ж) возрастом человека и размером его обуви;

з) объемом куба и длиной его ребра;

и) периметром квадрата и длиной его стороны;

к) дробью и ее знаменателем, если числитель не изменяется;

л) дробью и ее числителем, если знаменатель не изменяется.

Задачи 767-778 решите, составив .

767. Стальной шарик объемом 6 см 3 имеет массу 46,8 г. Какова масса шарика из той же стали, если его объем 2,5 см 3 ?

768. Из 21 кг хлопкового семени получили 5,1 кг масла. Сколько масла получится из 7 кг хлопкового семени?

769. Для строительства стадиона 5 бульдозеров расчистили площадку за 210 мин. За какое время 7 бульдозеров расчистят эту площадку?

770. Для перевозки груза потребовалось 24 машины 1рузо- подъемностыо 7,5 т. Сколько нужно машин грузоподъемностью 4,5 т, чтобы перевезти тот же груз?

771. Для определения всхожести семян посеяли горох. Из 200 посеянных горошин взошло 170. Какой процент горошин дали всходы (процент всхожести)?

772. Во время воскресника по озеленению города на улице посадили липы. Принялось 95% всех посаженных лип. Сколько посадили лип, если принялось 57 лип?

773. В лыжной секции занимаются 80 учащихся. Среди них 32 девочки. Какой участников секции составляют девочки и какой мальчики?

774. Колхоз по плану должен засеять 980 га кукурузой. Но план выполнили на 115%. Сколько гектаров кукурузы посеял колхоз?

775. За 8 месяцев рабочий выполнил 96% годового плана. Сколько процентов годового плана выполнит рабочий за 12 месяцев, если будет работать с той же производительностью?

776. За три дня было убрано 16,5% всей свеклы. Сколько потребуется дней, чтобы убрать 60,5% всей свеклы, если работать с той же производительностью?

777. В железной руде на 7 частей железа приходится 3 части примесей. Сколько тонн примесей в руде, которая содержит 73,5 т железа?

778. Для приготовления борща на каждые 100 г мяса надо взять 60 г свеклы. Сколько свеклы надо взять на 650 г мяса?

П 779. Вычислите устно:

780. Представьте в виде суммы двух дробей с числителем 1 каждую из следующих дробей:.
781. Из чисел 3, 7, 9 и 21 составьте две верные пропорции.

782. Средние члены пропорции 6 и 10. Какими могут быть крайние члены? Приведите примеры.

783. При каком значении х верна пропорция:

784. Найдите отношение:
а) 2 мин к 10 с; в) 0,1 кг к 0,1 г; д) 3 дм 3 к 0,6 м 3 .
б) 0,3 м 2 к 0,1 дм 2 ; г) 4 ч к 1 сут;

1) 6,0008:2,6 + 4,23 0,4;

2) 2,91 1,2 + 12,6288:3,6.

Д 795. Из 20 кг яблок получается 16 кг яблочного пюре. ^^ Сколько яблочного пюре получится из 45 кг яблок?

796. Трое маляров могут закончить работу за 5 дней. Для ускорения работы добавили еще двух маляров. За какое время они закончат работу, считая, что все маляры будут работать с одинаковой производительностью?

797. За 2,5 кг баранины заплатили 4,75 р. Сколько баранины можно купить по той же цене на 6,65 р.?

798. В сахарной свекле содержится 18,5% сахара. Сколько сахара содержится в 38,5 т сахарной свеклы? Ответ округлите до десятых долей тонны.

799. В семенах подсолнечника нового сорта содержится 49,5% масла. Сколько килограммов таких семян надо взять, чтобы в них содержалось 29,7 кг масла?

800. В 80 кг картофеля содержится 14 кг крахмала. Найдите процентное содержание крахмала в таком картофеле.

801. В семенах льна содержится 47% масла. Сколько масла содержится в 80 кг семян льна?

802. Рис содержит 75% крахмала, а ячмень 60%. Сколько надо взять ячменя, чтобы в нем содержалось столько же крахмала, сколько его содержится в 5 кг риса?

803. Найдите значение выражения:

а) 203,81:(141 -136,42) + 38,4:0,7 5;
б) 96:7,5 + 288,51:(80 - 76,74).

Н.Я.Виленкин, А.С. Чесноков, С.И. Шварцбурд, В.И.Жохов, Математика для 6 класса, Учебник для средней школы

Содержание урока конспект урока опорный каркас презентация урока акселеративные методы интерактивные технологии Практика задачи и упражнения самопроверка практикумы, тренинги, кейсы, квесты домашние задания дискуссионные вопросы риторические вопросы от учеников Иллюстрации аудио-, видеоклипы и мультимедиа фотографии, картинки графики, таблицы, схемы юмор, анекдоты, приколы, комиксы притчи, поговорки, кроссворды, цитаты Дополнения рефераты статьи фишки для любознательных шпаргалки учебники основные и дополнительные словарь терминов прочие Совершенствование учебников и уроков исправление ошибок в учебнике обновление фрагмента в учебнике элементы новаторства на уроке замена устаревших знаний новыми Только для учителей идеальные уроки календарный план на год методические рекомендации программы обсуждения Интегрированные уроки

§ 129. Предварительные разъяснения.

Человек постоянно имеет дело с самыми разнообразными величинами. Служащий и рабочий стараются к определённому времени попасть на службу, на работу, пешеход спешит дойти до известного места кратчайшим путём, истопник парового отопления беспокоится о том, что температура в котле медленно поднимается, хозяйственник строит планы снижения стоимости продукции и т. д.

Таких примеров можно было бы привести сколько угодно. Время, расстояние, температура, стоимость - всё это разнообразные величины. В первой и во второй частях настоящей книги мы ознакомились с некоторыми особенно часто встречающимися величинами: площадью, объёмом, весом. Со многими величинами мы встречаемся при изучении физики и других наук.

Представьте себе, что вы едете в поезде. Время от времени вы смотрите на часы и замечаете, как долго вы уже находитесь в пути. Вы говорите, например, что со времени отправления вашего поезда прошло 2, 3, 5, 10, 15 часов и т. д. Эти числа обозначают различные промежутки времени; они называются значениями этой величины (времени). Или вы смотрите в окно и следите по дорожным столбам за расстоянием, которое проходит ваш поезд. Перед вами мелькают числа 110, 111, 112, 113, 114 км. Эти числа обозначают различные расстояния, которые прошёл поезд от места отправления. Они тоже называются значениями, на этот раз другой величины (пути или расстояния между двумя пунктами). Таким образом, одна величина, например время, расстояние, температура, может принимать сколько угодно различных значений.

Обратите внимание на то, что человек почти никогда не рассматривает только одну величину, а всегда с в я з ы в а е т её с какими-нибудь другими величинами. Ему приходится одновременно иметь дело с двумя, тремя и большим числом величин. Представьте себе, что вам нужно к 9 часам попасть в школу. Вы смотрите на часы и видите, что в вашем распоряжении 20 минут. Тогда вы быстро соображаете, стоит ли вам садиться в трамвай или вы успеете дойти до школы пешком. Подумав, вы решаете идти пешком. Заметьте, что в то время, когда вы думали, вы решали некоторую задачу. Эта задача стала простой и привычной, так как вы решаете такие задачи каждый день. В ней вы быстро сопоставили несколько величин. Именно вы посмотрели на часы, значит, учли время, затем вы мысленно представили себе р а с с т о я н и е от вашего дома до школы; наконец, вы сравнили две величины: скорость вашего шага и скорость трамвая, и сделали вывод, что за данное время (20 мин.) вы успеете дойти пешком. Из этого простого примера вы видите, что в нашей практике некоторые величины связаны между собой, т. е. зависят друг от друга

В главе двенадцатой было рассказано об отношении однородных величин. Например, если один отрезок равен 12 м, а другой 4 м, то отношение этих отрезков будет 12: 4.

Мы говорили, что это есть отношение двух однородных величин. Можно сказать иначе, что это есть отношение двух чисел одного наименования.

Теперь, когда мы больше познакомились с величинами и ввели понятие значения величины, можно по-новому высказать определение отношения. В самом деле, когда мы рассматривали два отрезка 12 м и 4 м, то мы говорили об одной величине - длине, а 12 м и 4 м - это были только два разных значения этой величины.

Поэтому в дальнейшем, когда мы станем говорить об отношении, то будем рассматривать при этом два значения одной какой-нибудь величины, а отношением одного значения величины к другому значению той же величины будем называть частное от деления первого значения на второе.

§ 130. Величины прямо пропорциональные.

Рассмотрим задачу, в условие которой входят две величины: расстояние и время.

Задача 1. Тело, движущееся прямолинейно и равномерно, проходит в каждую секунду 12 см. Определить путь, пройденный телом в 2, 3, 4, ..., 10 секунд.

Составим таблицу, по которой можно было бы следить за изменением времени и расстояния.

Таблица даёт нам возможность сопоставить эти два ряда значений. Мы видим из неё, что когда значения первой величины (времени) постепенно увеличиваются в 2, 3, ..., 10 раз, то и значения второй величины (расстояния) тоже увеличиваются в 2, 3,..., 10 раз. Таким образом, при увеличении значений одной величины в несколько раз значения другой величины увеличиваются во столько же раз, а при уменьшении значений одной величины в несколько раз значения другой величины уменьшаются во столько же раз.

Рассмотрим теперь задачу, в которую входят две такие величины: количество материи и стоимость её.

Задача 2. 15 м ткани стоят 120 руб. Вычислить стоимость этой ткани для нескольких других количеств метров, указанных в таблице.

По этой таблице мы можем проследить, каким образом постепенно возрастает стоимость товара в зависимости от увеличения его количества. Несмотря на то что в этой задаче фигурируют совсем другие величины (в первой задаче - время и расстояние, а здесь - количество товара и его стоимость), тем не менее в поведении этих величин можно обнаружить большое сходство.

В самом деле, в верхней строке таблицы идут числа, обозначающие число метров ткани, под каждым из них написано число, выражающее стоимость соответствующего количества товара. Даже при беглом взгляде на эту таблицу видно, что числа и в верхнем и в нижнем ряду возрастают ; при более же внимательном рассмотрении таблицы и при сравнении отдельных столбцов обнаруживается, что во всех случаях значения второй величины возрастают во столько же раз, во сколько возрастают значения первой, т. е. если значение первой величины возросло, положим, в 10 раз, то и значение второй величины увеличилось тоже в 10 раз.

Если мы станем просматривать таблицу справа налево , то обнаружим, что указанные значения величин будут уменьшаться в одинаковое число раз. В этом смысле между первой задачей и второй имеется безусловное сходство.

Пары величин, с которыми мы встретились в первой и второй задачах, называются прямо пропорциональными.

Таким образом, если две величины связаны между собой так, что с увеличением (уменьшением) значения одной из них в несколько раз значение другой увеличивается (уменьшается) во столько же раз, то такие величины называются прямо пропорциональными.

О таких величинах говорят также, что они связаны между собой прямо пропорциональной зависимостью.

В природе и в окружающей нас жизни встречается множество подобных величин. Приведём примеры:

1. Время работы (день, два дня, три дня и т. д.) и заработок , полученный за это время при подённой оплате труда.

2. Объём какого-нибудь предмета, сделанного из однородного материала, и вес этого предмета.

§ 131. Свойство прямо пропорциональных величин.

Возьмём задачу, в которую входят следующие две величины: рабочее время и заработок. Если ежедневный заработок 20 руб., то заработок за 2 дня будет 40 руб., и т. д. Удобнее всего составить таблицу, в которой определённому числу дней будет соответствовать определённый заработок.

Рассматривая эту таблицу, мы видим, что обе величины приняли 10 различных значений. Каждому значению первой величины соответствует определённое значение второй величины, например 2 дням соответствуют 40 руб.; 5 дням соответствуют 100 руб. В таблице эти числа написаны одно под другим.

Мы уже знаем, что если две величины прямо пропорциональны, то каждая из них в процессе своего изменения увеличивается во столько же раз, во сколько раз увеличивается и другая. Отсюда сразу следует: если мы возьмём отношение каких-нибудь двух значений первой величины, то оно будет равно отношению двух соответствующих значений второй величины. В самом деле:

Почему это происходит? А потому, что эти величины прямо пропорциональны, т. е. когда одна из них (время) увеличилась в 3 раза, то и другая (заработок) увеличилась в 3 раза.

Мы пришли, следовательно, к такому выводу: если взять два каких-нибудь значения первой величины и разделить их одно на другое, а потом разделить одно на другое соответствующие им значения второй величины, то в обоих случаях получится одно и то же число, т. е. одно и то же отношение. Значит, два отношения, которые мы выше написали, можно соединить знаком равенства, т. е.

Нет сомнения в том, что если бы мы взяли не эти отношения, а другие и не в том порядке, а в обратном, то также получили бы равенство отношений. В самом деле, будем рассматривать значения наших величин слева направо и возьмём третьи и девятые значения:

60:180 = 1 / 3 .

Значит, мы можем написать:

Отсюда вытекает такой вывод: если две величины прямо пропорциональны, то отношение двух произвольно взятых значений первой величины равно отношению двух соответствующих значений второй величины.

§ 132. Формула прямой пропорциональности.

Составим таблицу стоимости различных количеств конфет, если 1 кг их стоит 10,4 руб.

Теперь поступим таким образом. Возьмём любое число второй строки и разделим его на соответствующее число первой строки. Например:

Вы видите, что в частном всё время получается одно и то же число. Следовательно, для данной пары прямо пропорциональных величин частное от деления любого значения одной величины на соответствующее значение другой величины есть число постоянное (т. е. не изменяющееся). В нашем примере это частное равно 10,4. Это постоянное число называется коэффициентом пропорциональности. В данном случае оно выражает цену единицы измерения, т. е. одного килограмма товара.

Как найти или вычислить коэффициент пропорциональности? Чтобы это сделать, нужно взять любое значение одной величины и разделить его на соответствующее значение другой.

Обозначим это произвольное значение одной величины буквой у , а соответствующее значение другой величины - буквой х , тогда коэффициент пропорциональности (обозначим его К ) найдём посредством деления:

В этом равенстве у - делимое, х - делитель и К - частное, а так как по свойству деления делимое равно делителю, умноженному на частное, то можно написать:

y = Kx

Полученное равенство называется формулой прямой пропорциональности. Пользуясь этой формулой, мы можем вычислить сколько угодно значений одной из прямо пропорциональных величин, если знаем соответствующие значения другой величины и коэффициент пропорциональности.

Пример. Из физики мы знаем, что вес Р какого-либо тела равен его удельному весу d , умноженному на объём этого тела V , т. е. Р = d V .

Возьмём пять железных болванок различного объёма; зная удельный вес железа (7,8), можем вычислить веса этих болванок по формуле:

Р = 7,8 V .

Сравнивая эту формулу с формулой у = Кх , видим, что у = Р , х = V , а коэффициент пропорциональности К = 7,8. Формула та же, только буквы другие.

Пользуясь этой формулой, составим таблицу: пусть объем 1-й болванки равен 8 куб. см, тогда вес её равен 7,8 8 = 62,4 (г). Объём 2-й болванки 27 куб. см. Её вес равен 7,8 27 = 210,6 (г). Таблица будет иметь такой вид:

Вычислите сами числа, недостающие в этой таблице, пользуясь формулой Р = d V .

§ 133. Другие способы решения задач с прямо пропорциональными величинами.

В предыдущем параграфе мы решили задачу, в условие которой входили прямо пропорциональные величины. Для этой цели мы предварительно вывели формулу прямой пропорциональности и потом эту формулу применяли. Теперь мы покажем два других способа решения подобных задач.

Составим задачу по числовым данным, приведённым в таблице предыдущего параграфа.

Задача. Болванка объёмом 8 куб. см весит 62,4 г. Сколько будет весить болванка объёмом 64 куб. см?

Решение. Вес железа, как известно, пропорционален его объёму. Если 8 куб. см весят 62,4 г, то 1 куб. см будет весить в 8 раз меньше, т. е.

62,4: 8 = 7,8 (г).

Болванка объёмом 64 куб. см будет весить в 64 раза больше, чем болванка в 1 куб. см, т. е.

7,8 64 = 499,2(г).

Мы решили нашу задачу способом приведения к единице. Смысл этого названия оправдывается тем, что для её решения нам пришлось в первом вопросе найти вес единицы объёма.

2. Способ пропорции. Решим эту же задачу способом пропорции.

Так как вес железа и его объём - величины прямо пропорциональные, то отношение двух значений одной величины (объёма) равно отношению двух соответствующих значений другой величины (веса), т. е.

(буквой Р мы обозначили неизвестный вес болванки). Отсюда:

(г).

Задача решена способом пропорций. Это значит, что для её решения была составлена пропорция из чисел, входящих в условие.

§ 134. Величины обратно пропорциональные.

Рассмотрим следующую задачу: «Пять каменщиков могут сложить кирпичные стены дома в 168 дней. Определить, во сколько дней могли бы выполнить ту же работу 10, 8, 6 и т. д. каменщиков».

Если 5 каменщиков сложили стены дома за 168 дней, то (при одинаковой производительности труда) 10 каменщиков могли бы выполнить это вдвое скорее, так как в среднем 10 человек выполняют работу в два раза большую, чем 5 человек.

Составим таблицу, по которой можно было бы следить за изменением числа рабочих и рабочего времени.

Например, чтобы узнать, сколько дней потребуется 6 рабочим, надо сначала вычислить, сколько дней требуется одному рабочему (168 5 = 840), а затем - шести рабочим (840: 6 = 140). Рассматривая эту таблицу, мы видим, что обе величины приняли шесть различных значений. Каждому значению первой величины соответствует определённее; значение второй величины, например 10-ти соответствует 84, числу 8 - число 105 и т. д.

Если мы будем рассматривать значения обеих величин слева направо, то увидим, что значения верхней величины возрастают , a значения нижней убывают . Возрастание и убывание подчинено следующему закону: значения числа рабочих увеличиваются во столько же раз, во сколько раз уменьшаются значения затраченного рабочего времени. Ещё проще эту мысль можно выразить так: чем б о л ь ш е занято в каком-либо деле рабочих, тем меньше им нужно времени для выполнения определённой работы. Две величины, с которыми мы встретились в этой задаче, называются обратно пропорциональными.

Таким образом, если две величины связаны между собой так, что с увеличением (уменьшением) значения одной из них в несколько раз значение другой уменьшается (увеличивается) во столько же раз, то такие величины называются обратно пропорциональными.

В жизни встречается много подобных величин. Приведём примеры.

1. Если на 150 руб. нужно купить несколько килограммов конфет, то количество конфет будет зависеть от ц е н ы одного килограмма. Чем выше цена, тем меньше можно купить на эти деньги товара; это видно из таблицы:

С повышением в несколько раз цены конфет уменьшается во столько же раз число килограммов конфет, какое можно купить на 150 руб. В этом случае две величины (вес товара и его цена) обратно пропорциональны.

2. Если расстояние между двумя городами 1 200 км, то оно может быть пройдено в различное время в зависимости от скорости передвижения. Существуют разные способы передвижения: пешком, на лошади, на велосипеде, на пароходе, в автомобиле, поездом, на самолёте. Чем меньше скорость , тем больше нужно времени для передвижения. Это видно из таблицы:

С увеличением скорости в несколько раз время передвижения уменьшается во столько же раз. Значит, при данных условиях скорость и время - величины обратно пропорциональные.

§ 135. Свойство обратно пропорциональных величин.

Возьмём второй пример, который мы рассматривали в предыдущем параграфе. Там мы имели дело с двумя величинами - скоростью движения и временем. Если мы будем рассматривать по таблице значения этих величин слева направо, то увидим, что значения первой величины (скорости) возрастают, а значения второй (времени) убывают, причём скорость увеличивается во столько же раз, во сколько раз уменьшается время. Нетрудно сообразить, что если написать отношение каких-нибудь значений одной величины, то оно не будет равно отношению соответствующих значений другой величины. В самом деле, если мы возьмём отношение четвёртого значения верхней величины к седьмому значению (40: 80), то оно не будет равно отношению четвёртого и седьмого значений нижней величины (30: 15). Это можно написать так:

40: 80 не равно 30: 15, или 40: 80 =/= 30: 15.

Но если вместо одного из этих отношений взять обратное, то получится равенство, т. е. из этих отношений можно будет составить пропорцию. Например:

80: 40 = 30: 15,

40: 80 = 15: 30."

На основании изложенного мы можем сделать такой вывод: если две величины обратно пропорциональны, то отношение двух произвольно взятых значений одной величины равно обратному отношению соответствующих значений другой величины.

§ 136. Формула обратной пропорциональности.

Рассмотрим задачу: «Имеется 6 кусков шёлковой ткани разной величины и различных сортов. Стоимость всех кусков одинаковая. В одном куске 100 м ткани ценой по 20 руб. за метр. Сколько метров в каждом из остальных пяти кусков, если метр ткани в эгих кусках соответственно стоит 25, 40, 50, 80, 100 руб.?» Для решения этой задачи составим таблицу:

Нам нужно заполнить пустые клетки в верхней строке этой таблицы. Попробуем сначала определить, сколько метров во втором куске. Это можно сделать следующим образом. Из условия задачи известно, что стоимость всех кусков одинаковая. Стоимость первого куска определить легко: в нём 100 м и каждый метр стоит 20 руб., значит, в первом куске шёлка на 2 000 руб. Так как во втором куске шёлка на столько же рублей, то, разделив 2 000 руб. на цену одного метра, т. е. на 25, мы найдём величину второго куска: 2 000: 25 = 80 (м). Таким же образом мы найдём величину всех остальных кусков. Таблица примет вид:

Нетрудно видеть, что между числом метров и ценой существует обратно пропорциональная зависимость.

Если вы сами проделаете необходимые вычисления, то заметите, что каждый раз вам придётся делить число 2 000 на цену 1 м. Наоборот, если вы теперь начнёте умножать величину куска в метрах на цену 1 м, то всё время будете получать число 2 000. Этого и нужно было ожидать, так как каждый кусок стоит 2 000 руб.

Отсюда можно сделать такой вывод: для данной пары обратно пропорциональных величин произведение любого значения одной величины на соответствующее значение другой величины есть число постоянное (т. е. не изменяющееся).

В нашей задаче это произведение равно 2 000. Проверьте, что и в предыдущей задаче, где говорилось о скорости движения и времени, необходимом для переезда из одного города в другой, существовало также постоянное для той задачи число (1 200).

Принимая во внимание все сказанное, легко вывести формулу обратной пропорциональности. Обозначим некоторое значение одной величины буквой х , а соответствующее значение другой ве личины - буквой у . Тогда на основании изложенного произведение х на у должно быть равно некоторой постоянной величине, которую обозначим буквой К , т. е.

х у = К .

В этом равенстве х - множимое, у - множитель и K - произведение. По свойству умножения множитель равен произведению, делённому на множимое. Значит,

Это и есть формула обратной пропорциональности. Пользуясь ею, мы можем вычислить сколько угодно значений одной из обратно пропорциональных величин, зная значения другой и постоянное число К .

Рассмотрим ещё задачу: «Автор одного сочинения рассчитал, что если его книга будет иметь обычный формат, то в ней будет 96 страниц, если же карманный формат, то в ней окажется 300 страниц. Он испробовал разные варианты, начал с 96 страниц, и тогда у него на странице получилось 2 500 букв. Затем он взял те числа страниц, какие указаны ниже в таблице, и снова вычислил, сколько букв будет на странице».

Попробуем и мы вычислить, сколько будет букв на странице, если в книге будет 100 страниц.

Во всей книге 240 000 букв, так как 2 500 96 = 240 000.

Принимая это во внимание, воспользуемся формулой обратной пропорциональности (у - число букв на странице, х - число страниц):

В нашем примере К = 240 000, следовательно,

Итак, на странице 2 400 букв.

Подобно этому узнаем, что если в книге будет 120 страниц, то число букв на странице будет:

Наша таблица примет вид:

Остальные клетки заполните самостоятельно.

§ 137. Другие способы решения задач с обратно пропорциональными величинами.

В предыдущем параграфе мы решали задачи, в условия которых входили обратно пропорциональные величины. Мы предварительно вывели формулу обратной пропорциональности и потом эту формулу применяли. Теперь мы покажем для таких задач два других способа решения.

1. Способ приведения к единице.

Задача. 5 токарей могут сделать некоторую работу в 16 дней. Во сколько дней могут выполнить эту работу 8 токарей?

Решение. Между числом токарей и рабочим временем существует обратно пропорциональная зависимость. Если 5 токарей делают работу за 16 дней, то одному человеку для этого понадобится в 5 раз больше времени, т. е.

5 токарей выполняют работу в 16 дней,

1 токарь выполнит её в 16 5 = 80 дней.

В задаче спрашивается, во сколько дней выполнят работу 8 токарей. Очевидно, они справятся с работой в 8 раз скорее, чем 1 токарь, т. е. за

80: 8 = 10 (дней).

Это и есть решение задачи способом приведения к единице. Здесь пришлось прежде всего определить время выполнения работы одним рабочим.

2. Способ пропорции. Решим ту же задачу вторым способом.

Так как между числом рабочих и рабочим временем существует обратно пропорциональная зависимость, то можно написать: продолжительность работы 5 токарей новое число токарей (8) продолжительность работы 8 токарей прежнее число токарей (5) Обозначим искомую продолжительность работы буквой х и подставим в пропорцию, выраженную словами, необходимые числа:

Та же самая задача решена способом пропорций. Для её решения нам пришлось составить пропорцию из чисел, входящих в условие задачи.

Примечание. В предыдущих параграфах мы рассмотрели вопрос о прямой и обратной пропорциональности. Природа и жизнь дают нам множество примеров прямой и обратной пропорциональной зависимости величин. Однако нужно заметить, что эти два вида зависимости являются только простейшими. Наряду с ними встречаются иные, более сложные зависимости между величинами. Кроме того, не нужно думать, что если какие-нибудь две величины одновременно возрастают, то между ними обязательно существует прямая пропорциональность. Это далеко не так. Например, плата за проезд по железной дороге возрастает в зависимости от расстояния: чем дальше мы едем, тем больше платим, ко это не значит, что плата пропорциональна расстоянию.


Если две величины связаны между собой так, что при увеличении (уменьшении ) значения одной из них в несколько раз значение второй уменьшается (увеличивается ) во столько же раз, то такие величины называются обратно пропорциональными.

В жизни встречается много таких величин.


Скорость и время при одинаковой длине пути .

Если скорость уменьшается, то время увеличивается, а если скорость увеличивается, то время уменьшается.


Количество рабочих и время при определении объёма работ .

При выполнении одной и той же работы, чем меньше работников, тем больше нужно времени, чтобы выполнить эту работу и наоборот.


Длина и ширина прямоугольника при постоянной площади прямоугольника .

Если площадь прямоугольника постоянна, то при увеличении длины, ширина уменьшается и наоборот.


ПРИМЕР:


Если на 15 руб, нужно купить несколько килограммов конфет, то количество конфет будет зависеть от цены одного килограмма. Чем выше цена, тем меньше можно купить на эти деньги товара. Это видно из таблицы.

С повышением в несколько раз цены конфет уменьшается во столько же раз число килограммов конфет, которое можно купить на 15 руб. В этом случае две величины (вес товара и его цена ) обратно пропорциональны .


ПРИМЕР:


Если расстояние между двумя городами 1200 км, то оно может быть пройдено в различное время в зависимости от скорости передвижения. Существуют разные способы передвижения : пешком, на лошади, на велосипеде, на пароходе, в автомобиле, на поезде, на самолёте. Чем меньше скорость, тем больше нужно времени для передвижения. Это видно из таблицы.


С увеличением скорости в несколько раз время передвижения уменьшается во столько же раз. Значит, при данных условиях скорость и время – величины обратно пропорциональные.


Свойство обратно пропорциональных величин.


Если две величины обратно пропорциональны, то отношение двух произвольно взятых значений одной величины равно обратному отношению соответствующих значений другой величины.

Возьмём пример, который мы рассматривали ранее. Там мы имели дело с двумя величинами – скоростью движения и временем. Если мы будем рассматривать по таблице значения этих величин слева направо, то увидим, что значения первой величины (скорости) возрастают, а значения второй (времени) убывают, причём скорость увеличивается во столько же раз, во сколько раз уменьшается время . Нетрудно сообразить, что если написать отношение каких-нибудь значений одной величины, то оно не будет равно отношению соответствующих значений другой величины. В самом деле, если мы возьмём отношение четвертого значения верхней величины к седьмому значению (40: 80) , то оно не будет равно отношению четвертого и седьмого значений нижней величины (30: 15) . Это можно написать так:

40: 80 не равно 30: 15 , или 40: 80 ≠ 30: 15 .

Но если вместо одного из этих отношений взять обратное, то получится равенство, т. е. из этих отношений можно будет составить пропорцию.


ПРИМЕР:

80: 40 = 30: 15

40: 80 = 15: 30.


Формула обратной пропорциональности.


Для данной пары обратно пропорциональных величин произведение любого значения одной величины на соответствующее значение другой величины есть число постоянное (т. е. не изменяющееся ).

Принимая во внимание всё сказанное, легко вывести формулу обратной пропорциональности. Обозначим некоторое значение одной величины буквой х , а соответствующее значение другой величины – буквой у . Тогда на основании изложенного произведение х на у должно быть равно некоторой постоянной величине, которую обозначим буквой К , т. е.:


х × у = К.

В этом равенстве х – множимое, у – множитель и К – произведение. По свойству умножения множитель равен произведению, делённому на множимое. Значит:

ЗАДАЧА:


Автор одного сочинения рассчитал, что если его книга будет иметь обычный формат, то в ней будет 96 станиц, если же карманный формат, то в ней окажется 300 страниц. Он испробовал разные варианты, начал с 96 страниц и тогда у него на странице получилось 2500 букв. Сколько будет букв на странице, если в книжке будет 100 страниц ?

Во всей книге 240000 букв, так как :

2500 × 96 = 240000.


Принимая это во внимание, воспользуемся формулой обратной пропорциональности (у – число букв на странице, х – число страниц ),

К = 240000 ,

следовательно,

Итак, на странице 2400 букв.

Подобно этому узнаем, что если в книге будет 120 страниц, то число букв на странице будет :

Цели:

  • образовательные:
    • дать представление о симметрии;
    • познакомить с основными видами симметрии на плоскости и в пространстве;
    • выработать прочные навыки построения симметричных фигур;
    • расширить представления об известных фигурах, познакомив со свойствами, связанных с симметрией;
    • показать возможности использования симметрии при решении различных задач;
    • закрепить полученные знания;
  • общеучебные:
    • научить настраивать себя на работу;
    • научить вести контроль за собой и соседом по парте;
    • научить оценивать себя и соседа по парте;
  • развивающие:
  • воспитательные:
    • воспитываать у учащихся “чувство плеча”;
    • воспитывать коммуникативность;
    • прививать культуру общения.

ХОД УРОКА

Перед каждым лежат ножницы и лист бумаги.

Задание 1 (3 мин).

– Возьмем лист бумаги, сложим его попалам и вырежем какую-нибудь фигурку. Теперь развернем лист и посмотрим на линию сгиба.

Вопрос: Какую функцию выполняет эта линия?

Предполагаемый ответ: Эта линия делит фигуру пополам.

Вопрос: Как расположены все точки фигуры на двух получившихся половинках?

Предполагаемый ответ: Все точки половинок находятся на равном расстоянии от линии сгиба и на одном уровне.

– Значит, линия сгиба делит фигурку пополам так, что 1 половинка является копией 2 половинки, т.е. эта линия непростая, она обладает замечательным свойством (все точки относительно ее находятся на одинаковом расстоянии), эта линия – ось симметрии.

Задание 2 (2 мин).

– Вырезать снежинку, найти ось симметрии, охарактеризовать ее.

Задание 3 (5 мин).

– Начертить в тетради окружность.

Вопрос: Определить, как проходит ось симметрии?

Предполагаемый ответ: По-разному.

Вопрос: Так сколько осей симметрии имеет окружность?

Предполагаемый ответ: Много.

– Правильно, окружность имеет множество осей симметрии. Такой же замечательной фигурой является шар (пространственная фигура)

Вопрос: Какие еще фигуры имеют не одну ось симметрии?

Предполагаемый ответ: Квадрат, прямоугольник, равнобедренный и равносторонний треугольники.

– Рассмотрим объемные фигуры: куб, пирамиду, конус, цилиндр и т.д. Эти фигуры тоже имеют ось симметрии.Определите, сколько осей симметрии у квадрата, прямоугольника, равностороннего треугольника и у предложенных объемных фигур?

Раздаю учащимся половинки фигурок из пластилина.

Задание 4 (3 мин).

– Используя полученную информацию, долепить недостающую часть фигурки.

Примечание: фигурка может быть и плоскостной, и объемной. Важно, чтобы учащиеся определили, как проходит ось симметрии, и долепили недостающий элемент. Правильность выполнения определяет сосед по парте, оценивает, насколько правильно проделана работа.

Из шнурка одного цвета на рабочем столе выложена линия (замкнутая, незамкнутая, с самопересечением, без самопересечения).

Задание 5 (групповая работа 5 мин).

– Определить визуально ось симметрии и относительно нее достроить из шнурка другого цвета вторую часть.

Правильность выполненной работы определяется самими учениками.

Перед учащимися представлены элементы рисунков

Задание 6 (2 мин).

– Найдите симметричные части этих рисунков.

Для закрепления пройденного материала предлагаю следующие задания, предусмотренные на 15 мин.:

Назовите все равные элементы треугольника КОР и КОМ. Каков вид этих треугольников?

2. Начертите в тетради несколько равнобедренных треугольников с общим основанием равным 6 см.

3. Начертите отрезок АВ. Постройте прямую перпендикулярную отрезку АВ и проходящую через его середину. Отметьте на ней точки С и D так, чтобы четырехугольник АСВD был симметричен относительно прямой АВ.

– Наши первоначальные представления о форме относятся к очень отдаленной эпохе древнего каменного века – палеолита. В течение сотен тысячелетий этого периода люди жили в пещерах, в условиях мало отличавшихся от жизни животных. Люди изготовляли орудия для охоты и рыболовства, вырабатывали язык для общения друг с другом, а в эпоху позднего палеолита украшали свое существование, создавая произведения искусства, статуэтки и рисунки, в которых обнаруживается замечательное чувство формы.
Когда произошел переход от простого собирания пищи к активному ее производству, от охоты и рыболовства к земледелию, человечество вступает в новый каменный век, в неолит.
Человек неолита обладал острым чувством геометрической формы. Обжиг и раскраска глиняных сосудов, изготовление камышовых циновок, корзин, тканей, позже – обработка металлов вырабатывали представления о плоскостных и пространственных фигурах. Неолитические орнаменты радовали глаз, выявляя равенство и симметрию.
– А где в природе встречается симметрия?

Предполагаемый ответ: крылья бабочек, жуков, листья деревьев…

– Симметрию можно наблюдать и в архитектуре. Строя здания, строители четко придерживаются симметрии.

Поэтому здания получаются такие красивые. Также примером симметрии служит человек, животные.

Задание на дом:

1. Придумать свой орнамент, изобразить его на листе формат А4 (можно нарисовать в виде ковра).
2. Нарисовать бабочек, отметить, где присутствуют элементы симметрии.

Жизнь людей наполнена симметрией. Это удобно, красиво, не нужно выдумывать новых стандартов. Но что она есть на самом деле и так ли красива в природе, как принято считать?

Симметрия

С древних времен люди стремятся упорядочить мир вокруг себя. Поэтому что-то считается красивым, а что-то не очень. С эстетической точки зрения как привлекательные рассматриваются золотое и серебряное сечения, а также, разумеется, симметрия. Этот термин имеет греческое происхождение и дословно означает "соразмерность". Разумеется, речь идет не только о совпадении по этому признаку, но также и по некоторым другим. В общем смысле симметрия - это такое свойство объекта, когда в результате тех или иных образований результат равен исходным данным. Это встречается как в живой, так и в неживой природе, а также в предметах, сделанных человеком.

Прежде всего термин "симметрия" употребляется в геометрии, но находит применение во многих научных областях, причем его значение остается в общем и целом неизменным. Это явление достаточно часто встречается и считается интересным, поскольку различается несколько его видов, а также элементов. Использование симметрии также интересно, ведь она встречается не только в природе, но и в орнаментах на ткани, бордюрах зданий и многих других рукотворных предметах. Стоит рассмотреть это явление поподробнее, поскольку это крайне увлекательно.

Употребление термина в других научных областях

В дальнейшем симметрия будет рассматриваться с точки зрения геометрии, однако стоит упомянуть, что данное слово используется не только здесь. Биология, вирусология, химия, физика, кристаллография - все это неполный список областей, в которых данное явление изучается с различных сторон и в разных условиях. От того, к какой науке относится этот термин, зависит, например, классификация. Так, разделение на типы серьезно варьируется, хотя некоторые основные, пожалуй, остаются неизменными везде.

Классификация

Различают несколько основных типов симметрии, из которых наиболее часто встречаются три:


Кроме того, в геометрии различают также следующие типы, они встречаются значительно реже, но не менее любопытны:

  • скользящая;
  • вращательная;
  • точечная;
  • поступательная;
  • винтовая;
  • фрактальная;
  • и т. д.

В биологии все виды называются несколько иначе, хотя по сути могут быть такими же. Подразделение на те или иные группы происходит на основании наличия или отсутствия, а также количества некоторых элементов, таких как центры, плоскости и оси симметрии. Их следует рассмотреть отдельно и более подробно.

Базовые элементы

В явлении выделяют некоторые черты, одна из которых обязательно присутствует. Так называемые базовые элементы включают в себя плоскости, центры и оси симметрии. Именно в соответствии с их наличием, отсутствием и количеством определяется тип.

Центром симметрии называют точку внутри фигуры или кристалла, в которой сходятся линии, соединяющие попарно все параллельные друг другу стороны. Разумеется, он существует не всегда. Если есть стороны, к которым нет параллельной пары, то такую точку найти невозможно, поскольку ее нет. В соответствии с определением, очевидно, что центр симметрии - это то, через что фигура может быть отражена сама на себя. Примером может служить, например, окружность и точка в ее середине. Этот элемент обычно обозначается как C.

Плоскость симметрии, разумеется, воображаема, но именно она делит фигуру на две равные друг другу части. Она может проходить через одну или несколько сторон, быть параллельной ей, а может делить их. Для одной и той же фигуры может существовать сразу несколько плоскостей. Эти элементы обычно обозначаются как P.

Но, пожалуй, наиболее часто встречается то, что называют "оси симметрии". Это нередкое явление можно увидеть как в геометрии, так и в природе. И оно достойно отдельного рассмотрения.

Оси

Часто элементом, относительно которого фигуру можно назвать симметричной,


выступает прямая или отрезок. В любом случае речь идет не о точке и не о плоскости. Тогда рассматриваются фигур. Их может быть очень много, и расположены они могут быть как угодно: делить стороны или быть параллельными им, а также пересекать углы или не делать этого. Оси симметрии обычно обозначаются как L.

Примерами могут служить равнобедренные и В первом случае будет вертикальная ось симметрии, по обе стороны от которой равные грани, а во втором линии будут пересекать каждый угол и совпадать со всеми биссектрисами, медианами и высотами. Обычные же треугольники ею не обладают.

Кстати, совокупность всех вышеназванных элементов в кристаллографии и стереометрии называется степенью симметрии. Этот показатель зависит от количества осей, плоскостей и центров.

Примеры в геометрии

Условно можно разделить все множество объектов изучения математиков на фигуры, имеющие ось симметрии, и такие, у которых ее нет. В первую категорию автоматически попадают все окружности, овалы, а также некоторые частные случаи, остальные же попадают во вторую группу.

Как и в случае, когда говорилось про ось симметрии треугольника, данный элемент для четырехугольника существует не всегда. Для квадрата, прямоугольника, ромба или параллелограмма он есть, а для неправильной фигуры, соответственно, нет. Для окружности оси симметрии - это множество прямых, которые проходят через ее центр.

Кроме того, интересно рассмотреть и объемные фигуры с этой точки зрения. Хотя бы одной осью симметрии помимо всех правильных многоугольников и шара будут обладать некоторые конусы, а также пирамиды, параллелограммы и некоторые другие. Каждый случай необходимо рассматривать отдельно.

Примеры в природе

В жизни называется билатеральной, она встречается наиболее
часто. Любой человек и очень многие животные тому пример. Осевая же называется радиальной и встречается гораздо реже, как правило, в растительном мире. И все-таки они есть. Например, стоит подумать, сколько осей симметрии имеет звезда, и имеет ли она их вообще? Разумеется, речь идет о морских обитателях, а не о предмете изучения астрономов. И правильным ответом будет такой: это зависит от количества лучей звезды, например пять, если она пятиконечная.

Кроме того, радиальная симметрия наблюдается у многих цветков: ромашки, васильки, подсолнухи и т. д. Примеров огромное количество, они буквально везде вокруг.


Аритмия

Этот термин, прежде всего, напоминает большинству о медицине и кардиологии, однако он изначально имеет несколько другое значение. В данном случае синонимом будет "асимметрия", то есть отсутствие или нарушение регулярности в том или ином виде. Ее можно встретить как случайность, а иногда она может стать прекрасным приемом, например, в одежде или архитектуре. Ведь симметричных зданий очень много, но знаменитая чуть наклонена, и хоть она не одна такая, но это самый известный пример. Известно, что так получилось случайно, но в этом есть своя прелесть.

Кроме того, очевидно, что лица и тела людей и животных тоже не полностью симметричны. Проводились даже исследования, согласно результатам которых "правильные" лица расценивались как неживые или просто непривлекательные. Все-таки восприятие симметрии и это явление само по себе удивительны и пока не до конца изучены, а потому крайне интересны.