    Начнем с такого свойства: если к обеим частям верного числового равенства прибавить (или вычесть) одно и то же число, то получится верное числовое равенство. С помощью букв оно может быть записано так: если a=b , где a и b – некоторые числа, то a+c=b+c для любого числа c .

    Для обоснования составим разность (a+c)−(b+c) . Ее можно преобразовать к виду (a−b)+(c−c) . Так как a=b по условию, то a−b=0 , и c−c=0 , поэтому (a−b)+(c−c)=0+0=0 . Этим доказано, что (a+c)−(b+c)=0 , следовательно, a+c=b+c .

    Идем дальше: если обе части верного числового равенства умножить на любое число или разделить на отличное от нуля число, то получится верное числовое равенство. То есть, если a=b , то a·c=b·c для любого числа c , и если c отличное от нуля число, то и a:c=b:c .

    Действительно, a·c−b·c=(a−b)·c=0·c=0 , откуда следует равенство произведений a·c и b·c . А деление на отличное от нуля число c можно рассматривать как умножение на 1/c .

    Из разобранного свойства числовых равенств вытекает одно полезное следствие: если a и b отличные от нуля и равные числа, то обратные им числа тоже равны. То есть, если a≠0 , b≠0 и a=b , то 1/a=1/b . Последнее равенство легко доказывается: для этого достаточно обе части исходного равенства a=b разделить на отличное от нуля число, равное произведению a·b .

И остановимся еще на двух свойствах, позволяющих складывать и умножать соответствующие части верных числовых равенств.

    Если почленно сложить верные числовые равенства, то получится верное равенство. То есть, если a=b и c=d , то a+c=b+d для любых чисел a , b , c и d .

    Обоснуем это свойство числовых равенств, отталкиваясь от уже известных нам свойств. Известно, что к обеим частям верного равенства мы можем прибавить любое число. В равенстве a=b прибавим число c , а в равенстве c+d прибавим число b , в результате получим верные числовые равенства a+c=b+c и c+b=d+b , последнее из которых перепишем как b+c=b+d . Из равенств a+c=b+c и b+c=b+d по свойству транзитивности следует равенство a+c=b+d , которое и требовалось доказать.

    Заметим, что можно почленно складывать не только два верных числовых равенства, но и три, и четыре, и любое конечное их число.

    Завершаем обзор свойств числовых равенств следующим свойством: если почленно перемножить два верных числовых равенства, то получится верное равенство. Сформулируем его формально: если a=b и c=d , то a·c=b·d .

    Доказательство озвученного свойства похоже на доказательство предыдущего. Мы можем умножить обе части равенства на любое число, умножим a=b на c , а c=d на b , получаем верные числовые равенства a·c=b·c и c·b=d·b , последнее из которых перепишем в виде b·c=b·d . Тогда по свойству транзитивности из равенств a·c=b·c и b·c=b·d следует доказываемое равенство a·c=b·d .

    Заметим, что озвученное свойство справедливо для почленного умножения трех и большего числа верных числовых равенств. Из этого утверждения следует, что если a=b , то a n =b n для любых чисел a и b , и любого натурального числа n .

В заключение этой статьи запишем все разобранные свойства числовых равенств в таблицу:

Список литературы.

  • Моро М. И. . Математика. Учеб. для 1 кл. нач. шк. В 2 ч. Ч. 1. (Первое полугодие) / М. И. Моро, С. И. Волкова, С. В. Степанова.- 6-е изд. - М.: Просвещение, 2006. - 112 с.: ил.+Прил. (2 отд. л. ил.). - ISBN 5-09-014951-8.
  • Алгебра: учеб. для 7 кл. общеобразоват. учреждений / [Ю. Н. Макарычев, Н. Г. Миндюк, К. И. Нешков, С. Б. Суворова]; под ред. С. А. Теляковского. - 17-е изд. - М. : Просвещение, 2008. - 240 с. : ил. - ISBN 978-5-09-019315-3.

Материал статьи позволит ознакомиться с математической трактовкой понятия равенства. Порассуждаем на тему сути равенства; рассмотрим его виды и способы его записи; запишем свойства равенства и проиллюстрируем теорию примерами.

Само понятие равенства тесно переплетено с понятием сравнения, когда мы сопоставляем свойства и признаки, чтобы выявить схожие черты. Процесс сравнения требует наличия двух объектов, которые и сравниваются между собой. Данные рассуждения наводят на мысль, что понятие равенства не может иметь место, когда нет хотя бы двух объектов, чтобы было что сравнивать. При этом, конечно, может быть взято большее количество объектов: три и более, однако, в конечном, счете, мы так или иначе придем к сравнению пар, собранных из заданных объектов.

Смысл понятия «равенство» в обобщенном толковании отлично определяется словом «одинаковые». О двух одинаковых объектах можно говорить – «равные». Например, квадраты и . А вот объекты, которые хоть по какому-то признаку отличаются друг от другу, назовем неравными.

Говоря о равенстве, мы можем иметь в виду как объекты в целом, так и их отдельные свойства или признаки. Объекты являются равными в целом, когда одинаковы по всем характеристикам. Например, когда мы привели в пример равенство квадратов, имели в виду их равенство по всем присущим им свойствам: форме, размеру, цвету. Также объекты могут и не быть равными в целом, но обладать одинаковыми отдельными признаками. Например: и . Указанные объекты равны по форме (оба – круги), но различны (неравны) по цвету и размеру.

Таким образом, необходимо заранее понимать, равенство какого рода мы имеем в виду.

Запись равенств, знак равно

Чтобы произвести запись равенства, используют знак равно (или знак равенства), обозначаемый как = .Такое обозначение является общепринятым.

Составляя равенство, равные объекты размещают рядом, записывая между ними знак равно. К примеру, равенство чисел 5 и 5 запишем как 5 = 5 . Или, допустим, нам необходимо записать равенство периметра треугольника А В С 6 метрам: P А В С = 6 м.

Определение 1

Равенство – запись, в которой использован знак равно, разделяющий два математических объекта (или числа, или выражения и т.п.).

Когда возникает необходимость письменно обозначить неравенство объектов, используют знак не равно, обозначаемый как ≠ , т.е. по сути зачеркнутый знак равно.

Верные и неверные равенства

Составленные равенства могут соответствовать сути понятия равенства, а могут и противоречить ему. По этому признаку все равенства классифицируют на верные равенства и неверные равенства. Приведем примеры.

Составим равенство 7 = 7 . Числа 7 и 7 , конечно, являются равными, а потому 7 = 7 – верное равенство. Равенство 7 = 2 , в свою очередь, является неверным, поскольку числа 7 и 2 не равны.

Свойства равенств

Запишем три основных свойства равенств:

Определение 2

  • свойство рефлексивности, гласящее, что объект равен самому себе;
  • свойство симметричности: если первый объект равен второму, то второй равен первому;
  • свойство транзитивности: когда первый объект равен второму, а второй – третьему, тогда первый равен третьему.

Буквенно сформулированные свойства запишем так:

  • a = a ;
  • если a = b , то b = a ;
  • если a = b и b = c , то a = c .

Отметим особенную пользу второго и третьего свойств равенств – свойств симметричности и транзитивности – они дают возможность утверждать равенство трех и более объектов через их попарное равенство.

Двойные, тройные и т.д. равенства

Совместно со стандартной записью равенства, пример которой мы приводили выше, также часто составляются так называемые двойные равенства, тройные равенства и т.д. Подобные записи представляют собой как бы цепочку равенств. К примеру, запись 2 + 2 + 2 = 4 + 2 = 6 - двойное равенство, а | A B | = | B C | = | C D | = | D E | = | E F | - пример четвертного равенства.

При помощи таких цепочек равенств оптимально составлять равенство трех и более объектов. Такие записи по своему смыслу являются обозначением равенства любых двух объектов, составляющих исходную цепочку равенств.

Например, записанное выше двойное равенство 2 + 2 + 2 = 4 + 2 = 6 обозначает равенства: 2 + 2 + 2 = 4 + 2 , и 4 + 2 = 6 , и 2 + 2 + 2 = 6 , а в силу свойства симметричности равенств и 4 + 2 = 2 + 2 + 2 , и 6 = 4 + 2 , и 6 = 2 + 2 + 2 .

Составляя подобные цепочки, удобно записывать последовательность решения примеров и задач: такое решение становится наглядным и отражает все промежуточные этапы вычислений.

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

1) качественное понятие, используемое в экономической науке в смысле "равенство доходов", "имущественное равенство", "равенство возможностей", чтобы подчеркнуть наличие равенства и неравенства в положении отдельных социальных групп; 2) математическое тождество, уравнение.

Отличное определение

Неполное определение ↓

РАВЕНСТВО

один из принципов права. Понятие Р. - определенная абстракция, т.е. результат сознательного (мыслительного) абстрагирования от тех различий, которые присущи уравниваемым объектам. Правовое Р. не столь абстрактно. Основанием (и критерием) правового уравнения различных людей является свобода индивидов в общественных отношениях, признаваемая и утверждаемая в форме их правоспособности и правосубъектности. В этом специфика правового Р. и права вообще. Р. имеет рациональный смысл, логически и практически возможно в социальном мире именно и только правовое (формально-правовое, формальное) Р. История права - это история прогрессирующей эволюции содержания, объема, масштаба и меры формального (правового) Р. при сохранении самого этого принципа как принципа любой системы права, права вообще. Таким образом, принцип формального Р. представляет собой постоянно присущий праву принцип с исторически изменяющимся содержанием. В целом историческая эволюция содержания, объема, сферы действия принципа формального Р. не опровергает, а, наоборот, подкрепляет значение данного принципа в качестве отличительной особенности права в его соотношении с иными видами социальной регуляции (моральной, религиозной и т.д.). Исходные фактические различия между людьми, рассмотренные и урегулированные с точки зрения правового принципа Р. (равной меры), предстают в итоге в виде неравенства в уже приобретенных правах (по их структуре, содержанию и объему прав различных субъектов права). Право как форма отношений по принципу Р. не уничтожает (и не может уничтожить) исходных различий между разными субъектами права, оно лишь формализует и упорядочивает эти различия по единому основанию, трансформирует неопределенные фактические различия в формально- определенные права свободных, независимых друг от друга, равных личностей. В этом, по существу, состоит специфика, смысл и ценность правовой формы опосредования, регуляции и упорядочения общественных отношений. Правовое Р. и правовое неравенство однопорядко- вые правовые определения. Принцип правового Р. различных субъектов предполагает, что приобретаемые ими реальные субъективные права будут неравны. Благодаря праву хаос различий преобразуется в правовой порядок равенств и неравенств, согласованных по единому основанию и общей норме. Признание различных индивидов формально равными означает признание их равной правоспособности, возможности приобрести те или иные права на соответствующие блага, конкретные объекты и т.д. Формальное право - это лишь способность, абстрактная возможность приобрести, в согласии с общим масштабом и равной мерой правовой регуляции, свое, индивидуально-определенное право на данный объект. Различие в приобретенных правах у разных лиц является необходимым результатом именно соблюдения, а не нарушения принципа формального (правового) Р. этих лиц, не нарушает и не отменяет принципа формального (правового) Р. Для всех, чьи отношения опосредуются правовой формой, право выступает как всеобщая форма, как общезначимый и равный для всех этих лиц (различных по своему фактическому, физическому, умственному, имущественному положению и т.д.) одинаковый масштаб и мера. Само Р. состоит в том, что поведение и положение субъектов данного общего круга отношений и явлений подпадают под действие единого для всех закона, единой (общей, равной) меры. Лит.: Нерсесянц В.С. Право и закон. Из истории правовых учений. М, 1983; Его же. Право - математика свободы. М, 1996; Его же. Ценность права как триединства свободы, равенства и справедливости / / Проблемы ценностного подхода в праве: традиции и обновление. М., 1996. В.С. Нерсесянц