Нефть и нефтепродукты характеризуются определенным давлением насыщенных паров, или упругостью нефтяных паров. Давление насыщенных паров является нормируемым показателем для авиационных и автомобильных бензинов, косвенно характеризующим испаряемость топлива, его пусковые качества, склонность к образованию паровых пробок в системе питания двигателя.

Для жидкостей неоднородного состава, таких, как бензины, давление насыщенных паров при данной температуре является сложной функцией состава бензина и зависит от объема пространства, в котором находится паровая фаза. Поэтому для получения сравнимых результатов практические определения необходимо проводить при стандартной температуре и постоянном соотношении паровой и жидкой фаз. С учетом изложенного выше давлением насыщенных паров топлив называют давление паровой фазы топлива, находящейся в динамическом равновесии с жидкой фазой, измеренное при стандартной температуре и определенном соотношении объемов паровой и жидкой фаз. Температура, при которой давление насыщенных паров становится равным давлению в системе, называется температурой кипения вещества. Давление насыщенных паров резко увеличивается с повышением температуры. При одной и той же температуре большим давлением насыщенных паров характеризуются более легкие нефтепродукты.

В настоящее время существует несколько способов определения ДНП веществ, которые можно разделить на следующие группы:

  1. Статический метод.
  2. Динамический метод.
  3. Метод насыщения движущегося газа.
  4. Метод изучения изотерм.
  5. Метод эффузии Кнудсена.
  6. Хроматографический метод.

Статический метод

Статический метод является наиболее распространенным, т.к. приемлем при измерении ДНП веществ в широком интервале температур и давлений. Сущность метода заключается в измерении давлении пара, находящегося в равновесии со своей жидкостью при определенной температуре. Давление можно измерить либо манометрами (пружинными, ртутными, грузопоршневыми, водяными), либо с помощью специальных датчиков (тензометрических, электрических и т.д.), позволяющих провести пересчёт на давление, либо расчётным путём, когда известно количество вещества в определённом объёме. Наибольшее распространение получил метод с использованием различных манометров, так называемый прямой статический метод. В этом случае исследуемое вещество заливается в пьезометр (или какую-либо ёмкость), помещается в термостат, позволяющий поддерживать определённую температуру, и с помощью манометра производит измерение ДНП. Причём подсоединение манометра может осуществляться как по жидкой фазе, так и по газовой. При подсоединении манометра по жидкой фазе учитывается поправка на гидростатический столб жидкости. Подсоединение измерительного прибора обычно осуществляется через разделитель, в качестве которого используют ртутные затворы, мембраны, сильфоны и т.д.

На основе прямого статического метода создан ряд эксперименальных установок для исследования ДНП нефтепродуктов.

В нефтепереработке вследствие своей простоты широкое применение получил стандартный метод с использованием бомбы Рейда (ГОСТ 1756-2000). Бомба состоит из двух камер: топливной 1 и воздушной 2 с соотношением объемов соответственно 1:4, соединенных с помощью резьбы. Давление, создаваемое парами испытуемого топлива, фиксируется манометром 3, прикрепленным к верхней части воздушной камеры. Испытание проводят при температуре 38,8°С и давлении 0,1 МПа, обеспечиваемой специальной термостатированной баней.

Давление насыщенных паров испытуемой жидкости определяют по формуле:

Определение давления паров в бомбе Рейда дает приближенные результаты, служащие только для сравнительной оценки качества моторных топлив.

К достоинствам прибора относится простота конструкции и экспериментирования, к недостаткам - постоянное соотношение жидкой и паровой фаз и грубость метода (погрешность определения ДНП бензинов достигает 15-20%).

Более точным вариантом измерения ДНП статическим методом является способ Сорреля-НАТИ. По этому методу можно определять абсолютные значения давления насыщенных паров и при отрицательных температурах. Достоинством способа является возможность измерения ДНП при различных соотношениях жидкой и паровой фаз, а также в присутствии или отсутствии растворённых в веществе воздуха и газов. К недостаткам следует отнести сложность, применимость лишь в специальных лабораториях и относительно большую погрешность измерения ДНП (до 5%).

Расхождения между дайными, полученными с помощью бомбы Рейда и методом НАТИ, составляют 10-20 %.

Динамический метод

Динамический метод основан на измерении температуры кипения жидкости при определенном давлении. Существующие экспериментальные установки на основе динамического метода используют в своих конструкциях эбулиометры. Это приборы, основанные на принципе орошения термометра парожидкостной смесью. Динамический метод разрабатывался для исследования ДНП чистых веществ, для которых температура кипения - величина фиксированная, и не использовался для измерения давления насыщенных нефтепродуктов, температура кипения которых меняется по мере выкипания компонентов. Известно, что промежуточное положение между чистыми веществами и смесями занимают узкокипящие нефтяные фракции. Диапазон измерения давления динамическим методом обычно невелик - до 0,15- 0,2 МПа. Поэтому в последнее время предпринимаются попытки применить динамический метод для исследования ДНП узких нефтяных фракций.

Метод насыщения движущегося газа

Метод насыщения движущегося газа применяется в случае, когда ДНП вещества не превышает нескольких мм.рт.ст. Недостатком метода является относительно большая погрешность экспериментальных данных и необходимость знания молекулярного веса исследуемого вещества. Суть метода заключается в следующем: через жидкость пропускается инертный газ и насыщается парами последней, после чего поступает в холодильник, где поглощенные пары конденсируются. Зная количество газа и поглощенной жидкости, а также их молекулярные веса, можно подсчитать упругость насыщенных паров жидкости.

Метод изучения изотерм

Метод изучения изотерм даёт наиболее точные, по сравнению с другими способами, результаты, особенно при высоких температурах. Этот способ заключается в исследовании зависимости между давлением и объёмом насыщенного пара при постоянной температуре. В точке насыщения изотерма должна иметь излом, превращаясь в прямую. Считается, что этот метод пригоден для измерения ДНП чистых веществ и непригоден для многокомпонентных, у которых температура кипения - величина неопределённая. Поэтому он не получил распространения при измерении ДНП нефтепродуктов.

Метод эффузии Кнудсена

Метод эффузии Кнудсена применим в основном для измерения очень низких давлений (до 100 Па). Этот метод даёт возможность находить скорость эффузии пара по количеству конденсата при условии полной конденсации эффундирующего вещества. Установки, основанные на этом методе, имеют следующие недостатки: они являются установками однократного измерения и требуют разгерметизации после каждого измерения, что при наличии легкоокисляющихся и нестойких веществ нередко приводит к химическому превращению исследуемого вещества и искажению результатов измерений. Создана экспериментальная установка, лишенная указанных недостатков, но сложность конструкции позволяет применить её только в специально оснащенных лабораториях. Этот метод применяется в основном для измерения ДНП твёрдых веществ.

Метод эффузии Кнудсена

Хроматографический метод определения ДНП веществ начал разрабатываться сравнительно недавно. В этом методе определение ДНП нефтепродуктов основано на полном хроматографическом анализе жидкости и подсчёте суммы парциальных давлений всех компонентов смеси. Метод определения ДНП индивидуальных углеводородов и фракций нефтепродуктов, основан на развитых авторами представлениях о физико-химическом индексе удерживания и понятия специфичности фаз. Для этой цели надо иметь или капиллярную хроматографическую колонку с большой разделяющей способностью, либо литературные данные об индексах удерживания изучаемых соединений.

Однако, при анализе таких сложных смесей углеводородов, как нефтепродукты, возникают трудности не только при разделении углеводородов, относящихся к различным классам, но и при идентификации отдельных компонентов этих смесей.

Пересчет давления насыщенных паров

В технологических расчетах часто приходится производить пересчет температур с одного давления на другое или давления при изменении температуры. Для этого имеется множество формул. Наибольшее применение получила формула Ашворта:

Уточненная В. П. Антонченковым формула Ашворта имеет вид:

Для пересчета температуры и давления удобно также пользоваться графическими методами.

Наиболее распространенным графиком является график Кокса , который построен следующим образом. Ось абсцисс представляет собой логарифмическую шкалу, на которой отложены величины логарифма давления (lgP ), однако для удобства пользования на шкалу нанесены соответствующие им значения Р . На оси ординат отложены значения температуры. Под углом 30° к оси абсцисс проведена прямая, обозначенная индексом «Н 2 0 », которая характеризует зависимость давления насыщенных паров воды от температуры. При построении графика из ряда точек на оси абсцисс восстанавливают перпендикуляры до пересечения с прямой Н 2 0 и полученные точки переносят на ось ординат. На оси ординат получается шкала, построенная по температурам кипения воды, соответствующим различным давлениям ее насыщенных паров. Затем для нескольких хорошо изученных углеводородов берут ряд точек с заранее известными температурами кипения и соответствующими им значениями давления насыщенных паров.

Оказалось, что для алканов нормального строения графики, построенные по этим координатам, представляют собой прямые линии, которые все сходятся в одной точке (полюсе). В дальнейшем достаточно взять любую точку с координатами температура - давление насыщенных паров углеводорода и соединить с полюсом, чтобы получить зависимость давления насыщенных паров от температуры для этого углеводорода.

Несмотря на то что график построен для индивидуальных алканов нормального строения, им широко пользуются в технологических расчетах применительно к узким нефтяным фракциям, откладывая на оси ординат среднюю температуру кипения этой фракции.

Для пересчета температур кипения нефтепродуктов с глубокого вакуума на атмосферное давление используется номограмма UOP , по которой, соединив две известные величины на соответствующих шкалах графика прямой линией, получают на пересечении с третьей шкалой искомую величину Р или t . Номограммой UOP в основном пользуются в лабораторной практике.

Давление насыщенных паров смесей и растворов в отличие от индивидуальных углеводородов зависит не только от температуры, но и от состава жидкой и паровой фаз. Для растворов и смесей, подчиняющихся законам Рауля и Дальтона, общее давление насыщенных паров смеси может быть вычислено по формулам:

В области высоких давлений, как известно, реальные газы не подчиняются законам Рауля и Дальтона. В таких случаях найденное расчетными или графическими методами давление насыщенных паров уточняется с помощью критических параметров, фактора сжимаемости и фугитивности.

Плотность

«Физика - 10 класс»

Как вы думаете, что будет происходить с насыщенным паром, если уменьшить занимаемый им объём: например, если сжимать пар, находящийся в равновесии с жидкостью в цилиндре под поршнем, поддерживая температуру содержимого цилиндра постоянной?

При сжатии пара равновесие начнёт нарушаться. Плотность пара в первый момент немного увеличится, и из газа в жидкость начнёт переходить большее число молекул, чем из жидкости в газ. Ведь число молекул, покидающих жидкость в единицу времени, зависит только от температуры, и сжатие пара это число не меняет. Процесс продолжается до тех пор, пока вновь не установится динамическое равновесие и плотность пара, а значит, и концентрация его молекул не примут прежних своих значений. Следовательно,

концентрация молекул насыщенного пара при постоянной температуре не зависит от его объёма.

Так как давление пропорционально концентрации молекул (р = nkT), то из этого определения следует, что давление насыщенного пара не зависит от занимаемого им объёма.

Давление р н. п пара, при котором жидкость находится в равновесии со своим паром, называют давлением насыщенного пара .

При сжатии насыщенного пара всё большая часть его переходит в жидкое состояние. Жидкость данной массы занимает меньший объём, чем пар той же массы. В результате объём пара при неизменной его плотности уменьшается.

Газовые законы для насыщенного пара несправедливы (при любом объёме при постоянной температуре давление насыщенного пара одинаково). В то же время состояние насыщенного пара достаточно точно описывается уравнением Менделеева-Клапейрона.


Ненасыщенный пар


>Если пар постепенно сжимают при постоянной температуре, а превращение его в жидкость не происходит, то такой пар называют ненасыщенным .

При уменьшении объёма (рис. 11.1) давление ненасыщенного пара увеличивается (участок 1-2) подобно тому, как изменяется давление при уменьшении объёма идеального газа. При определённом объёме пар становится насыщенным, и при дальнейшем его сжатии происходит превращение его в жидкость (участок 2-3). В этом случае над жидкостью уже будет находиться насыщенный пар.

Как только весь пар превратится в жидкость, дальнейшее уменьшение объёма вызовет резкое увеличение давления (жидкость малосжимаема).

Однако пар превращается в жидкость не при любой температуре. Если температура выше некоторого значения, то, как бы мы ни сжимали газ, он никогда не превратится в жидкость.

>Максимальная температура, при которой пар ещё может превратиться в жидкость, называется критической температурой .

Каждому веществу соответствует своя критическая температура, у гелия T кр = 4 К, у азота T кр = 126 К.

Состояние вещества при температуре выше критической называется газом ; при температуре ниже критической, когда у пара есть возможность превратиться в жидкость, - паром .

Свойства насыщенного и ненасыщенного пара различны.


Зависимость давления насыщенного пара от температуры.


Состояние насыщенного пара, как показывает опыт, приближённо описывается уравнением состояния идеального газа (10.4), а его давление определяется формулой

р н. п = nkT. (11.1)

С ростом температуры давление растёт

Так как давление насыщенного пара не зависит от объёма то, следова тельно, оно зависит только от температуры.

Однако зависимость давления р н. п от температуры Т, найденная экспериментально, не является прямо пропорциональной, как у идеального газа при постоянном объёме. С увеличением температуры давление реального насыщенного пара растёт быстрее, чем давление идеального газа (рис. 11.2, участок кривой АВ). Это становится очевидным, если провести изохоры идеального газа через точки А и В (штриховые прямые). Почему это происходит?

При нагревании жидкости в закрытом сосуде часть жидкости превращается в пар. В результате согласно формуле (11.1) давление насыщенного пара растёт не только вследствие повышения температуры жидкости, но и вследствие увеличения концентрации молекул (плотности) пара.

В основном увеличение давления при повышении температуры определяется именно увеличением концентрации. Главное различие в поведении идеального газа и насыщенного пара состоит в том, что при изменении температуры пара в закрытом сосуде (или при изменении объёма при постоянной температуре) изменяется масса пара.

Почему составляются таблицы зависимости давления насыщенного пара от температуры и нет таблиц зависимости давления газа от температуры?

Жидкость частично превращается в пар, или, напротив, пар частично конденсируется. С идеальным газом ничего подобного не происходит.

Когда вся жидкость испарится, пар при дальнейшем нагревании перестанет быть насыщенным и его давление при постоянном объёме будет возрастать прямо пропорционально абсолютной температуре (см. рис. 11.2, участок кривой ВС).


Кипение.


По мере увеличения температуры жидкости интенсивность испарения увеличивается. Наконец, жидкость начинает кипеть. При кипении по всему объёму жидкости образуются быстро растущие пузырьки пара, которые всплывают на поверхность.

Кипение - это процесс парообразования, происходящий по всему объёму жидкости при температуре кипения.

При каких условиях начинается кипение?

На что расходуется при кипении подводимое к жидкости тепло с точки зрения молекулярно-кинетической теории?

Температура кипения жидкости остаётся постоянной. Это происходит потому, что вся подводимая к жидкости энергия расходуется на превращение её в пар.

В жидкости всегда присутствуют растворённые газы, выделяющиеся на дне и стенках сосуда, а также на взвешенных в жидкости пылинках, которые являются центрами парообразования. Пары жидкости, находящиеся внутри пузырьков, являются насыщенными. С увеличением температуры давление насыщенных паров возрастает и пузырьки увеличиваются в размерах. Под действием выталкивающей силы они всплывают вверх. Если верхние слои жидкости имеют более низкую температуру, то в этих слоях происходит конденсация пара в пузырьках. Давление стремительно падает, и пузырьки захлопываются. Захлопывание происходит настолько быстро, что стенки пузырька, сталкиваясь, производят нечто вроде взрыва. Множество таких микровзрывов создаёт характерный шум. Когда жидкость достаточно прогреется, пузырьки перестанут захлопываться и всплывут на поверхность. Жидкость закипит.

Зависимость давления насыщенного пара от температуры объясняет, почему температура кипения жидкости зависит от давления на её поверхность. Пузырёк пара может расти, когда давление насыщенного пара внутри его немного превосходит давление в жидкости, которое складывается из давления воздуха на поверхность жидкости (внешнее давление) и гидростатического давления столба жидкости.

Обратим внимание на то, что испарение жидкости происходит и при температурах, меньших температуры кипения, но только с поверхности жидкости, при кипении же образование пара происходит по всему объёму жидкости.

Кипение начинается при температуре, при которой давление насыщенного пара в пузырьках сравнивается и становится чуть больше давления в жидкости.

Чем больше внешнее давление, тем выше температура кипения.

Так, в паровом котле при давлении, достигающем 1,6 10 6 Па, вода не кипит и при температуре 200 °С. В медицинских учреждениях в герметически закрытых сосудах - автоклавах (рис. 11.3) кипение воды также происходит при повышенном давлении. Поэтому температура кипения жидкости значительно выше 100 °С. Автоклавы применяют, например, для стерилизации хирургических инструментов, ускорения приготовления пищи (скороварка), консервации пищи, проведения химических реакций.

И наоборот, уменьшая внешнее давление, мы тем самым понижаем температуру кипения.

Откачивая насосом воздух и пары воды из колбы, можно заставить воду кипеть при комнатной температуре. При подъёме в горы атмосферное давление уменьшается, поэтому уменьшается температура кипения. На высоте 7134 м (пик Ленина на Памире) давление приближённо равно 4 10 4 Па (300 мм рт. ст.). Вода кипит там примерно при 70 °С. Сварить мясо в этих условиях невозможно.

У каждой жидкости своя температура кипения, которая зависит от свойств жидкости. При одной и той же температуре давление насыщенного пара разных жидкостей различно.

Например, при температуре 100 °С давление насыщенных паров воды равно 101 325 Па (760 мм рт. ст.), а паров ртути - всего лишь 117 Па (0,88 мм рт. ст.). Так как кипение происходит при той же температуре, при которой давление насыщенного пара равно внешнему давлению, то вода при 100 °С закипает, а ртуть нет. Кипит ртуть при температуре 357 °С при нормальном давлении.

На этом уроке мы разберём свойства несколько специфичного газа - насыщенного пара. Мы дадим определение этому газу, укажем, чем он принципиально отличается от идеальных газов, рассмотренных нами ранее, и, конкретнее, чем отличается зависимость давления насыщенного газа. Также в этом уроке будет рассмотрен и описан такой процесс, как кипение.

Для понимания отличий насыщенного пара от идеального газа нужно представить себе два опыта.

Во-первых, возьмём герметично закрытый сосуд с водой и начнём его нагревать. С увеличением температуры молекулы жидкости будут иметь всё большую кинетическую энергию, и всё большее количество молекул сможет вырваться из жидкости (см. рис. 2), следовательно, будет расти концентрация пара и, следовательно, его давление. Итак, первое положение:

Давление насыщенного пара зависит от температуры

Рис. 2.

Однако, это положение вполне ожидаемо и не столь интересно, как следующее. Если поместить жидкость с её насыщенным паром под подвижный поршень и начать этот поршень опускать, то, несомненно, концентрация насыщенного пара увеличится из-за уменьшения объёма. Однако через некоторое время пар перейдёт с жидкостью к новому динамическому равновесию путём конденсации лишнего количества пара, и давление в конце концов не поменяется. Второе положение теории насыщенного пара:

Давление насыщенного пара не зависит от объёма

Теперь же следует отметить тот факт, что давление насыщенного пара хоть и зависит от температуры, как и идеальный газ, но характер этой зависимости несколько иной. Дело в том, что, как мы знаем из основного уравнения МКТ, давление газа зависит как от температуры, так и от концентрации газа. И поэтому давление насыщенного пара зависит от температуры нелинейно до тех пор, пока увеличивается концентрация пара, то есть пока вся жидкость не испарится. На приведённом ниже графике (рис. 3) показан характер зависимости давления насыщенного пара от температуры,

Рис. 3

причём переход от нелинейного участка к линейному как раз и означает точку испарения всей жидкости. Так как давление насыщенного газа зависит только от температуры, возможно абсолютно однозначно установить, какое будет давление насыщенного пара при заданной температуре. Эти соотношения (а также значения плотности насыщенного пара) занесены в специальную таблицу.

Обратим теперь наше внимание на такой важный физический процесс, как кипение. В восьмом классе уже давалось определение кипению как процессу парообразования более интенсивному, нежели испарение. Теперь же мы несколько дополним это понятие.

Определение. Кипение - процесс парообразования, протекающий по всему объёму жидкости. Каков же механизм кипения? Дело в том, что в воде всегда есть растворённый воздух, а в результате увеличения температуры его растворимость уменьшается, и образуются микропузырьки. Так как дно и стенки сосуда не идеально гладкие, эти пузырьки цепляются за неровности внутренней стороны сосуда. Теперь раздел вода-воздух существует не только у поверхности воды, но и внутри объёма воды, и в пузырьки начинают переходить молекулы воды. Таким образом, внутри пузырьков появляется насыщенный пар. Далее эти пузырьки начинают всплывать, увеличиваясь в объёме и принимая большее количество молекул воды внутрь себя, а у поверхности лопаются, выбрасывая насыщенный пар в окружающую среду (рис. 4).

Рис. 4. Процесс кипения ()

Условием же образования и всплытия этих пузырьков является следующее неравенство: давление насыщенного пара должно быть больше или равняться атмосферному давлению.

Таким образом, так как давление насыщенного пара зависит от температуры, температура кипения определяется давлением окружающей среды: чем оно меньше, тем при более низкой температуре закипает жидкость, и наоборот.

На следующем уроке мы начнём рассматривать свойства твёрдых тел.

Список литературы

  1. Мякишев Г.Я., Синяков А.З. Молекулярная физика. Термодинамика. - М.: Дрофа, 2010.
  2. Генденштейн Л.Э., Дик Ю.И. Физика 10 класс. - М.: Илекса, 2005.
  3. Касьянов В.А. Физика 10 класс. - М.: Дрофа, 2010.
  1. Physics.ru ().
  2. Chemport.ru ().
  3. Narod.ru ().

Домашнее задание

  1. Стр. 74: № 546-550. Физика. Задачник. 10-11 классы. Рымкевич А.П. - М.: Дрофа, 2013. ()
  2. Почему альпинисты не могут сварить яйца на высоте?
  3. Какие вы можете привести способы остудить горячий чай? Обоснуйте их с точки зрения физики.
  4. Почему следует ослаблять газовый напор на конфорке после закипания воды?
  5. *Каким образом можно добиться нагревания воды выше ста градусов по Цельсию?

Так как велиична давления насыщенного пара за-всиит от температуры воздуха, при повыешнии по-следней воздух может воспринять больше водяно-го пара, при этом давлнеие насыщения увеличивается. Повышение давлнеия насыщения происходит не линей-но, а по слонжой кривой. Этот факт является настоль-ко важным для строительной физкии, что его не слеудет упускать из виду. Например, при темпертауре 0 °С (273,16 К) давлнеие насыщенного пара рнас состав-ляет 610,5 Па (Паскаль), при +10 °С (283,16 К) оно оказывеатся равным 1228,1 Па, при +20°С (293,16 К) 2337,1 Па, а при +30 °С (303,16 К) оно равно 4241,0 Па. Следоваетльно, при повышении температуры на 10 °С (10 К) давлнеие насыщенного пара повышеатся при-близительно вдвое.

Зависимость парциального давлнеия водяного па-ра от измеенний температуры приведена на рис. 3.

АБСОЛЮТНАЯ ВЛАЖНОСТЬ ВОЗДУХА f

Плотность водяного пара, т.е. содеражние его в воз-духе, называтес3я абсолютной влажностью воздуха и измеряется в г/м.

Максимум плотонсти водяного пара, который возмо-жен при опредеелнной температуре воздуха, называется плотнсотью насыщенного пара, которая, в свою очеердь создает давление насыщения. Плотонсть насыщенного пара fнас и его давлнеие рнас увеличиваются с по-вышнеием температуры воздуха. Ее повышение также является криволиенйным, однако ход этой кривой не такой круотй, как ход кривой рнас. Обе кривые зависят от велчиин 273,16/Тфакт[К]. Поэтмоу, ес-ли известно отношение рнас/fнас, они могут быть взамино проверены.

Абсолютная влажность возудха в воздухонепрони-цаемом замкнутом прострнастве не зависит от темпе-

ратуры до тех пор, пока не достигеатся плотонсть на-сыщенного пара. Зависимость абсолютной влажности возудха от его температуры покаазна на рис. 4.

ОТНОСИТЕЛЬНАЯ ВЛАЖНОСТЬ ВОЗДУХА

Отношение фактичсекой плотности водяного пара к плотонсти насыщенного пара или отноешние абсолют-ной влажности воздуха к максимальной влажности возудха при определенной его темпертауре называет-ся относительной влажностью воздхуа. Она выражает-ся в процентах.

При пониежнии температуры воздухонепроницаемого замкнутого пространства относительная влажность воз-духа повышеатся до тех пор, пока значнеие ϕ не ста-нет равным 100% и тем самым не будет достингута плот-ность насыщенного пара. При дальнйешем охлажеднии соответствующее избыточное количество водяного па-ра конденсируется.

При повыешнии температуры замкнутого простраснт-ва значение относительной влажности воздуха снижает-ся. Рис. 5 иллюстиррует зависимость относительной влажности возудха от температуры. Относительную влажность возудха измеряют при помощи гигроемтра или психрометра. Очень наденжый аспирационный психрометр Ассмана измеряет разнсоть температур двух точных термометров, один из котоырх, обернут влажной марелй. Охлаждение вследствие испарения воды оказывеатся тем большим, чем суше окружающий возудх. Из отношения разности темпеартур к фактичес-кой температуре воздуха можно опредлеить относитель-ную влажность окружающего воздуха.

Вместо нетончого волосяного гигрометра, который иногда применяют при выскоой влажности, исполь-зуют литий-хлроидный измерительный щуп. Он сос-

тоит из металлиечской гильзы со стеклотканевой обо-локчой, раздельной обмотки из нагревательной прово-локи и термоемтра сопротивления. Тканевая оболчока заполнена водным литий-хлоридным раствором и на-хоидтся под действием переменного напряжения между обеими обмотакми. Вода испаряется, происохдит крис-таллизация соли и сопротилвение существенно повы-шается. Вследствие этого содеражние водяного пара в окружающем возудхе и мощность накала уравнове-шиваются. По разнсоти температур между окружаю-щим воздхуом и встроенным термометром при помо-щи специальной измерительной схемы определяют относительную влажность воздуха.

Измерительный щуп реагриует на влияние влажнос-ти возудха на гигроскопчиеское волокно, которое вы-полнено так, чтобы между двумя электрдоами возни-кал достатчоной силы ток. Последний растет по мере увелиечния относительной влажности в опредеелнной зависимости от температуры воздуха.

Емкостным измерительным щупом является конден-сатор с перфорирвоанной плитой, снабженной гигро-скопическим диэлектирком, емкость которого изме-няется с изменнеием относительной влажности, а также темпертауры окружающего воздуха. Измерительный щуп можно применять как состваную часть так называмеого элемента RC схемы мультивибартора. При этом влаж-ность воздуха перевоидтся в определенную частоту, которая может иметь выскоие значения. Таким обрзаом достигают чрезвычайно большой чувствительности при-бора, котроая позволяет фиксировать минимальные измеенния влажности.

ПАРЦИАЛЬНОЕ ДАВЛЕНИЕ ВОДЯНОГО ПАРА р

В отлчиие от давления насыщенного пара рнас, ко-троое обозначает максимальное парциальное давлнеие водяного пара в возудхе при определенной темпера-туре, понятие парциальное давлнеие водяного пара р ознаачет давление пара, который нахоидтся в нена-сыщенном состоянии, поэтому в каждом случае это давлнеие должно быть меньше, чем рнас.

По мере увелиечния содержания водяного пара в сухом возудхе значение р приблиажется к соответ-ствующему значению рнас. При этом атмосфреное давление Робщ остатеся постоянным. Поскольку пар-циальное давление водяного пара р предстваляет собой лишь часть общего давлнеия всех компоннетов смеси, его величину невозможно опредлеить путем пря-мого измерения. Напротив, давлнеие пара рнас мож-но определить, если в сосуде снаачла создать вакуум, а затем ввести в него воду. Велиична повышения дав-ления вследтсвие испарения соответствует значению рнас, относящемуся к темпертауре насыщенного па-ром пространства.

При изветсном рнас можно косвенно измеирть р следующим образом. В сосуде нахоидтся смесь воздуха и водяного пара внаачле неизвестного состава. Давле-ние внутри сосуда Pобщ = pв + p, т.е. атмосфреному давлнеию окружающего воздуха. Если теперь запе-реть сосуд и ввести в него опредеелнное количество воды, то давлнеие внутри сосуда повысится. После насыещния водяного пара оно составит pв + рнас. Ус-танолвенную с помощью микромаонметра разность дав-лений рнас - p вычитают из уже извеснтого значения давления насыщенного пара, котроое соответствует тем-пературе в сосуде. Результат будет соответсвтовать пар-циальному давлению p первоначального содержмио-го сосуда, т.е. окружающего воздуха.

Проще вычилсить парциальное давление p, исполь-зуя данные таблиц давлнеия насыщенного пара рнас для определенного уровня темпертауры. Величина отноше-ния p/рнас соответтсвует величине отношения плот-ности водяного пара f к плотонсти насыщенного пара fнас, котроая равна значнеию относительной влаж-

ности воздхуа. Таким образом, полуачем уравне-

ние р =рнас.

Вследствие этого, при изветсных темпертауре воздуха и давлении насыщения рнас можно быстро и наглядно опредлеить значение парциального давления p. Напрмиер, относительная влажность воздуха составляет 60%, а темпертаура воздуха равна 10°С. Тогда, поскольку при этой темпертауре давление насыщенного пара pнас = 1228,1 Па, парциальное давлнеие р будет равно 736,9 Па (рис 6).

ТОЧКА РОСЫ ВОДЯНОГО ПАРА т

Соедржащийся в воздухе водяной пар обычно нахоидтся в ненасыщенном состоянии и поэотму имеет определенное парциальное давлнеие р и определенную относительную влажность возудха <р < 100%.

Если воздух нахоидтся в прямом конткате с твердыми материалами, температура поверхонсти которых ниже его температуры, то при соответсвтующей разнице температур воздух гранинчого слоя охлаждается и относительная влажность его повышеатся до тех пор, пока ее значнеие не достгиает 100%, т.е. плотности насыщенного пара. Даже при незначиетльном дальнйешем охлаждении на поверхности твердого матеирала начинает конденсироваться водяной пар. Это происохдит до тех пор, пока не устаноивтся новое равновесное состояние темпертауры поверхности материала и плотонсти насыщенного пара. Вследствие высокой плотонсти охлажденный воздух опускается, а более теплый - поднимеатся. Количество конденсата будет увеличиавться, пока не устаноивтся равновесие и процесс конденсации не прекратится.

Процесс конденсации связан с высвободжением тепла, количество которого соответствует теполте парообразования воды. Это приводит к повыешнию температуры поверхности твердых веществ.

Точкой росы т назывеатся температура поверхонсти, плотность пара вблизи которой станоивтся равной плотности насыщенного пара, т.е. относительная влажность возудха достигает 100%. Конденсация водяного пара начинеатся сразу же после того, как его темпертаура опускается ниже точки росы.

Если изветсны температура воздуха вв и относительная влажность , можно состваить уравнение p(вв) = рнас(т) = pнас. Для расечта требуемого значения рнас используют табилцу давлений насыщенного пара.

Рассмотрим пример такого расечта (рис. 7). Темпертаура воздуха вв = 10°С, относительная влажность воздуха= 60%, pнас (+10 °С) = 1228,1 П рнас(т) = = 0 6 х 1228,1 Па = 736,9 Па, точка росы= +2,6°С (таблица).

Точку росы можно опредлеить графическим способом с помощью кривой давлнеия насыщения Точку росы можно рассчтиать только в том слуаче, когда кроме температуры воздуха изветсна также его относитель-ная влажность. Вместо расечта можно воспользовать-ся измерением. Если медленно охладжать полирован-ную поверхность плиты (или мембрнаы), выполненную из теплопроовдного материала, до тех пор, пока не нач-нется выпаедние на ней конденсата, и измеирть затем темпертауру этой поверхности, можно прямым путем найти точку росы окружающего возудха Примене-ние этого метода не треубет знания относительной влаж-ности воздуха, хотя можно дополниетльно по темпе-ратуре возудха и точке росы вычислить значение

На этом приницпе базируется действиегигрометра для опредеелния точки росы Даниеля и Рейнольта, кото-рый разраобтан в первой полоивне XIX столетия. В последнее время благдоаря применению электроники он был настолько улучешн, что позволяет опредлеить точку росы с очень выскоой точностью. Таким обра-зом, можно соответсвтующим образом калибровать нормальный гигрометр и контролриовать его с помощью гигромтера, предназначенного для определения точки росы.

>>Физика: Зависимость давления насыщенного пара от температуры. Кипение

Жидкость не только испаряется. При некоторой температуре она кипит.
Зависимость давления насыщенного пара от температуры . Состояние насыщенного пара, как показывает опыт (мы говорили об этом в предыдущем параграфе), приближенно описывается уравнением состояния идеального газа (10.4), а его давление определяется формулой

С ростом температуры давление растет. Так как давление насыщенного пара не зависит от объема, то, следовательно, оно зависит только от температуры.
Однако зависимость р н.п. от Т , найденная экспериментально, не является прямо пропорциональной, как у идеального газа при постоянном объеме. С увеличением температуры давление реального насыщенного пара растет быстрее, чем давление идеального газа (рис.11.1 , участок кривой АВ ). Это становится очевидным, если провести изохоры идеального газа через точки А и В (штриховые прямые). Почему это происходит?

При нагревании жидкости в закрытом сосуде часть жидкости превращается в пар. В результате согласно формуле (11.1) давление насыщенного пара растет не только вследствие повышения температуры жидкости, но и вследствие увеличения концентрации молекул (плотности) пара . В основном увеличение давления при повышении температуры определяется именно увеличением концентрации. Главное различие в поведении идеального газа и насыщенного пара состоит в том, что при изменении температуры пара в закрытом сосуде (или при изменении объема при постоянной температуре) меняется масса пара. Жидкость частично превращается в пар, или, напротив, пар частично конденсируется. С идеальным газом ничего подобного не происходит.
Когда вся жидкость испарится, пар при дальнейшем нагревании перестанет быть насыщенным и его давление при постоянном объеме будет возрастать прямо пропорционально абсолютной температуре (см. рис.11.1 , участок кривой ВС ).
. По мере увеличения температуры жидкости интенсивность испарения увеличивается. Наконец, жидкость начинает кипеть. При кипении по всему объему жидкости образуются быстро растущие пузырьки пара, которые всплывают на поверхность. Температура кипения жидкости остается постоянной. Это происходит потому, что вся подводимая к жидкости энергия расходуется на превращение ее в пар. При каких условиях начинается кипение?
В жидкости всегда присутствуют растворенные газы, выделяющиеся на дне и стенках сосуда, а также на взвешенных в жидкости пылинках, которые являются центрами парообразования. Пары жидкости, находящиеся внутри пузырьков, являются насыщенными. С увеличением температуры давление насыщенных паров возрастает и пузырьки увеличиваются в размерах. Под действием выталкивающей силы они всплывают вверх. Если верхние слои жидкости имеют более низкую температуру, то в этих слоях происходит конденсация пара в пузырьках. Давление стремительно падает, и пузырьки захлопываются. Захлопывание происходит настолько быстро, что стенки пузырька, сталкиваясь, производят нечто вроде взрыва. Множество таких микровзрывов создает характерный шум. Когда жидкость достаточно прогреется, пузырьки перестанут захлопываться и всплывут на поверхность. Жидкость закипит. Понаблюдайте внимательно за чайником на плите. Вы обнаружите, что перед закипанием он почти перестает шуметь.
Зависимость давления насыщенного пара от температуры объясняет, почему температура кипения жидкости зависит от давления на ее поверхность. Пузырек пара может расти, когда давление насыщенного пара внутри него немного превосходит давление в жидкости, которое складывается из давления воздуха на поверхность жидкости (внешнее давление) и гидростатического давления столба жидкости.
Обратим внимание на то, что испарение жидкости происходит при температурах, меньших температуры кипения, и только с поверхности жидкости, при кипении образование пара происходит по всему объему жидкости.
Кипение начинается при температуре, при которой давление насыщенного пара в пузырьках сравнивается с давлением в жидкости.
Чем больше внешнее давление, тем выше температура кипения . Так, в паровом котле при давлении, достигающем 1,6 10 6 Па, вода не кипит и при температуре 200°С. В медицинских учреждениях в герметически закрытых сосудах - автоклавах (рис.11.2 ) кипение воды также происходит при повышенном давлении. Поэтому температура кипения жидкости значительно выше 100°С. Автоклавы применяют для стерилизации хирургических инструментов и др.

И наоборот, уменьшая внешнее давление, мы тем самым понижаем температуру кипения . Откачивая насосом воздух и пары воды из колбы, можно заставить воду кипеть при комнатной температуре (рис.11.3 ). При подъеме в горы атмосферное давление уменьшается, поэтому уменьшается температура кипения. На высоте 7134 м (пик Ленина на Памире) давление приближенно равно 4 10 4 Па (300 мм рт. ст.). Вода кипит там примерно при 70°С. Сварить мясо в этих условиях невозможно.

У каждой жидкости своя температура кипения, которая зависит от давления ее насыщенного пара. Чем выше давление насыщенного пара, тем ниже температура кипения жидкости, так как при меньших температурах давление насыщенного пара становится равным атмосферному . Например, при температуре кипения 100°С давление насыщенных паров воды равно 101 325 Па (760 мм рт. ст.), а паров ртути - всего лишь 117 Па (0,88 мм рт. ст.). Кипит ртуть при температуре 357°С при нормальном давлении.
Жидкость закипает, когда давление ее насыщенного пара становится равно давлению внутри жидкости.

???
1. Почему температура кипения возрастает с увеличением давления?
2. Почему для кипения существенно повышение давления насыщенного пара в пузырьках, а не повышение давления имеющегося в них воздуха ?
3. Как заставить закипеть жидкость, охлаждая сосуд? (Вопрос этот непростой.)

Г.Я.Мякишев, Б.Б.Буховцев, Н.Н.Сотский, Физика 10 класс

Содержание урока конспект урока опорный каркас презентация урока акселеративные методы интерактивные технологии Практика задачи и упражнения самопроверка практикумы, тренинги, кейсы, квесты домашние задания дискуссионные вопросы риторические вопросы от учеников Иллюстрации аудио-, видеоклипы и мультимедиа фотографии, картинки графики, таблицы, схемы юмор, анекдоты, приколы, комиксы притчи, поговорки, кроссворды, цитаты Дополнения рефераты статьи фишки для любознательных шпаргалки учебники основные и дополнительные словарь терминов прочие Совершенствование учебников и уроков исправление ошибок в учебнике обновление фрагмента в учебнике элементы новаторства на уроке замена устаревших знаний новыми Только для учителей идеальные уроки календарный план на год методические рекомендации программы обсуждения Интегрированные уроки

Если у вас есть исправления или предложения к данному уроку,