От величины активного, индуктивного и ёмкостного сопротивления.
tg w = (X-C)/R. Где w - угол сдвига фаз, X - индуктивное сопротивление, C- ёмкостное сопротивление, R- активное сопротивление.

Угол сдвига фаз между напряжением и током в электрической цепи определяется аргументом ее комплексного сопротивления  . Поэтому при анализе цепи часто бывает достаточно определить характер изменения этого угла при вариации некоторого параметра.

Пусть R= const, а X =var. Тогда конец вектора Z будет скользить по прямой R= const (рис. 2). При X = 0 сопротивление Z вещественное, т.е. чисто резистивное и сдвиг фаз между током и напряжением  равен нулю.

Аналитический расчет токи в цепи по методу узловых напряжений

Метод узловы́х потенциалов - метод расчета электрических цепей путём записи системы линейных алгебраических уравнений , в которой неизвестными являются потенциалы в узлах цепи . В результате применения метода определяются потенциалы во всех узлах цепи, а также, при необходимости, токи во всех ветвях.

Данный метод вытекает из первого закона Кирхгофа. В качестве неизвестных принимаются потенциалы узлов, по найденным значениям которых с помощью закона Ома для участка цепи с источником ЭДС затем находят токи в ветвях. Поскольку потенциал – величина относительная, потенциал одного из узлов (любого) принимается равным нулю. Таким образом, число неизвестных потенциалов, а следовательно, и число уравнений равно

Перед началом расчёта выбирается один из узлов (базовый узел), потенциал которого считается равным 0. Затем узлы нумеруются, после чего составляется система уравнений .

Уравнения составляются для каждого узла, кроме базового. Слева от знака равенства записывается:

потенциал рассматриваемого узла, умноженный на сумму проводимостей ветвей, примыкающих к нему;

минус потенциалы узлов, примыкающих к данному, умноженные на проводимости ветвей, соединяющих их с данным узлом.

Справа от знака равенства записывается:

сумма всех источников токов , примыкающих к данному узлу;

сумма произведений всех ЭДС, примыкающих к данному узлу, на проводимость соответствующего звена.

Если источник направлен в сторону рассматриваемого узла, то он записывается со знаком «+», в противном случае - со знаком «−».

Проверка баланса мощностей

Баланс мощностей является следствием закона сохранения энергии - суммарная мощность вырабатываемая (генерируемая) источниками электрической энергии равна сумме мощностей потребляемой в цепи.



Баланс мощностей используют для проверки правильности расчета электрических цепей.

Здесь мы рассмотрим баланс для цепей постоянного тока.

Например. У нас есть электрическая цепь.

Для проверки правильности решения составляем баланс мощностей.

Источники E1 и E2 вырабатывают электрическую энергию, т.к. направление ЭДС и тока в ветвях с источниками совпадают (если ЭДС и ток в ветвях направлены в противоположную сторону, то источник ЭДС потребляет энергию и его записывают со знаком минус ). Баланс мощностей для заданной цепи запишется так:

Но т.к. витки сдвинуты в пространстве, то наводимая в них ЭДС будет достигать амплитудных и нулевых значений не одновременно.

В начальный момент времени ЭДС витка будет:

В этих выражениях углы и называются фазными , или фазой . Углы и называются начальной фазой . Фазный угол определяет значение ЭДС в любой момент времени, а начальная фаза определяет значение ЭДС в начальный момент времени.

Разность начальных фаз двух синусоидальных величин одинаковой частоты и амплитуды называется углом сдвига фаз

Разделив угол сдвига фаз на угловую частоту, получим время, прошедшее с начала периода:

Графическое изображение синусоидальных величин

U = (U 2 a + (U L - U c) 2)

Таким образом, из-за наличия угла сдвига фаз напряжение U всегда меньше алгебраической суммы U a + U L + U C . Разность U L - U C = U p называется реактивной составляющей напряжения .

Рассмотрим, как изменяются ток и напряжение в последовательной цепи переменного тока.

Полное сопротивление и угол сдвига фаз. Если подставить в формулу (71) значения U a = IR; U L = lL и U C =I/(C), то будем иметь: U = ((IR) 2 + 2), откуда получаем формулу закона Ома для последовательной цепи переменного тока:

I = U / ((R 2 + 2)) = U / Z (72)

где Z = (R 2 + 2) = (R 2 + (X L - X c) 2)

Величину Z называют полным сопротивлением цепи , оно измеряется в омах. Разность L — l/(C) называют реактивным сопротивлением цепи и обозначают буквой X. Следовательно, полное сопротивление цепи

Z = (R 2 + X 2)

Соотношение между активным, реактивным и полным сопротивлениями цепи переменного тока можно также получить по теореме Пифагора из треугольника сопротивлений (рис. 193). Треугольник сопротивлений А’В’С’ можно получить из треугольника напряжений ABC (см. рис. 192,б), если разделить все его стороны на ток I.

Угол сдвига фаз определяется соотношением между отдельными сопротивлениями, включенными в данную цепь. Из треугольника А’В’С (см. рис. 193) имеем:

sin ? = X / Z; cos? = R / Z; tg? = X / R

Например, если активное сопротивление R значительно больше реактивного сопротивления X, угол сравнительно небольшой. Если в цепи имеется большое индуктивное или большое емкостное сопротивление, то угол сдвига фаз возрастает и приближается к 90°. При этом, если индуктивное сопротивление больше емкостного, напряжение и опережает ток i на угол; если же емкостное сопротивление больше индуктивного, то напряжение и отстает от тока i на угол.

Идеальная катушка индуктивности, реальная катушка и конденсатор в цепи переменного тока.

Реальная катушка в отличии от идеальной имеет не только индуктивность, но и активное сопротивление, поэтому при протекании переменного тока в ней сопровождается не только изменением энергии в магнитном поле, но и преобразованием электрической энергии в другой вид. В частности, в проводе катушки электрическая энергия преобразуется в тепло в соответствии с законом Ленца — Джоуля .

Ранее было выяснено, что в цепи переменного тока процесс преобразования электрической энергии в другой вид характеризуется активной мощностью цепи Р , а изменение энергии в магнитном поле — реактивной мощностью Q .

В реальной катушке имеют место оба процесса, т. е. ее активная и реактивная мощности отличны от нуля. Поэтому одна реальная катушка в схеме замещения должна быть представлена активным и реактивным элементами.

Часть 1. Озарение как сдвиг по фазе.

Часть 2. Вирус лжи.

Часть 3. Псевдосфера Лобачевского.

Часть 4. Иммунитет.

Часть 1. Озарение как сдвиг по фазе.

Озарение или инсайт - особое состояние психики человека в определенный период времени,который опасен тем,что из него можно не выйти. Что же происходит в сознании человека в таком состоянии с точки зрения науки? Отвечаю: сдвиг по фазе. Рассмотрим этот вопрос. Термин ФАЗА - от греческого PHASIS - появление,согласно энциклопедическому словарю,употребляется в следующих значениях: 1.Определенный момент в ходе развития (фаза колебаний,в том числе и гармоничных). 2.Однородная по химическому составу и физическим свойствам часть термодинамической системы,отделенная от других частей (фаз),имеющих иные свойства,границами раздела,на которых происходит изменение свойств. Разность фаз - это разность амплитуд световых волн,на которую реагирует глаз. Сдвиговая волна - это поперечная упругая волна (магнитная),распространяющаяся в теле и вызывающая деформацию сдвига,смещение частиц в которой перпендикулярны направлению её распространения. Представим вертикальную синусоиду-змейку,которую настигла поперечная змея,двигающаяся с большей скоростью и с другими параметрами волн. Вертикальная - изменит направление,амплитуду и частоту своих колебаний и характер движения. Вот,собственно,об этом явлении в сфере нашего сознания,которое можно назвать ПСЕВДОСФЕРОЙ,и предлагаю поговорить.

Есть такое дерево,называется мирроносица,из которого добывают мирру,ароматическую смолу,путем подсочки в чарку. Обломанная ветвь открывает доступ к соку дерева. Нашедший такое дерево привязывал к сломанной ветке пустую чарку и,высоко подняв ветвь над головой,возвращался в селение. Сельчане издали видели,что древнее дерево,источник мудрости,найдено,и говорили: "А вот и мирроносица идет!" Считается,что мирра даёт сознанию правильный настрой,нужный ЛАД. Можно сказать "лад дан",ЛАДАН,лад мудрости,прочный,как ферма,ferma - опорная конструкция в строительстве и технике,а в плазме крови - fermentum,ферменты,закваска,катализаторы обмена веществ организма в каждой его клеточке. Это белки или комплемент (дополнение),набор иммунных белков. Комплементарность есть взаимное соответствие в химическом строении двух молекул,обеспечивающее их взаимодействие,спаривание двух нитей ДНК,соединение фермента с субстратом,антигена с антителом. Комплементарные структуры подходят друг другу,как ключ к замку. Или: комплементация - это взаимодействие двух мутантных форм одного гена или разных генов одного набора хромосом,приводящее к формированию нормального фенотипа - результата взаимодействия наследственных свойств (генотипа) и условий среды обитания (приобретенной наследственности).

Теперь рассмотрим конкретно,что происходит с сознанием человека,с состоянием его психики,когда он просит Бога о спасении и,вдруг,получает НЕЧТО. Мозг от неожиданности,так скажем,от внедрения в его сферу чуждых ему параметров колебаний и под их воздействием начинает демонстрировать человеку спаривание двух нитей ДНК с помощью образов-видений или других символов,знакомых его хозяину,соответствующих по действию,доступных пониманию и схожих,аналогов.Однако эти аналоги вводят ум в заблуждение. Человек видит,к примеру,половой акт,спаривание,принимает виртуальную информацию за действительность,за наказание,за наваждение,за что угодно,но никак не за демонстрацию процессов изменений в системе его организма. Попав под воздействие сдвига фаз,человек впадает в погрешность (грешит),в ошибку,в заблуждение (заблудшая овца),или в эйфорию от прельщения,принимая такую доброжелательную трактовку спаривания молекул и частиц за форму сожительства мужчины и женщины,акта совокупления,любовь,в чём участвуют непосредственно половые органы,подходящие друг другу как ключ к замку,антиген к антителу. Однако вспомним переводы однокоренных слов от основы "fallos". На английском языке,например,fall означает падение,падаль,дурно пахнущий,а fallacy - ложное заключение (тюрьма),ошибка,гибель. Латинское слово fallo - фальсификация,лжепророк,подлог,мнимый и т.д. Один из переводов этого слова - серый скворец,что по индусской мифологии - ракша,сизый удод (сизоворонка,зимородок) - сын Люцифера,злой демон.Вот и добрались до сути. Если человек поймет свои заблуждения и страх перед отражением,эхом-резонансом сознания на пришедшее НЕЧТО,то выберет другой стиль общения с ним,без фамильярностей и панибратства,тем более,любовных отношений. А это значит - получай защитный иммунитет от лукавого раздела подсознания,сознания,ума своего - устойчивую реакцию противления злу,неподчинения его законам.

Часть 2. Вирус лжи.

Озарение. Как там в нём,хорошо живется? Настоящее оно или ложное? Любое - надо постараться выйти из него с достоинством. Вампир не нужен нашему уму,нужна сообразительность и смелость отрицать отрицательное,ложное,как,впрочем,и в жизненных ситуациях,основываясь на опыте,памяти,на правомерности ценить свое мнение,если убежден в его правильности. Войти в заблуждение - это можно отнести к привычкам прошлого,что надобно ломать: обломанная ветвь откроет путь к знаниям. Не имеем права деградировать и дать себя дегенерировать вирусу лжи. Святая доверчивая простота губительна,хоть и является частью сферы,но какой сферы? И СФЕРА,и ПСЕВДОСФЕРА - обе функции сознания. Вспомним,в каком состоянии мы просили у Бога помощи: депрессия,постоянная предельная истощаемость,расслабленность и слабость,беспомощность,страх за будущее,по-научному - ПРОСТРАЦИЯ. А коли мы в прострации,то сдвиговый эффект,в первую очередь,уж извините за грубое словцо - рифмуется оно,напрашивается,обязан дать нам и даст... опорожниться от всей галиматьи,что накопили в себе. Вот и на будущее - регулярно надо очищаться. Освобождение или избавление (лат. immunitas) дадут нам иммуноглобулины,белки,обладающие активностью антител,коротковолновым электромагнитным гамма-излучением при распаде,в результате взаимодействия их с антигенами. В физике это называется ТОРМОЗНОЕ ИЗЛУЧЕНИЕ,обращающее негатив в позитив и изменяющее направление распространения чуждого разуму волнового фронта. Самый лучший тормоз - исповедь,но такая,когда не подозреваешь,что исповедуешься,когда всем своим существом выражаешь искреннее возмущение или радость. Непосредственность,горячность,злость,гордость - всё должно работать,кроме эйфории,этакого довольства,не соответствующего объективным условиям жизни,в том числе и самообмана от самовнушения. СОВЕСТЬ ЛУЧШИЙ УНИВЕРСИТЕТ. Отрицайте,говорите: это не верно! Отрицание - необходимый момент процесса развития,как и сопротивление,необходимое условие изменения объекта,при котором некоторые элементы не уничтожаются,но сохраняются в новом качестве. Это и есть СНЯТИЕ (порчи),категория,введенная Г.Гегелем,а не колдунами или ведьмами. Снятие порчи,мы говорим,а чего же ещё?

Часть 3. Псевдосфера Лобачевского.

Самое время обратиться к геометрии Лобачевского и взглянуть,как выглядит ПСЕВДОСФЕРА,одна из функций нашего сознания геометрически,наглядно. Так ли страшен чёрт,как его рисуют? Если СФЕРА - замкнутая поверхность,все точки которой одинаково удалены от центра,ШАР,или СФЕРОИД - сжатый эллипсоид,то псевдосфера - это поверхность,образуемая вращением трактрисы вокруг её оси,где ТРАКТРИСА - плоская трансцендентная кривая,зависшая,можно сказать,а не выпуклая,по отношению к осям координат. Выглядит это,как колпак шута (шутка).

ТРАКТРИСА - от латинского корня TRACT (TRACTUM,TRACTO,TRAHO) - трактовка,трактовать; ну и,естественно,тракт - это путь,дорога,кредо; тяга,зависимость,влечение,склонность; изучать,исследовать,обсуждать,вести переговоры; занятие искусством,ведение дела; защищать,отстаивать,знать и уметь,хорошо владеть - как теоретические,так и практические познания; поступки,гостеприимство; втягивание в себя,глотать,впитывать; течение,ход,движение,поток,плавность; росчерк,черта; полоса,вереница,ряд,след,расположение,протяжение,местность; затяжной характер,обстоятельства и т.д.и т.п. Приобретенная наследственность? Однако есть и другие варианты переводов: в худшую сторону,требовать повиновения и благодарности,выводить из себя,издеваться т.д. и т.п. Но слово ТРАКТ-РИСА имеет и второй корень - RIS,что переводиться - смеяться,смех,шутка,юмор,комедийный жанр.Стало быть,трактриса это трагикомедия. А термин ТРАНСЦЕНДЕНТНАЯ означает - ВЫХОЖУ ЗА ПРЕДЕЛЫ (лат.TRANSCENDO),то есть,функция,не являющаяся алгебраической. Как видим,никто не лишает нас права выбора,трактовки и,соответственно,поступков,пусть даже в виртуальном мире. Этапы нашей зрелости соотносятся с пятью стихиями: женское-мужское,пассивное-активное,холодное-горячее и т.д. Это универсальные полярные космические и постоянно переходящие друг в друга силы: дерево-огонь - ЯН,мужское начало,активное (частота колебаний,звук); ЗЕМЛЯ - нейтральна; металл-вода - ИНЬ,пассив,информация,женское начало (шаг,длина волны,цвет). Приведу примеры,какой цвет соответствует определенным действиям. Бордовый - огласка,публичность. Красный - оперативное вмешательство,прибыль,работа. Оранжевый - обряд,ритуал,слово. Жёлтый - исполнение желаемого. Зелёный - оперативно,срочно,постоянная жизненная сила. Голубой - воздействие,творчество. Синий - уму-разуму дорога,труд и его цена. Фиолетовый - хорошо,защита. В каждой конкретной ситуации есть конкретная цель. Смело и уверенно,доверяя себе,позитивно и обратимо работайте,пускайте привод в действие,управляйте информацией,на то и разум дан.

Часть 4. Иммунитет.

Литература: 1.Советский энциклопедический словарь.- Изд.4-е.- М.: Сов.энциклопедия,1987. 2.Латинско-русский словарь,М.:Русский язык медиа,2006. 3.Англо-русский и немецко-русский словари.

Единицами измерения фазового сдвига являются радиан и градус:

1° = π/180 рад.

В каталоговой классификации электронные измерители разности фаз и группового времени запаздывания обозначаются следующим образом: Ф1 - образцовые приборы, Ф2 - фазометры, ФЗ - измери­тельные фазовращатели, Ф4 - измерители группового времени запаз­дывания, Ф5 - измерители корреляции.

Электромеханические фазометры на лицевой панели имеют знак ∆φ.

Фаза характеризует состояние гармонического процесса в данный момент времени:

u (t ) = U m sin (ωt + φ).

Фазой называется весь аргумент синусоидальной функции (ωt + φ). Обычно измерение ∆φ производится для колебаний одной и той же частоты:

u 1 (t ) = U m sin (ωt + φ 1);

u 2 (t ) = U m sin (ωt + φ 2).

В этом случае фазовый сдвиг

∆φ = (ωt + φ 1) - (ωt - φ 2) = φ 1 - φ 2 (5.10)

Для упрощения принимают начальную фазу одного колебания за нуль (например φ 2 = 0), тогда ∆φ = φ 1 .

Приведенное понятие фазового сдвига относится только к гармо­ническим сигналам. Для негармонических (импульсных) сигналов применимо понятие временного сдвига (время задержки t 3 ),диаграм­мы которого приведены на рис. 5.6.

Рис. 5.6. Диаграммы напряжений с временным сдвигом

Измерение фазового сдвига широко используется на промышлен­ных и сверхвысоких частотах, т.е. во всем диапазоне частот.

Фазовый сдвиг возникает, например, между входным и выходным напряжениями четырехполюсника, а также в силовых цепях перемен­ного тока между током и напряжением и определяет коэффициент мощности (cos φ), следовательно, и мощность в исследуемой цепи.

Для измерения фазового сдвига на промышленных частотах ши­роко используют электромеханические фазометры электродинамиче­ской и ферродинамической систем. Недостатками таких фазометров являются сравнительно большая потребляемая мощность от источни­ка сигнала и зависимость показаний от частоты. Относительная при­веденная погрешность электромеханических фазометров - не более ±0,5%.

В зависимости от требуемой точности измерения фазового сдвига и частоты сигнала применяют один из следующих методов: осциллографические (один из трех), компенсационный, электронный метод дискретного счета, метод преобразования фазового сдвига в импульсы тока, метод измерения с использованием фазометров на основе микро­процессорной системы, метод преобразования частоты сигнала.

Осциллографические методы, в свою очередь, разделяются на три: линейной развертки, синусоидальной развертки (эллипса) и кру­говой развертки.


Для реализации метода линейной развертки используют двухканальный или двухлучепой осциллограф (или однолучевой осцилло­граф с электронным коммутатором). На экране получается изображе­ние синусоидальных сигналов (рис. 5.7).

Рис. 5.7. Осциллограммы двух синусоидальных сигналов при измерении фазового сдвига методом линейной развертки

Сигналы u 1 (t u 2 (t )подаются на входы Y1 и Y2 осциллографа. Для обеспечения неподвижности осциллограмм необходимо синхро­низировать развертку одним из исследуемых сигналов.

По измеренным отрезкам 0a и 0b рассчитывается фазовый сдвиг из соотношения

(5.11)

Метод линейной развертки позволяет определить знак фазового сдвига, охватывает полный диапазон его измерения - 0...360°. Погреш­ность метода составляет ± (5...7°) и определяется нелинейностью раз­вертывающего напряжения, неточностью измерения линейных раз­меров отрезков 0а и 0b, качеством фокусировки и яркости луча (т.е. умением оператора).

Метод синусоидальной развертки реализуется с помощью одно; лучевого осциллографа. Исследуемые сигналы с напряжением u 1 (t) и u 2 (t) подаются на входы X и Y осциллографа при выключенном внутреннем генераторе линейной развертки. На экране появится фигура в виде эллипса (рис. 5.8), форма которого зависит от фазового сдвига между двумя напряжениями и их амплитуд. Фазовый сдвиг определяется по формуле

(5.12)

Рис. 5.8. Результирующая осциллограмма при измерении фазового сдвига методом синусоидальной развёртки

Для уменьшения погрешности перед измерением выравнивают ам­плитуды Х т и Y m плавным их регулированием по каналам Y и X.

Метод синусоидальной развертки позволяет измерять фазовый сдвиг в пределах от 0...180° без определения знака.

Погрешность измерения ∆φ методом синусоидальной развертки (методом эллипса) зависит от точности измерения отрезков, входя­щих в уравнение (5.12), от качества фокусировки и яркости луча на экране ЭЛТ. Эти причины оказывают заметное влияние при фазовом сдвиге, близком к нулю и к 90°.

Оба рассмотренных метода являются косвенными и достаточно трудоемкими.

Метод круговой развертки - наиболее удобный осциллографический метод измерения фазового сдвига. При этом определяется знак фазового сдвига во всем диапазоне измерения угла (0...360°). Погреш­ность измерения постоянна во всем диапазоне.

Структурная схема осциллографа при измерении фазового сдвига методом круговой развертки приведена па рис. 5.9, а.

Рис. 5.9. Структурная схема реализации метода круговой развертки (a), отсчет угла (б) и эпюры синусоидальных сигналов (в) при измерении фазового сдвига

На входы X и Y осциллографа подаются синусоидальные сигналы с на­пряжением U 1 и U 3 , сдвинутые относительно друг друга на 90° с помощью фазовращателя, состоящего из резистора и конденсатора. При равенстве сопротивлений плеч амплитуды напряжений U 1 и U 3 также равны и на экране будет наблюдаться осциллограмма в виде круга (рис. 5.9, б).

Сравниваемые сигналы u 1 (t) и u 2 (t) подаются на входы двух оди­наковых формирователей, которые преобразуют синусоидальные напряжения в последовательность коротких однополярных импульсов с напряжением U 4 и U 5 (рис. 5.9, в) с крутыми фронтами. Начала им­пульсов совпадают с моментом перехода синусоид через ось времени при их возрастании. Сигналы с напряжением U 4 и U 5 поступают на ло­гическую схему ИЛИ, где суммируются, и на выходе появляется по­следовательность импульсов с напряжением U 6 , которые подаются на управляющий электрод (модулятор) трубки, управляя яркостью луча в точках 1 и 2, и на окружности в точках 1 и 2 наблюдаются точки по­вышенной яркости.

Фазовый сдвиг между сигналами происходит следующим образом (см. рис. 5.9, б). При измерении центр прозрачного транспортира со­вмещают с центром круга, полная длина окружности которого соот­ветствует 360°. За период Т исследуемых сигналов с напряжением U 1 и U 2 электронный луч описывает круг. Дугу между точками 1 и 2, дли­на которой равна некоторому углу α, луч описывает за время задержки этих сигналов: ∆t = ∆φТ / 360°, откуда α= ∆φ.

Абсолютная погрешность измерения методом круговой развертки достигает 2...5° и зависит от точности определения центра круга, точ­ности измерения фазового сдвига с помощью транспортира и от степе­ни идентичности порога срабатывания обоих формирователей.

Компенсационный метод (метод наложения) реализуется с помо­щью осциллографа. Схема метода приведена на рис. 5.10, а.

Рис. 5.10. Схема реализации компенсационного метода (а ) и осциллограмма (6) при измерении фазового сдвига

Сигналы с напряжением U 1 и U 2 подаются на входы Y и X осцилло­графа, причем на вход Y - через градуированный фазовращатель, а на вход X подается непосредственно.

Фазовый сдвиг между исследуемыми напряжениями U 1 и U 2 опре­деляется путем изменения фазы сигнала с напряжением U 3 фазовра­щателем до тех пор, пока на экране не появится прямая наклонная ли­ния (рис. 5.10, б), что свидетельствует о равенстве фаз обоих сигналов. Определяемый фазовый сдвиг ∆φ отсчитывают по шкале фазовращателя относительно первичного положения, соответствующего поворо­ту фазы на 180°. Для уменьшения погрешности измерения необходимо произвести коррекцию фазовых сдвигов, создаваемых усилителями каналов вертикального и горизонтального отклонения луча осциллографа. Эта процедура осуществляется в той же последовательности, что и при измерении фазового сдвига метолом синусоидальной раз­вертки (см. рис. 5.8). В качестве индикатора нуля можно использовать электронный вольтметр.

Погрешность измерения компенсационным методом небольшая (0,2...0,5°) и определяется главным образом качеством градуировки фазовращателя.

Компенсационный метод применяют и в диапазоне СВЧ при измерении фазового сдвига, вносимого каким-либо элементом, допол­нительно включаемым в тракт СВЧ (фильтром, отрезком волновода).Структурная схема измерения фазового сдвига компенсационным методом представлена на рис. 5.11.

Рис. 5.11. Структурная схема измерения фазового сдвига в диапазоне СВЧ компенсационным метолом

Процесс измерения производится в следующем порядке. При от­ключенном исследуемом элементе Z СВЧ-тракт на выходе фазовра­щателя замыкают заглушкой накоротко. При включении генератора в тракте устанавливается стоячая волна. Поскольку минимум стоячей волны более резко выражен, чем максимум, то настройкой фазовра­щателя так перемещают узел стоячей волны относительно поперечной плоскости расположения зонда, чтобы выпрямительный прибор (миллиамперметр) показал минимум, и отмечают показания φ 1 , фазовраща­теля. Затем между фазовращателем и заглушкой включают исследуемый элемент Z, создающий смещение узла напряжения стоячей волны, и снова фазовращателем добиваются минимального показания инди­катора, которое составит φ 2 при отсчете по шкале фазовращателя.

Фазовый сдвиг, вносимый исследуемым элементом Z в СВЧ-тракт, определяется по формуле

Вместо фазовращателя и зонда в рассматриваемой схеме может быть использована измерительная линия. Описанный компенсацион­ный метод является косвенным.

Двухканальный фазометр позволяет измерить фазовый сдвиг непо­средственно. Принцип работы двухканального фазометра основан на преобразовании фазового сдвига в импульсы прямоугольной формы. Структурная схема двухканального фазометра, временные диаграммы сигналов, поясняющие его работу, и график зависимости показаний индикатора относительного ∆φ представлены на рис. 5.12.

Рис. 5.12. Структурная схема двухканального фазометра (а ), временные диаграммы сигналов, поясняющие его работу (6) и график зависимости показаний индикатора относительно ∆φ (в )

Фазометр состоит из преобразователя ∆φ во временной сдвиг ∆t, равный искомому фазовому сдвигу ∆φ и измерительного индикатора. Преобразователь состоит из двух одинаковых формирователей сигна­ла и сумматора, в качестве которого используется триггер.

Исследуемые сигналы с напряжением U 1 и U 2 с фазовым сдвигом ∆φ подаются на входы двух одинаковых формирователей, которые преобразуют поступившие синусоидальные сигналы в последовательность коротких импульсов с напряжением U 3 и U 4 . Импульсы с напряжени­ем U 3 запускают триггер, а импульсы с напряжением U 4 устанавливают его в исходное положение. В итоге на выходе образуется периодиче­ская последовательность импульсов, период повторения и длитель­ность которых равны периоду повторения T и сдвигу во времени ∆t исследуемых сигналов с амплитудой I m .

В качестве измерительного индикатора чаще всего используется микроамперметр магнитоэлектрической системы, показания которого пропорциональны среднему значению силы тока за период повторе­ния сигнала Т.

Как видно из временной диаграммы I = f (t) (см. рис. 5.12, б), в цепи измерительного прибора получаются прямоугольные импульсы дли­тельностью ∆t. Следовательно, среднее за период значение силы тока, протекающего через приборы, пропорционально удвоенному относи­тельному временному интервалу:

Из графика (см. рис. 5.12, б) следует, что фазовый сдвиг между ис­следуемыми сигналами с напряжением U 1 и U 2 соответствует времен­ному сдвигу ∆t и может быть выражен формулой

из которой следует, что фазовый угол линейно зависит от отношения ∆t / T :

Подставив уравнение (5.15) в выражение (5.14), получим

(5.16)

При постоянном значении амплитуды выходных импульсов шка­ла индикатора, измеряющего среднее значение силы тока I 0 , градуи­руется в значениях ∆φ. При этом шкала индикатора фазометра будет линейной. Достоинством двухканального фазометра является прямое измерение ∆φ в диапазоне ±180°.

Электронный метод дискретного счета положен в основу ра­боты цифрового фазометра и состоит из двух основных этапов: пре­образование фазового сдвига в соответствующий интервал времени и измерение этого интервала времени методом дискретного счета.

Упрощенная структурная схема цифрового фазометра и временные диаграммы, поясняющие его работу, представлены на рис. 5.13.

Рис. 5.13. Структурная схема фазометра при измерении фазового сдвига методом дискретного счета (а), и временные диаграммы сигналов, поясняющие его работу (б)

Вырабатываемый кварцевым генератором синусоидальный сигнал подается на блок формирования, на выходе которого образуются счет­ные импульсы, поступающие на один вход временного селектора. На другой его вход поступает преобразованная последовательность им­пульсов длительностью ∆t с периодом повторения исследуемых сиг­налов Т. Селектор открывается только на время, равное длительности ∆t импульсов с напряжением U 3 и пропускает на счетчик импульсы с напряжением U 4 от генератора. Временной селектор формирует па­кеты импульсов с напряжением U 5 (не изменяя периода Т), поступаю­щих на счетчик в одном пакете.

где T 0 - период повторения счетных импульсов кварцевого генератора.

Подставив в формулу (5.17) соотношение для ∆t из формулы (5.16), определяем ∆φ для сигналов с напряжением U 1 и U 2

(5.18)

Общая погрешность измерения этим методом зависит от погреш­ности дискретности, которая связана с тем, что интервал ∆t измеряется с точностью до одного периода Т 0 , и от нестабильности времени сраба­тывания преобразователя.

Большими возможностями обладают фазометры со встроенным микропроцессором, которыми можно измерять фазовый сдвиг между двумя периодическими сигналами за любой выбранный период.

На рисунке 5.14 представлена структурная схема фазометра co встроенным микропроцессором и временные диаграммы сигналов, поясняющие его работу.

После входного устройства синусоидальные сигналы с напряжением U 1 и U 2 поступают на входы импульсного преобразователя, в котором преобразуются в короткие импульсы с напряжением U " 1 и U " 2 С помощью первой пары данных импульсов формирователь 1 выра­батывает импульс с напряжением U 3 длительностью ∆t , которая равна временному сдвигу сигналов с напряжением U 1 и U 2 . Этим импульсом открывается временной селектор 1, и в течение его действия на вход счетчика 1 проходят счетные импульсы с периодом повторения Т 0 , которые вырабатываются микропроцессором. Прошедший на вход счетчика 1 пакет импульсов с напряжением U 4 показан на рис. 5.14, б. Число импульсов в пакете выражается формулой

Одновременно с этим формирователь 2 вырабатывает импульсы с напряжением U 5 , с длительностью, равной периоду повторения иссле­дуемых сигналов с напряжением U 1 и U 2 . Этот импульс открывает се­лектор 2 (на время своего действия) и пропускает от микропроцессора на счетчик 2 пакет импульсов с напряжением U 6 и с периодом T 0 , число которых в пакете составляет

Рис. 5.14. Структурная схема фазометра со встроенным микропроцессором (а ) и временные диаграммы сигналов, поясняющие его работу (б)

Для определения искомого значения фазового сдвига ∆φ за выб­ранный период повторения сигнала Т необходимо найти отношение величин (5.19) и (5.20), равное

затем с учетом основной формулы ∆φ = 360° ∆t / Т умножить это от­ношение на 360°:

(5.21)

Данное вычисление выполняется микропроцессором, на который передаются вырабатываемые счетчиками 1 и 2 коды чисел п и N. При соответствующей программе микропроцессора на дисплее высвечи­вается значение фазового сдвига ∆φ для любого выбранного периода Т. Благодаря сравнению таких сдвигов в разных периодах появляется возможность наблюдать флуктуации ∆φ и оценивать их статические параметры, к которым относятся математическое ожидание, диспер­сия, среднеквадратичное отклонение, измеренное среднее значение фазового сдвига.

При измерении фазометром со встроенным микропроцессором среднего значения фазового сдвига ∆φ за заданное количество К периодов Т в счетчиках 1 и 2 накапливаются коды числа импульсов, поступивших на их входы за К периодов, т.е. кодов чисел пК и NK соот­ветственно, передаваемых в микропроцессор.

Малую погрешность измерения ∆φ данным фазометром можно по­лучить только на достаточно низкой частоте исследуемых сигналов. Расширить частотный диапазон позволяет предварительное (гетеродинное) преобразование сигналов.

К основным метрологическим характеристикам фазометров, кото­рые необходимо знать при выборе прибора, относятся следующие:

· назначение прибора;

· диапазон измерения фазового сдвига;

· частотный диапазон;

· допустимая погрешность измерения.

Закон Ома для переменного тока

Если цепь содержит не только активные, но и реактивные компоненты (ёмкости, индуктивности), а ток является синусоидальным с циклической частотой ω, то закон Ома обобщается; величины, входящие в него, становятся комплексными:

U = I·Z

    U = U 0 e iωt - напряжение или разность потенциалов,

    I - сила тока,

    Z = Re -iδ - комплексное сопротивление (импеданс),

    R = (R a 2 +R r 2 ) 1/2 - полное сопротивление,

    R r = ωL - 1/ωC - реактивное сопротивление (разность индуктивного и емкостного),

    R а - активное (омическое) сопротивление, не зависящее от частоты,

    δ = -arctg R r /R a - сдвиг фаз между напряжением и силой тока.

При этом переход от комплексных переменных в значениях тока и напряжения к действительным (измеряемым) значениям может быть произведен взятием действительной или мнимой части (но во всех элементах цепи одной и той же!) комплексных значений этих величин. Соответственно, обратный переход строится для, к примеру, U = U 0 sin(ωt + φ) подбором такой U = U 0 e iωt , что I n U = U . Тогда все значения токов и напряжений в схеме надо считать как F = ImF .

Если ток изменяется во времени, но не является синусоидальным (и даже периодическим), то его можно представить как сумму синусоидальных Фурье-компонент. Для линейных цепей можно считать компоненты фурье-разложения тока действующими независимо.

Также необходимо отметить, что закон Ома является лишь простейшим приближением для описания зависимости тока от разности потенциалов и для некоторых структур справедлив лишь в узком диапазоне значений. Для описания более сложных (нелинейных) систем, когда зависимостью сопротивления от силы тока нельзя пренебречь, принято обсуждать вольт-амперную характеристику. Отклонения от закона Ома наблюдаются также в случаях, когда скорость изменения электрического поля настолько велика, что нельзя пренебрегать инерционностью носителей заряда.

2. Чему равен сдвиг фаз между напряжением и током в цепи, содержащей катушку, ёмкость?

Сдвиг фаз - разность между начальными фазами двух переменных величин, изменяющихся во времени периодически с одинаковой частотой. Сдвиг фаз является величиной безразмерной и может измеряться в градусах, радианах или долях периода. В электротехнике сдвиг фаз между напряжением и током определяет коэффициент мощности в цепяхпеременного тока.

В радиотехнике широко применяются RC-цепочки, сдвигающие фазу приблизительно на 60°. Чтобы сдвинуть фазу на 180° нужно включить последовательно три RC-цепочки. Применяется в RC-генераторах.

Наведённая во вторичных обмотках трансформатора ЭДС для любой формы тока совпадает по фазе и форме с ЭДС в первичной обмотке. При противофазном включении обмотоктрансформатор изменяет полярность мгновенного напряжения на противоположную, в случае синусоидального напряжения сдвигает фазу на 180°. Применяется в генераторе Мейснера и др.

рис.305

Рис. 305. Опыт по обнаружению сдвига фаз между током и напряжением: слева - схема опыта, справа - результаты дает форму напряжения между обкладками конденсатора (точками а и b), потому что в этой петле осциллографа ток в каждый момент времени пропорционален напряжению. Опыт показывает, что в этом случае кривые тока и напряжения смещены по фазе, причем ток опережает по фазе напряжение на четверть периода (на p/2). Если бы мы заменили конденсатор катушкой с большой индуктивностью (рис. 305, б), то оказалось бы, что ток отстает по фазе от напряжения на четверть периода (на p/2). Наконец, таким же образом можно было бы показать, что в случае активного сопротивления напряжение и ток совпадают по фазе (рис. 305, в). В общем случае, когда участок цепи содержит не только активное, но и реактивное (емкостное, индуктивное или и то и другое) сопротивление, напряжение между концами этого участка сдвинуто по фазе относительно тока, причем сдвиг фаз лежит в пределах от +p/2 до -p/2 и определяется соотношением между активным и реактивным сопротивлениями данного участка цепи. В чем заключается физическая причина наблюдаемого сдвига фаз между током и напряжением? Если в цепь не входят конденсаторы и катушки, т. е. емкостным и индуктивным сопротивлениями цепи можно пренебречь по сравнению с активным, то ток следует за напряжением, проходя одновременно с ним через максимумы и нулевые значения, как это показано на рис. 305, в. Если цепь имеет заметную индуктивность L , то при прохождении по ней переменного тока в цепи возникает ЭДС . самоиндукции. Эта ЭДС по правилу Ленца направлена так, что она стремится препятствовать тем изменениям магнитного поля (а следовательно, и изменениям тока, создающего это поле), которые вызывают э. д. с. индукции. При нарастании тока э. д. с. самоиндукции препятствует этому нарастанию, и потому ток позже достигает максимума, чем в отсутствие самоиндукции. При убывании тока э. д. с. самоиндукции стремится поддерживать ток и нулевые значения тока будут достигнуты в более поздний момент, чем в отсутствие самоиндукции. Таким образом, при наличии индуктивности ток отстает по фазе оттока в отсутствие индуктивности, а следовательно, отстает по фазе от своего напряжения. Если активным сопротивлением цепи R можно пренебречь по сравнению с ее индуктивным сопротивлением XL=wL , то отставание тока от напряжения по времени равно Т/4 (сдвиг фаз равен p/2 ), т. е. максимум u совпадает с i=0 , как это показано на рис. 305, б. Действительно, в этом случае напряжение на активном сопротивлении Ri=0 , ибо R=0 , и, следовательно, все внешнее напряжение u уравновешивается ЭДС индукции, которая противоположна ему по направлению: u=LDi/Dt . Таким образом, максимум u совпадает с максимумом Di/Dt , т. е. наступает в тот момент, когда i изменяется быстрее всего, а это бывает, когда i=0 . Наоборот, в момент, когда i проходит через максимальное значение, изменение тока наименьшее (Di/Dt=0 ), т. е. в этот момент u=0. Если активное сопротивление цепи R не настолько мало, чтобы им можно было пренебречь, то часть внешнего напряжения и падает на сопротивлении R , а остальная часть уравновешивается э. д. с. самоиндукции: u=Ri+LDi/Dt . В этом случае максимум i отстоит от максимума и по времени меньше, чем на T/4 (сдвиг фаз меньше p/2 ), как это изображено