Эта статья дает начальное представление о тождествах . Здесь мы определим тождество, введем используемое обозначение, и, конечно же, приведем различные примеры тождеств.

Навигация по странице.

Что такое тождество?

Логично начать изложение материала с определения тождества . В учебнике Макарычева Ю. Н. алгебра для 7 классов определение тождества дается так:

Определение.

Тождество – это равенство, верное при любых значениях переменных; любое верное числовое равенство – это тоже тождество.

При этом автор сразу оговаривается, что в дальнейшем это определение будет уточнено. Это уточнение происходит в 8 классе, после знакомства с определением допустимых значений переменных и ОДЗ . Определение становится таким:

Определение.

Тождества – это верные числовые равенства, а также равенства, которые верны при всех допустимых значениях входящих в них переменных.

Так почему, определяя тождество, в 7 классе мы говорим про любые значения переменных, а в 8 классе начинаем говорить про значения переменных из их ОДЗ? До 8 класса работа ведется исключительно с целыми выражениями (в частности, с одночленами и многочленами), а они имеют смысл для любых значений входящих в них переменных. Поэтому в 7 классе мы и говорим, что тождество – это равенство, верное при любых значениях переменных. А в 8 классе появляются выражения, которые уже имеют смысл не для всех значений переменных, а только для значений из их ОДЗ. Поэтому тождествами мы начинаем называть равенства, верные при всех допустимых значениях переменных.

Итак, тождество – это частный случай равенства. То есть, любое тождество является равенством. Но не всякое равенство является тождеством, а только такое равенство, которое верно для любых значений переменных из их области допустимых значений.

Знак тождества

Известно, что в записи равенств используется знак равенства вида «=», слева и справа от которого стоят некоторые числа или выражения. Если к этому знаку добавить еще одну горизонтальную черту, то получится знак тождества «≡», или как его еще называют знак тождественного равенства .

Знак тождества обычно применяют лишь тогда, когда нужно особо подчеркнуть, что перед нами не просто равенство, а именно тождество. В остальных случаях записи тождеств по виду ничем не отличаются от равенств.

Примеры тождеств

Пришло время привести примеры тождеств . В этом нам поможет определение тождества, данное в первом пункте.

Числовые равенства 2=2 и являются примерами тождеств, так как эти равенства верные, а любое верное числовое равенство по определению является тождеством. Их можно записать как 2≡2 и .

Тождествами являются и числовые равенства вида 2+3=5 и 7−1=2·3 , так как эти равенства являются верными. То есть, 2+3≡5 и 7−1≡2·3 .

Переходим к примерам тождеств, содержащих в своей записи не только числа, но и переменные.

Рассмотрим равенство 3·(x+1)=3·x+3 . При любом значении переменной x записанное равенство является верным в силу распределительного свойства умножения относительно сложения, поэтому, исходное равенство является примером тождества. Вот еще один пример тождества: y·(x−1)≡(x−1)·x:x·y 2:y , здесь область допустимых значений переменных x и y составляют все пары (x, y) , где x и y - любые числа, кроме нуля.

А вот равенства x+1=x−1 и a+2·b=b+2·a не являются тождествами, так как существуют значения переменных, при которых эти равенства будут неверны. Например, при x=2 равенство x+1=x−1 обращается в неверное равенство 2+1=2−1 . Более того, равенство x+1=x−1 вообще не достигается ни при каких значениях переменной x . А равенство a+2·b=b+2·a обратится в неверное равенство, если взять любые различные значения переменных a и b . К примеру, при a=0 и b=1 мы придем к неверному равенству 0+2·1=1+2·0 . Равенство |x|=x , где |x| - переменной x , также не является тождеством, так как оно неверно для отрицательных значений x .

Примерами наиболее известных тождеств являются вида sin 2 α+cos 2 α=1 и a log a b =b .

В заключение этой статьи хочется отметить, что при изучении математики мы постоянно сталкиваемся с тождествами. Записи свойств действий с числами являются тождествами, например, a+b=b+a , 1·a=a , 0·a=0 и a+(−a)=0 . Также тождествами являются

Рассмотрим две равенства:

1. a 12 *a 3 = a 7 *a 8

Это равенство будет выполняться при любых значениях переменной а. Областью допустимых значений для того равенства будет все множество вещественных чисел.

2. a 12: a 3 = a 2 *a 7 .

Это неравенство будет выполняться для всех значений переменной а, кроме а равного нулю. Областью допустимых значений для этого неравенства будет все множество вещественных чисел, кроме нуля.

О каждом из этих равенств можно утверждать, что оно будет верно при любых допустимых значениях переменных а. Такие равенства в математике называются тождествами .

Понятие тождества

Тождество - это равенство, верное при любых допустимых значениях переменных. Если в данное равенство подставить вместо переменных любые допустимые значения, то должно получиться верное числовое равенство.

Стоит отметить, что верные числовые равенства тоже являются тождествами. Тождествами, например, будут являться свойства действий над числами.

3. a + b = b + a;

4. a + (b + c) = (a + b) + c;

6. a*(b*c) = (a*b)*c;

7. a*(b + c) = a*b + a*c;

11. a*(-1) = -a.

Если два выражения при любых допустимых переменных соответственно равны, то такие выражения называют тождественно равными . Ниже представлены несколько примеров тождественно равных выражений:

1. (a 2) 4 и a 8 ;

2. a*b*(-a^2*b) и -a 3 *b 2 ;

3. ((x 3 *x 8)/x) и x 10 .

Мы всегда можем заменить одно выражение любым другим выражением, тождественно равным первому. Такая замена будет являться тождественным преобразованием.

Примеры тождеств

Пример 1: являются ли тождествами следующие равенства:

1. a + 5 = 5 + a;

2. a*(-b) = -a*b;

3. 3*a*3*b = 9*a*b;

Не все представленные выше выражения будут являться тождествами. Из этих равенств тождествами являются лишь 1,2 и 3 равенства. Какие бы числа мы в них не подставили, вместо переменных а и b у нас все равно получатся верные числовые равенства.

А вот 4 равенство уже не является тождеством. Потому что не при всех допустимых значениях это равенство будет выполняться. Например, при значениях a = 5 и b = 2 получится следующий результат:

Данное равенство не верно, так как число 3 не равняется числу -3.

Числа и выражения, из которых составлено исходное выражение, можно заменять тождественно равными им выражениями. Такое преобразование исходного выражения приводит к тождественно равному ему выражению.

Например, в выражении 3+x число 3 можно заменить суммой 1+2 , при этом получится выражение (1+2)+x , которое тождественно равно исходному выражению. Другой пример: в выражении 1+a 5 степень a 5 можно заменить тождественно равным ей произведением, например, вида a·a 4 . Это нам даст выражение 1+a·a 4 .

Данное преобразование, несомненно, искусственно, и обычно является подготовкой к каким-либо дальнейшим преобразованиям. Например, в сумме 4·x 3 +2·x 2 , учитывая свойства степени, слагаемое 4·x 3 можно представить в виде произведения 2·x 2 ·2·x . После такого преобразования исходное выражение примет вид 2·x 2 ·2·x+2·x 2 . Очевидно, слагаемые в полученной сумме имеют общий множитель 2·x 2 , таким образом, мы можем выполнить следующее преобразование - вынесение за скобки. После него мы придем к выражению: 2·x 2 ·(2·x+1) .

Прибавление и вычитание одного и того же числа

Другим искусственным преобразованием выражения является прибавление и одновременное вычитание одного и того же числа или выражения. Такое преобразование является тождественным, так как оно, по сути, эквивалентно прибавлению нуля, а прибавление нуля не меняет значения.

Рассмотрим пример. Возьмем выражение x 2 +2·x . Если к нему прибавить единицу и отнять единицу, то это позволит в дальнейшем выполнить еще одно тождественное преобразование - выделить квадрат двучлена : x 2 +2·x=x 2 +2·x+1−1=(x+1) 2 −1 .

Список литературы.

  • Алгебра: учеб. для 7 кл. общеобразоват. учреждений / [Ю. Н. Макарычев, Н. Г. Миндюк, К. И. Нешков, С. Б. Суворова]; под ред. С. А. Теляковского. - 17-е изд. - М. : Просвещение, 2008. - 240 с. : ил. - ISBN 978-5-09-019315-3.
  • Алгебра: учеб. для 8 кл. общеобразоват. учреждений / [Ю. Н. Макарычев, Н. Г. Миндюк, К. И. Нешков, С. Б. Суворова]; под ред. С. А. Теляковского. - 16-е изд. - М. : Просвещение, 2008. - 271 с. : ил. - ISBN 978-5-09-019243-9.
  • Мордкович А. Г. Алгебра. 7 класс. В 2 ч. Ч. 1. Учебник для учащихся общеобразовательных учреждений / А. Г. Мордкович. - 17-е изд., доп. - М.: Мнемозина, 2013. - 175 с.: ил. ISBN 978-5-346-02432-3.

В ходе изучения алгебры мы сталкивались с понятиями многочлен (например ($y-x$ ,$\ 2x^2-2x$ и тд) и алгебраическая дробь(например $\frac{x+5}{x}$ , $\frac{2x^2}{2x^2-2x}$,$\ \frac{x-y}{y-x}$ и тд). Сходство этих понятий в том, что и в многочленах, и в алгебраических дробях присутствуют переменные и числовые значения, выполняются арифметические действия: сложение, вычитание, умножение, возведение в степень. Отличие этих понятий состоит в том, что в многочленах не производится деление на переменную, а в алгебраических дробях деление на переменную можно производить.

И многочлены , и алгебраические дроби в математике называются рациональными алгебраическими выражениями. Но многочлены являются целыми рациональными выражениями, а алгебраические дроби- дробно- рациональными выражениями.

Можно получить из дробно --рационального выражения целое алгебраическое выражение используя тождественное преобразование, которое в данном случае будет являться основным свойством дроби - сокращением дробей. Проверим это на практике:

Пример 1

Выполнить преобразование:$\ \frac{x^2-4x+4}{x-2}$

Решение: Преобразовать данное дробно-рациональное уравнение можно путем использования основного свойства дроби- сокращения, т.е. деления числителя и знаменателя на одно и то же число или выражение, отличное от $0$.

Сразу данную дробь сократить нельзя,необходимо преобразовать числитель.

Преобразуем выражние стоящее в числителе дроби,для этого воспользуемся формулой квадрата разности :$a^2-2ab+b^2={(a-b)}^2$

Дробь имеет вид

\[\frac{x^2-4x+4}{x-2}=\frac{x^2-4x+4}{x-2}=\frac{{(x-2)}^2}{x-2}=\frac{\left(x-2\right)(x-2)}{x-2}\]

Теперь мы видим, что в числителе и в знаменателе есть общий множитель --это выражение $x-2$, на которое произведем сокращение дроби

\[\frac{x^2-4x+4}{x-2}=\frac{x^2-4x+4}{x-2}=\frac{{(x-2)}^2}{x-2}=\frac{\left(x-2\right)(x-2)}{x-2}=x-2\]

После сокращения мы получили, что исходное дробно-рациональное выражение $\frac{x^2-4x+4}{x-2}$ стало многочленом $x-2$, т.е. целым рациональным.

Теперь обратим внимание на то, что тождественными можно считать выражения $\frac{x^2-4x+4}{x-2}$ и $x-2\ $ не при всех значениях переменной, т.к. для того, чтобы дробно-рациональное выражение существовало и было возможно сокращение на многочлен $x-2$ знаменатель дроби не должен быть равен $0$ (так же как и множитель, на который мы производим сокращение. В данном примере знаменатель и множитель совпадают, но так бывает не всегда).

Значения переменной, при которых алгебраическая дробь будет существовать называются допустимыми значениями переменной.

Поставим условие на знаменатель дроби: $x-2≠0$,тогда $x≠2$.

Значит выражения $\frac{x^2-4x+4}{x-2}$ и $x-2$ тождественны при всех значениях переменной, кроме $2$.

Определение 1

Тождественно равными выражениями называются те, которые равны при всех допустимых значениях переменной.

Тождественным преобразованием является любая замена исходного выражения на тождественно равное ему.К таким преобразованиям относятся выполнение действий: сложения, вычитания, умножение, вынесение общего множителя за скобку, приведение алгебраических дробей к общему знаменателю, сокращение алгебраических дробей, приведение подобных слагаемых и т.д. Необходимо учитывать,что ряд преобразований, такие как, сокращение, приведение подобных слагаемых могут изменить допустимые значения переменной.

Приемы, использующиеся для доказательств тождеств

    Привести левую часть тождества к правой или наоборот с использованием тождественных преобразований

    Привести обе части к одному и тому же выражению с помощью тождественных преобразований

    Перенести выражения, стоящие в одной части выражения в другую и доказать, что полученная разность равна $0$

Какое из приведенных приемов использовать для доказательства данного тождества зависит от исходного тождества.

Пример 2

Доказать тождество ${(a+b+c)}^2- 2(ab+ac+bc)=a^2+b^2+c^2$

Решение: Для доказательства данного тождества мы используем первый из приведенных выше приемов, а именно будем преобразовывать левую часть тождества до ее равенства с правой.

Рассмотрим левую часть тождества:$\ {(a+b+c)}^2- 2(ab+ac+bc)$- она представляет собой разность двух многочленов. При этом первый многочлен является квадратом суммы трех слагаемых.Для возведения в квадрат суммы нескольких слагаемых используем формулу:

\[{(a+b+c)}^2=a^2+b^2+c^2+2ab+2ac+2bc\]

Для этого нам необходимо выполнить умножение числа на многочлен.Вспомним, что для этого надо умножить общий множитель,стоящий за скобками на каждое слагаемое многочлена,стоящего в скобках.Тогда получим:

$2(ab+ac+bc)=2ab+2ac+2bc$

Теперь вернемся к исходному многочлену,он примет вид:

${(a+b+c)}^2- 2(ab+ac+bc)=\ a^2+b^2+c^2+2ab+2ac+2bc-(2ab+2ac+2bc)$

Обратим внимание, что перед скобкой стоит знак «-» значит при раскрытии скобок все знаки, которые были в скобках меняются на противоположные.

${(a+b+c)}^2- 2(ab+ac+bc)=\ a^2+b^2+c^2+2ab+2ac+2bc-(2ab+2ac+2bc)= a^2+b^2+c^2+2ab+2ac+2bc-2ab-2ac-2bc$

Приведем подобные слагаемые,тогда получим, что одночлены $2ab$, $2ac$,$\ 2bc$ и $-2ab$,$-2ac$, $-2bc$ взаимно уничтожатся, т.е. их сумма равна $0$.

${(a+b+c)}^2- 2(ab+ac+bc)=\ a^2+b^2+c^2+2ab+2ac+2bc-(2ab+2ac+2bc)= a^2+b^2+c^2+2ab+2ac+2bc-2ab-2ac-2bc=a^2+b^2+c^2$

Значит путем тождественных преобразований мы получили тождественное выражение в левой части исходного тождества

${(a+b+c)}^2- 2(ab+ac+bc)=\ a^2+b^2+c^2$

Заметим, что полученное выражение показывает, что исходное тождество --верно.

Обратим внимание, что в исходном тождестве допустимы все значения переменной, значит мы доказали тождество используя тождественные преобразования, и оно верно при всех допустимых значениях переменной.

Тема « Доказательства тождеств » 7 класс (КРО)

Учебник Макарычев Ю.Н., Миндюк Н.Г.

Цели урока

Образовательные:

    ознакомить и первично закрепить понятия «тождественно равные выражения», «тождество», «тождественные преобразования»;

    рассмотреть способы доказательства тождеств, способствовать выработке навыков доказательства тождеств;

    проверить усвоение учащимися пройденного материала, сформировывать умения применения изученного для восприятия нового.

Развивающая:

    Развивать грамотную математическую речь учащихся (обогащать и усложнять словарный запас при использовании специальных математических терминов),

    развивать мышление,

Воспитательная: воспитывать трудолюбие, аккуратность, правильность записи решения упражнений.

Тип урока: изучение нового материала

Ход урока

1 . Организационный момент.

Проверка домашнего задания.

Вопросы по домашнему заданию.

Разбор решения у доски.

Математика нужна
Без нее никак нельзя
Учим, учим мы, друзья,
Что же помним мы с утра?

2 . Сделаем разминку.

    Результат сложения. (Сумма)

    Сколько цифр вы знаете? (Десять)

    Сотая часть числа. (Процент)

    Результат деления? (Частное)

    Наименьшее натуральное число? (1)

    Можно ли при делении натуральных чисел получить ноль? (нет)

    Назовите наибольшее целое отрицательное число. (-1)

    На какое число нельзя делить? (0)

    Результат умножения? (Произведение)

    Результат вычитания. (Разность)

    Переместительное свойство сложения. (От перестановки мест слагаемых сумма не изменяется)

    Переместительное свойство умножения. (От перестановки мест множителей произведение не изменяется)

    Изучение новой темы (определение с записью в тетрадь)

Найдем значение выражений при х=5 и у=4

3(х+у)=3(5+4)=3*9=27

3х+3у=3*5+3*4=27

Мы получили один и тот же результат. Из распределительного свойства следует, что вообще при любых значениях переменных значения выражений 3(х+у) и 3х+3у равны.

Рассмотрим теперь выражения 2х+у и 2ху. При х=1 и у=2 они принимают равные значения:

Однако можно указать такие значения х и у, при которых значения этих выражений не равны. Например, если х=3, у=4, то

Определение : Два выражения, значения которых равны при любых значениях переменных, называются тождественно равными.

Выражения 3(х+у) и 3х+3у являются тождественно равными, а выражения 2х+у и 2ху не являются тождественно равными.

Равенство 3(х+у) и 3х+3у верно при любых значениях х и у. Такие равенства называются тождествами.

Определение: Равенство, верное при любых значениях переменных, называется тождеством.

Тождествами считают и верные числовые равенства. С тождествами мы уже встречались. Тождествами являются равенства, выражающие основные свойства действий над числами (Учащиеся комментируют каждое свойство, проговаривая его).

a + b = b + a
ab = ba
(a + b) + c = a + (b + c)
(ab)c = a(bc)
a(b + c) = ab + ac

Приведите другие примеры тождеств

Определение : Замену одного выражения другим, тождественно равным ему выражением, называют тождественным преобразованием или просто преобразованием выражения.

Тождественные преобразования выражений с переменными выполняются на основе свойств действий над числами.

Тождественные преобразования выражений широко применяются при вычислении значений выражений и решении других задач. Некоторые тождественные преобразования вам уде приходилось выполнять, например приведение подобных слагаемых, раскрытие скобок.

5 . № 691, № 692 (с проговариванием правил раскрытия скобок, умножения отрицательных и положительных чисел)

Тождества для выбора рационального решения: (фронтальная работа)

6 . Подведение итогов урока.

Учитель задает вопросы, а учащиеся отвечают на них по желанию.

    Какие два выражения называются тождественно равными? Приведите примеры.

    Какое равенство называется тождеством? Привести примером.

    Какие тождественные преобразования вам известны?

7. Домашнее задание. Выучить определения, Приведите примеры тождественных выражений (не менее 5) , запишите их в тетрадь