Опыт показывает, что постоянный ток при установившейся силе тока (не выходящей из допустимых пределов) раздражающего действия на ткани организма не оказывает. Раздражение вызывается при изменении силы тока и зависит от скорости, с которой это изменение происходит (закон Дюбуа-Реймона). Учитывая, что сила тока в растворе электролита зависит как от числа движущихся ионов, так и от скорости их перемещения, скорость изменения силы тока
следует сопоставить с их ускорением. Поэтому можно считать, что раздражающее действие тока обусловлено ускорением при перемещении ионов тканевых электролитов.

Раздражающее действие прямоугольных импульсов в значительной мере зависит от их длительности, обуславливающей наибольшее смещение ионов за время действия импульса . Эта зависимость описываетсяуравнением Вейса-Лапика:

,

где I П - пороговая сила тока (амплитуда импульса),t u - длительность импульса, а ив - коэффициенты, зависящие от природы возбудимой ткани и её функционального состояния.

Порогом в физиологии называется минимальная сила раздражения, вызывающая реакцию возбудимой ткани.

Как видно из графика на рис.2, предельно кратковременные импульсы (вызывающие смещение ионов, соизмеримое с амплитудой колебаний в тепловом движении) не оказывают раздражающего действия. При достаточно длительных импульсах (правая ветвь графика) раздражающее действие их становится независимым от длительности, значение порогового тока при этом называется реобазой (R). Точка “С ” кривой, ордината которой равна удвоенной реобазе, определяет длительность импульса, называемуюхронаксией (сhr). Хронаксия и реобаза характеризуют возбудимость органа или ткани и могут служить показателями их функционального состояния или диагностическим признаком при их поражении.

Согласно закону Дюбуа-Раймона ,раздражающее действие тока зависит от скорости нарастания его мгновенных значений, то есть от крутизны переднего фронта импульса . Это связано со свойством возбудимых тканей повышать порог (“приспосабливаться”) к постепенно нарастающей силе раздражения. Это свойство тканей называется аккомодацией и характеризуется снижением порогового тока “I n ” при возрастании крутизны переднего фронта одиночных достаточно длительных импульсов. Исследование аккомодации производится с помощью треугольных или трапецеидальных импульсов с регулируемой крутизной переднего фронта.

Способность к аккомодации у возбудимых тканей зависит от их функционального состояния. Например, у патологически измененных мышц способность к аккомодации снижается и для них более физиологическими является постепенно (экспоненциально) нарастающие импульсы.

Амплитуда импульсов, обуславливающая силу тока в цепи, зависит главным образом от числа ионов, вовлеченных в движение. Изменением амплитуды импульсов при определенных их форме и длительности обычно регулируется сила раздражения при данной процедуре.

Действие на ткани ритмически повторяющихся одиночных импульсов называется частотным раздражением . Частотное раздражение позволяет выявить особое свойство возбудимых тканей, названное Н.Введенским лабильностью или функциональной подвижностью, которое характеризует способность ткани давать оптимальную реакцию только в определенных пределах частоты повторения раздражающих импульсов. Определение лабильности осуществляется путем наблюдения характера реакции, например, тетанического сокращения мышц, при различной частоте раздражающих импульсов тока.

Из области физиологических исследований электростимуляция перешла в клинику, где она используется в качестве лечебного воздействия при недостаточности или нарушении естественной функции тех или иных органов или систем.

Раздражение тканей зависит также и от формы импульсного тока, длительности импульса и его амплитуды. Так, например,увеличение крутизны фронта импульса уменьшает пороговую силу тока, который вызывает сокращение мышц. Это свидетельствует о том, что мышцы приспосабливаются к изменению силы тока, наступают ионные компенсационные процессы. Крутизна прямоугольного импульса очень велика (теоретически - бесконечна), поэтому для таких импульсов пороговая сила тока меньше, чем для других. Существует определенная связь между пороговой I m ах амплитудой и длительностью прямоугольного импульса, который вызывает раздражение (рис. 15.2). Каждой точке кривой и точкам, лежащим выше кривой, соответствуют импульсы, которые вызывают сокращение мышц. Точки, расположен­ные ниже кривой, отображают импульсы, не вызывающие раздражения. Кривая на рисунке называется характеристикой воз буждения. Она специфична для разных мышц.

Так как специфическое физиологическое действие электрического тока зависит от формы импульсов, то в медицине для стимуляции центральной нервной системы (электросон, электронаркоз), нервно-мышечной системы, сердечно-сосудистой системы (кардиостимуляторы, дефибрилляторы) и т. д. используют токи с различной временной зависимостью.

Ток с импульсами прямоугольной формы с длительностью импульсов и = 0,1 -1 мс и диапазоном частот 5-150 Гц иcпользуют для лечения электросном, токи с  и = 0,8-3 мс и диапазоном частот 1-1,2 Гц применяют во вживляемых (имплантируемых) кардиостимуляторах. Ток с импульсами треугольной формы (рис. 15.3,а ; с и = 1 -1,5 мс, частота 100 Гц), а также с импульсами экспоненциальной формы (рис. 15.3, б;  и = 3-60 мс, частоты 8-80 Гц) применяют для возбуждения мышц, в частности при электрогимнастике. Для разных видов электролечения используют диадинамические токи, предложенные Бернаром. На рис. 15.3,в показанаформа одного из видов такого импульсного тока, частота следования импульсов около 100 Гц.

Важнейшим параметром, характеризующим механические, звуковые, электрические, электромагнитные и все другие виды колебаний, является период - время, в течение которого совершается одно полное колебание. Если, например, маятник часов-ходиков делает за 1 с два полных колебания, период каждого колебания равен 0,5с. Период колебаний больших качелей около 2 с, а период колебаний струны может составлять от десятых до десятитысячных долей секунды.

Рисунок 2.4 - Колебание

где: φ – фаза колебания, I – сила тока, Ia – амплитудное значение силы тока (амплитуда)

Т – период колебания силы тока (период)

Другим параметром, характеризующим колебания, является частота (от слова «часто») - число, показывающее, сколько полных колебаний в секунду совершают маятник часов, звучащее тело, ток в проводнике и т.п. Частоту колебаний оценивают единицей, носящей название герц (сокращенно пишут Гц): 1 Гц-это одно колебание в секунду. Если, например, звучащая струна совершает 440 полных колебаний в 1 с (при этом она создает тон «ля» третьей октавы), говорят, что частота ее колебаний 440 Гц. Частота переменного тока электроосветительной сети 50 Гц. При этом токе электроны в проводах сети в течение секунды текут попеременно 50 раз в одном направлении и столько же раз в обратном, т.е. совершают за 1 с 50 полных колебаний.

Более крупные единицы частоты - килогерц (пишут кГц), равный 1000 Гц и мегагерц (пишут МГц), равный 1000 кГц или 1 000 000 Гц.

Амплитуда - максимальное значение смещения или изменения переменной величины при колебательном или волновом движении. Неотрицательная скалярная величина, измеряется в единицах, зависящих от типа волны или колебания.

Рисунок 2.5 - Синусоидальное колебание.

где, y - амплитуда волны, λ - длина волны.

Например:

    амплитуда для механического колебания тела (вибрация), для волн на струне или пружине - это расстояние и записывается в единицах длины;

    амплитуда звуковых волн и аудио-сигналов обычно относится к амплитуде давления воздуха в волне, но иногда описывается как амплитуда смещения относительно равновесия (воздуха или диафрагмы говорящего). Её логарифм обычно измеряется в децибелах (дБ);

    для электромагнитного излучения амплитуда соответствует величине электрического и магнитного поля.

Форма изменения амплитуды называется огибающей волной .

Звуковые колебания

Как возникают звуковые волны в воздухе? Воздух состоит из невидимых глазам частиц. При ветре они могут переноситься на большие расстояния. Но они, кроме того, могут и колебаться. Например, если в воздухе сделать резкое движение палкой, то мы почувствуем легкий порыв ветра и одновременно услышим слабый звук. Звук это - результат колебаний частиц воздуха, возбужденных колебаниями палки.

Проведем такой опыт. Оттянем струну, например, гитары, а потом отпустим ее. Струна начнет дрожать - колебаться около своего первоначального положения покоя. Достаточно сильные колебания струны заметны на глаз. Слабые колебания струны можно только почувствовать как легкое щекотание, если прикоснуться к ней пальцем. Пока струна колеблется, мы слышим звук. Как только струна успокоится, звук затихнет. Рождение звука здесь - результат сгущения и разрежения частиц воздуха. Колеблясь из стороны в сторону, струна теснит, как бы прессует перед собой частицы воздуха, образуя в некотором его объеме области повышенного давления, а сзади, наоборот, области пониженного давления. Это и есть звуковые волны . Распространяясь в воздухе со скоростью около 340 м/с , они несут в себе некоторый запас энергии. В тот момент, когда до уха доходит область повышенного давления звуковой волны, она надавливает на барабанную перепонку, несколько прогибая ее внутрь. Когда же до уха доходит разреженная область звуковой волны, барабанная перепонка выгибается несколько наружу. Барабанная перепонка все время колеблется в такт с чередующимися областями повышенного и пониженного давления воздуха. Эти колебания передаются по слуховому нерву в мозг, и мы воспринимаем их как звук. Чем больше амплитуды звуковых волн, тем больше энергии несут они в себе, тем громче воспринимаемый нами звук.

Звуковые волны, как и водяные или электрические колебания, изображают волнистой линией - синусоидой. Ее горбы соответствуют областям повышенного давления, а впадины-областям пониженного давления воздуха. Область повышенного давления и следующая за нею область пониженного давления образуют звуковую волну.

По частоте колебаний звучащего тела можно судить о тоне или высоте звука. Чем больше частота, тем выше тон звука, и наоборот, чем меньше частота, тем ниже тон звука. Наше ухо способно реагировать на сравнительно небольшую полосу (участок) частот звуковых колебаний - примерно от 20 Гц до 20 кГц . Тем не менее эта полоса частот вмещает всю обширнейшую гамму звуков, создаваемых голосом человека, симфоническим оркестром: от очень низких тонов, похожих на звук жужжания жука, до еле уловимого высокого писка комара. Колебания частотой до 20 Гц, называемые инфразвуковыми , и свыше 20 кГц, называемые ультразвуковыми , мы не слышим. А если бы барабанная перепонка нашего уха оказалась способной реагировать и на ультразвуковые колебания, мы могли бы тогда услышать писк летучих мышей, голос дельфина. Дельфины издают и слышат ультразвуковые колебания с частотами до 180 кГц.

Но нельзя путать высоту, т.е. тон звука с его силой. Высота звука зависит не от амплитуды, а от частоты колебаний. Толстая и длинная струна музыкального инструмента, например, создает низкий тон звука, т.е. колеблется медленнее, чем тонкая и короткая струна, создающая высокий тон звука (рис. 1).

Рисунок 2.6 - Звуковые волны

Чем больше частота колебаний струны, тем короче звуковые волны и выше тон звука.

В электро - и радиотехнике используют переменные токи частотой от нескольких герц до тысяч гигагерц. Антенны широковещательных радиостанций, например, питаются токами частотой примерно от 150 кГц до 100 МГц.

Эти быстропеременные колебания, называемые колебаниями радиочастоты, и являются тем средством, с помощью которого осуществляется передача звуков на большие расстояния без проводов.

Весь огромный диапазон переменных токов принято подразделять на несколько участков - поддиапазонов.

Токи частотой от 20 Гц до 20 кГц, соответствующие колебаниям, воспринимаемым нами как звуки разной тональности, называют токами (или колебаниями) звуковой частоты , а токи частотой выше 20 кГц - токами ультразвуковой частоты .

Токи частотой от 100 кГц до 30 МГц называют токами высокой частоты ,

Токи частотой выше 30 МГц - токами ультравысокой и сверхвысокой частоты.

В монохроматической световой волне электрическое поле и магнитное поле изменяются с постоянной частотой (циклическая частота), каждая проекция векторов и пропорциональна величине cos(t +). Здесь t - время, (t +) - фаза колебаний, - начальная фаза, зависящая от пространственных координат. Разные проекции векторов и могут иметь различающиеся начальные фазы.

Поверхность с определенным значением фазы (поверхность равных фаз) перемещается в направлении волнового вектора по нормали к поверхности со скоростью c/n (фазовая скорость света), где c - скорость света в вакууме, n - показатель преломления среды. Длина волнового вектора называется волновым числом и по определению равна

здесь л - длина волны света.

В бегущей монохроматической световой волне векторы и в каждый момент времени перпендикулярны друг другу и равны по величине (в системе единиц СГС Гаусса). Направление движения световой волны перпендикулярно обоим векторам и, то есть световая волна - поперечная волна. Если векторы и в какой-то точке пространства в какой-то момент времени не перпендикулярны друг другу или не равны по длине, то через эту точку проходит не одна волна, а несколько волн в различных направлениях.

Пусть световая волна распространяется в направлении оси Z. Тогда вектор лежит в плоскости XY, так как перпендикулярен направлению распространения. Если вектор колеблется вдоль какой-то линии в этой плоскости, то световая волна называется линейно поляризованной. Если вектор произвольно меняется в плоскости XY, то в каждый момент времени его можно разложить на сумму двух векторов вдоль осей X и Y. Произвольную волну, распространяющуюся вдоль оси Z, можно представить, как сумму двух линейно поляризованных волн с колебанием вектора вдоль осей X и Y соответственно.

Если конец вектора вращается по окружности в плоскости XY, то такой свет называется циркулярно поляризованным или светом с круговой поляризацией. Свет поляризован по левому кругу, если в фиксированной точке при наблюдении навстречу свету вектор (как и вектор) вращается по левому кругу, то есть против часовой стрелки. Если конец вектора описывает эллипс, то волна называется эллиптически поляризованной. Если волна монохроматическая, то конец вектора описывает эллипс, окружность, либо вектор гармонически колеблется вдоль линии.

Интенсивностью световой волны I называют среднее значение модуля вектора Пойнтинга. Время усреднения либо считают равным времени регистрации света, либо равным постоянной времени приемника света. Поскольку для бегущей волны векторы и перпендикулярны, модуль вектора Пойнтинга можно найти по формуле

Если еще учесть, что E = H, то получим выражение

Следовательно, для интенсивности можно записать

где скобки <> означают среднее по времени значение. Эта формула приближенно верна и при сложении почти однонаправленных световых волн.

Пусть модуль напряженности электрического поля E световой волны в некоторой точке изменяется по закону

Поставим в соответствие этой вещественной функции E некоторую комплексную функцию, которую будем называть комплексной напряженностью поля световой волны

где i - мнимая единица, а знак минус перед i - вопрос соглашения. Назовем величину (t -) - комплексной амплитудой световой волны.

Вещественная (настоящая) напряженность поля световой волны E равна вещественной части придуманной нами комплексной напряженности.

Возникает вопрос, насколько однозначно это сопоставление.

Действительно, есть неоднозначность сопоставления комплексного числа вещественному, но для аналитической функции, например, гармонической (косинусоидальной) эта неоднозначность пропадает. Если вещественная функция в окрестности некоторой точки разлагается в ряд Тейлора, то эту функцию с помощью этого ряда однозначно можно продолжить на комплексную плоскость.

Время, в течение которого совершается одно полное изме­нение ЭДС, то есть один цикл колебания или один полный оборот радиуса-вектора, называется периодом колебания пере­менного тока (рисунок 1).

Рисунок 1. Период и амплитуда синусоидального колебания. Период - время одного колебания; Аплитуда - его наибольшее мгновенное значение.

Период выражают в секундах и обозначают буквой Т .

Так же используются более мелкие единицы измерения периода это миллисекунда (мс)- одна тысячная секунды и микросекунда (мкс)- одна миллионная секунды.

1 мс =0,001сек =10 -3 сек.

1 мкс=0,001 мс = 0,000001сек =10 -6 сек.

1000 мкс = 1 мс.

Число полных изменений ЭДС или число оборотов ради­уса-вектора, то есть иначе говоря, число полных циклов колеба­ний, совершаемых переменным током в течение одной секунды, называется частотой колебаний переменного тока .

Частота обо­значается буквой f и выражается в периодах в секунду или в герцах.

Одна тысяча герц называется килогерцом (кГц), а миллион герц - мегагерцом (МГц). Существует так же единица гигагерц (ГГц) равная одной тысячи мегагерц.

1000 Гц = 10 3 Гц = 1 кГц;

1000 000 Гц = 10 6 Гц = 1000 кГц = 1 МГц;

1000 000 000 Гц = 10 9 Гц = 1000 000 кГц = 1000 МГц = 1 ГГц;

Чем быстрее происходит изменение ЭДС, то есть чем бы­стрее вращается радиус-вектор, тем меньше период колебания Чем быстрее вращается радиус-вектор, тем выше частота. Таким образом, частота и период переменного тока являются величинами, обратно пропорциональными друг другу. Чем больше одна из них, тем меньше другая.

Математическая связь между периодом и частотой переменного тока и напряжения выра­жается формулами

Например, если частота тока равна 50 Гц, то период будет равен:

Т = 1/f = 1/50 = 0,02 сек.

И наоборот, если известно, что период тока равен 0,02 сек, (T=0,02 сек.), то частота будет равна:

f = 1/T=1/0,02 = 100/2 = 50 Гц

Частота переменного тока, используемого для освещения и промышленных целей, как раз и равна 50 Гц.

Частоты от 20 до 20 000 Гц называются звуковыми часто­тами. Токи в антеннах радиостанций колеблются с частотами до 1 500 000 000 Гц или, иначе говоря, до 1 500 МГц или 1,5 ГГц. Такие вы­сокие частоты называются радиочастотами или колебаниями высокой частоты.

Наконец, токи в антеннах радиолокационных станций, станций спутниковой связи, других спецсистем (например ГЛАНАСС, GPS) колеблются с частотами до 40 000 МГц (40 ГГц) и выше.

Амплитуда переменного тока

Наибольшее значение, которого достигает ЭДС или сила тока за один период, называется амплитудой ЭДС или силы переменного тока . Легко заметить, что амплитуда в масштабе равна длине радиуса-вектора. Амплитуды тока, ЭДС и напряжения обозначаются соответственно бук­вами Im, Em и Um (рисунок 1).

Угловая (циклическая) частота переменного тока.

Скорость вращения радиуса-вектора, т. е. изменение ве­личины угла поворота в течение одной секунды, называется угловой (циклической) частотой переменного тока и обозначается греческой буквой ? (оме­га). Угол поворота радиуса-вектора в любой данный момент относительно его начального положения измеряется обычно не в градусах, а в особых единицах - радианах.

Радианом называется угловая величина дуги окружности, длина которой равна радиусу этой окружности (рисунок 2). Вся окружность, составляющая 360°, равна 6,28 радиан, то есть 2.

Рисунок 2.

1рад = 360°/2

Следовательно, конец радиуса-вектора в течение одного периода пробегают путь, равный 6,28 радиан (2). Так как в тече­ние одной секунды радиус-вектор совершает число оборотов, равное частоте переменного тока f , то за одну секунду его ко­нец пробегает путь, равный 6,28 * f радиан. Это выражение, характеризующее скорость вращения радиуса-вектора, и будет угловой частотой переменного тока - ? .

? = 6,28*f = 2f

Угол поворота радиуса-вектора в любое данное мгновение относительно его начального положения называется фазой переменного тока . Фаза характеризует величину ЭДС (или тока) в данное мгновение или, как говорят, мгновенное значение ЭДС, ее направление в цепи и направление ее изменения; фаза пока­зывает, убывает ли ЭДС или возрастает.

Рисунок 3.

Полный оборот радиуса-вектора равен 360°. С началом но­вого оборота радиуса-вектора изменение ЭДС происходит в том же порядке, что и в течение первого оборота. Следова­тельно, все фазы ЭДС будут повторяться в прежнем поряд­ке. Например, фаза ЭДС при повороте радиуса-вектора на угол в 370° будет такой же, как и при повороте на 10°. В обо­их этих случаях радиус-вектор занимает одинаковое положе­ние, и, следовательно, мгновенные значения ЭДС будут в обоих этих случаях одинаковыми по фазе.

Измерение амплитуды сигналов

Амплитуду синусоидального сигнала, а также любого другого сигнала, можно оценивать не только как абсолютное максимальное его значение. Иногда пользуются понятием двойная амплитуда (амплитуда от пика до пика сигнала), которая, как нетрудно догадаться, равна удвоенной амплитуде. Иногда употребляют понятие эффективное значение, которое определяется следующим образом: U ЭФФ = U m = 0,707U m . Это соотношение справедливо только для синусоидальных сигналов: для других видов сигналов отношение амплитуды к эффективному значению будет другим. Синусоидальные сигналы часто характеризуются эффективными значениями; дело в том, что именно эффективное значение используется для определения мощности. В России напряжение в сети имеет эффективное значение 220 В и частоту 50 Гц.

Измерение амплитуды в децибелах . Как сравнить амплитуды двух сигналов? Можно, например, сказать, что сигнал X в два раза больше, чем сигнал Y . Во многих случаях именно так и производят сравнение. Но очень часто подобные отношения достигают миллионов, и тогда удобнее пользоваться логарифмической зависимостью и измерять отношение в децибелах (децибел составляет одну десятую часть бела, но единицей «бел» никогда не пользуются). По определению отношение двух сигналов, выраженное в децибелах:

= 20lg(А 2 /А 1 ),

где А 1 и А 2 – амплитуды двух сигналов. Например, если один сигнал имеет амплитуду вдвое большую, чем другой, то отношение первого сигнала ко второму составляет +6 дБ, так как lg2 = 0,3010. Если один сигнал в 10 раз больше другого, то отношение первого ко второму составляет +20 дБ, в 100 раз – +40 дБ, а если один сигнал в 10 раз меньше другого – то -20 дБ. Отношение мощностей двух сигналов определяется как dБ = 10lg(Р 2 /Р 1 ), где P 1 и Р 2 – мощности двух сигналов. Если оба сигнала имеют одну и ту же форму, т.е. представлены синусоидами, то оба способа определения отношения сигналов (через амплитуду и мощность) дают одинаковый результат. Для сравнения сигналов разной формы, например, синусоидального и шумового следует использовать мощность (или эффективные значения).

Хотя децибел служит для определения отношения двух сигналов, иногда эту единицу используют для измерения абсолютного, а не относительного значения амплитуды. Дело в том, что можно взять некоторую эталонную амплитуду и определять любую другую амплитуду в децибелах по отношению к эталонной. Известно несколько стандартных значений амплитуды, используемых для такого сравнения (эти значения не указываются, но подразумеваются); приведем некоторые из них: а) дБВ – эффективное значение 1 В; б) дБВт – напряжение, соответствую-щее мощности 1 мВт на некоторой предполагаемой нагрузке, для радиочастот это обычно 50 Ом, для звуковых частот – 600 Ом (напряжение 0 дБВт на этих нагрузках имеет эффективное значение 0,22 В и 0,78 В); в) дБп – небольшой шумовой сигнал, генерируемый резистором при комнатной температуре. Нужно обратить внимание на эталонную амплитуду 0 дБ: при использовании этого значения нужно не забывать его оговаривать, например «амплитуда 27 дБ относительно эффективного значения 1 В», или в сокращенной форме «27 дБ относительно 1 В эфф » или пользоваться условным обозначением дБВ.

Импульсные сигналы

Электрическим импульсом называют напряжение или ток, отличающийся от нуля и имеющий постоянное значение лишь в течение короткого промежутка времени, меньшего или сравнимого с длительностью установления процессов в электрической системе, в которой действует этот ток или напряжение. В случае следующих друг за другом импульсов обычно предполагается, что интервал между ними существенно превышает длительность процессов установления.

В противном случае этот сигнал называют переменным напряжением или током сложной формы. С чисто математической точки зрения переходные процессы протекают, как известно, бесконечно долго, поэтому данное определение не совсем строго. Однако в реальных цепях длительность этих процессов не превышает 3τ , где τ – постоянная времени цепи, поэтому такое определение вполне допустимо.

Все многообразие электрических импульсов можно разделить на видеоимпульсы (рис. 1.2, а) и радиоимпульсы (рис. 1.2, б).

Связь между этими двумя типами импульсов состоит в том, что огибающая радиоимпульса представляет собой видеоимпульс. Частота синусоидального сигнала, которым заполнен видеоимпульс, называется частотой заполнения. Системы автоматики и управления оперируют в основном с видеоимпульсами, которые в дальнейшем будем называть просто импульсами.

Рис.1.2. Видео- и радиоимпульсы

На рис.1.3 приведен пример реального импульса.

Основными характеристиками и параметрами импульсов являются:

1.Амплитуда импульса U m = А ;

2.Активная длительность импульса (измеряется на уровне 0,1А) t И;

3.Крутизна фронта s Ф = dU/dt ≈ U m /t Ф ;

4.Крутизна спада s СП = dU/dt ≈ U m /t СП ;

Рис. 1.3. Реальный прямоугольный импульс

5.Искажение вершины импульса ΔU ;

6.Амплитуда обратного выброса U m ОБР;

7.Длительность обратного выброса t И ОБР;

8.Мощность импульса P = W/t И, где W – энергия импульса.

Периодически повторяющиеся импульсы образуют импульсную последовательность (рис.1.4). Она характеризуется следующими параметрами:

1.Частота импульсной последовательности ƒ = 1/Т , где T = t И + t П;

2.Коэффициент заполнения γ = t И (диапазон изменения 0…1) и скважность Q = Т/t И (диапазон изменения от до 1);

3.Среднее значение импульса (рис.1.5)

Рис. 1.4. Импульсная последовательность

Рис. 1.5. Определение среднего значения импульса

Импульсы имеют различную форму: прямоугольные, треугольные, трапецеидальные, экспоненциальные и др. (рис.1.6), так же могут быть однополярными (а) и разнополярными (б) (рис.1.7). Однополярные импульсы могут быть положительными и отрицательными. Для получения импульсных последовательностей различной формы, частоты и амплитуды применяют специальные генераторы.

Рис. 1.6. Треугольные (а), трапецеидальные (б), экспоненциальные (в) импульсы


Рис. 1.7. Однополярные положительные (а) и разнополярные (б) прямоугольные импульсы

При анализе работы систем автоматического управления и их отдельных элементов в качестве типовых возмущений используют одно из следующих.

Ступенчатое возмущение - мгновенное изменение воздействия на постоянную величину, чаще всего равную единице измерения (рис. 1.8, а). Физически система испытывает толчок. Аналитически



(1.5)

Единичный скачок в момент t 1 пo отношению к моменту t 0 аналитически записывается в виде 1(t 1 – t 0).

Рис.1.8. Типовые возмущения

2. Импульсное возмущение – это возмущение, полученное как последовательность двух одинаковых по величине, но противоположных по знаку ступенчатых возмущений, сдвинутых во времени. Особое значение имеет единичная импульсная или дельта-функция. Она обозначается .

Дельта-функция обладает следующими свойствами:

Свойство (1.6) означает, что, несмотря на то, что функция имеет пренебрежимо малую длительность, площадь, ограниченная ей, имеет конечное значение, равное 1.

Свойство (1.7) означает, что импульсная функция , полученная как произведение произвольной функции на дельта-функцию, существует лишь в момент t 1 и площадь ее равна значению функции в точке t 1 . Единичная импульсная функция является производной от единичного скачка.

3. Периодическое возмущение . В ряде случаев периодическое возмущение является наиболее удобным для исследования. Так, для автоматических систем, работающих в режиме незатухающих колебаний, целесообразно проводить проверку их свойств под действием периодических возмущений.

Стандартным считается периодическое возмущение единичной амплитуды x(t)= sin ωt .

Аналоговые и дискретные сигналы имеют некоторые общие характеристики, с помощью которых они описываются. К таким характеристикам относятся: динамический диапазон, время установления и ширина спектра сигнала.

Динамический диапазон характеризуется отношением наибольшей мгновенной (пиковой) мощности к наименьшей (пороговой) мощности. Динамический диапазон является чисто физической характеристикой сигнала и не отражает смысла передаваемой с помощью этого сигнала информации. Однако его выбор определяется максимально допустимыми искажениями, которым может подвергаться сигнал в процессе формирования, передачи, обработки и приема без потери заключенной в нем информации. Наименьшая (пороговая) мощность сигнала определяется уровнем шумов и помех, которые неизбежно присутствуют в виде колебаний и скачков питающего напряжения, тепловых шумов, наводок от излучения, электромагнитных полей и т. д. При этом сигнал должен быть таким, чтобы он четко различался на уровне помех. Увеличение сигнала приводит к росту отношения сигнал-помеха, однако максимальное (пиковое) значение сигнала ограничивается как ростом затрачиваемой мощности, так и предельными характеристиками элементов и устройств, через которые происходит передача сигналов. Насыщение этих элементов приводит к искажению передаваемых сигналов, а значит и заключенной в них информации.

Время установления является динамической характеристикой сигнала и определяется временем, за которое сигнал достигнет своего установившегося значения. Этот параметр непосредственно связан с временными характеристиками устройств, формирующих сигнал, и определяется их инерционностью. Время установления можно характеризовать либо функцией времени (временной характеристикой), описывающей реальный процесс, либо функцией частоты (спектром, или рядом гармонических колебаний). При этом оба представления равносильны и взаимно дополняют друг друга, а переход от одного к другому осуществляется с помощью прямого и обратного преобразования Фурье или Лапласа.

Выбор того или иного способа описания (временного или частотного) определяется исключительно назначением устройства. При этом меняется лишь точка зрения на предмет, но не сам предмет, который представляет собой объективную реальность, независимую от способа ее описания.

Кроме рассмотренных общих характеристик, различные виды сигналов характеризуются рядом дополнительных, детализирующих их параметров. У постоянного напряжения – это амплитуда, у переменного напряжения – амплитуда, частота, фаза, среднее и действующее значения. Импульсные сигналы более сложны по форме, поэтому опишем их более детально.