Инструкция

Рассмотрите пример образования труднорастворимого соединения.

Na2SO4 + BaCl2 = BaSO4 + 2NaCl

Или вариант в ионном виде:

2Na+ +SO42- +Ba2++ 2Cl- = BaSO4 + 2Na+ + 2Cl-

При решении ионных уравнений, необходимо соблюдать следующие правила:

Одинаковые ионы из обеих его частей исключаются;

Следует помнить, что сумма электрических зарядов в левой части уравнения должна быть равна сумме электрических зарядов в правой части уравнения.

Написать ионные уравнения взаимодействия между водными растворами следующих веществ: a) HCl и NaOH; б) AgNO3 и NaCl; в) К2СO3 и H2SO4; г) СН3СOOH и NaOH.

Решение. Запишите уравнения взаимодействия указанных веществ в молекулярном виде:

а) HCl + NaOH = NaCl + H2O

б) AgNO3 + NaCl = AgCl + NaNO3

в) K2CO3 + H2SO4 = K2SO4 + CO2 + H2O

г) СН3СOOH + NaOH = CH3COONa + H2O

Отметьте, что взаимодействие этих веществ возможно, ибо в результате происходит связывание ионов с образованием либо слабых (Н2О), либо труднорастворимого вещества (AgCl), либо газа (СO2).

Исключив одинаковые ионы из левых и правых частей равенства (в случае варианта а) – ионы и , в случае б) – ионы натрия и -ионы, в случае в) – ионы калия и сульфат-ионы), г) – ионы натрия, получите решение этих ионных уравнений:

а) H+ + OH- = H2O

б) Ag+ + Cl- = AgCl

в) CO32- + 2H+ = CO2 + H2O

г) СН3СOOH + OH- = CH3COO- + H2O

Довольно часто в самостоятельных и контрольных работах встречаются задания, предполагающие решение уравнений реакций. Однако без некоторых знаний, навыков и умений даже самые простые химические уравнения не написать.

Инструкция

Прежде всего нужно изучить основные органических и неорганических соединений. На крайний случай можно иметь перед собой подходящую шпаргалку, которая сможет помочь во время выполнения задания. После тренировки все равно в памяти отложатся необходимые знания и умения.

Базовым является материал, охватывающий , а также способы получения каждого соединений. Обычно они представлены в виде общих схем, например: 1. + основание = соль + вода
2. кислотный оксид + основание = соль + вода
3. основный оксид + кислота = соль + вода
4. металл + (разб) кислота = соль + водород
5. растворимая соль + растворимая соль = нерастворимая соль + растворимая соль
6. растворимая соль + = нерастворимое основание + растворимая соль
Имея перед глазами таблицу растворимости солей, и , а также схемы-шпаргалки, можно по ним решать уравнения реакций. Важно только иметь полный перечень таких схем, а также сведения о формулах и названиях различных классов органических и неорганических соединений.

После того, как удастся само уравнение, необходимо проверить правильность написания химических формул. Кислоты, соли и основания легко проверяются по таблице растворимости, в которой указаны заряды ионов кислотных остатков и металлов. Важно помнить, что любая должна быть в целом электронейтральна, то есть, количество положительных зарядов должно совпадать с количеством отрицательных. Обязательно при этом учитываются индексы, которые перемножаются на соответствующие заряды.

Если и этот этап пройден и имеется уверенность в правильности написания уравнения химической реакции , то можно теперь смело расставлять коэффициенты. Химическое уравнение представляет собой условную запись реакции с помощью химических символов, индексов и коэффициентов. На этом этапе выполнения задания обязательно нужно придерживаться правил: Коэффициент ставится перед химической формулой и относится ко всем элементам, входящим в состав вещества.
Индекс ставится после химического элемента немного внизу, и относится только к стоящему слева от него химическому элементу.
Если группа (например, кислотный остаток или гидроксильная группа) стоит в скобках, то нужно усвоить, что два, рядом стоящих индекса (перед скобкой и после нее) перемножаются.
При подсчете атомов химического элемента коэффициент умножается (не складывается!) на индекс.

Далее подсчитывается количество каждого химического элемента таким образом, чтобы суммарное число элементов, входящих в состав исходных веществ совпадало с числом атомов, входящих в состав соединений, образовавшихся продуктов реакции . Путем анализа и применения, вышеизложенных, правил можно научиться решать уравнения реакций, входящих в состав цепочек веществ.

Решение уравнений химический реакций вызывают затруднения у немалого количества учеников средней школы во-многом благодаря большому разнообразию участвующих в них элементов и неоднозначности их взаимодействия. Но так как основная часть курса общей химии в школе рассматривает именно взаимодействие веществ на основе их уравнений реакций, то ученикам необходимо обязательно ликвидировать пробелы в данной области и научиться решать химические уравнения, чтобы избежать проблем с предметом в дальнейшем.

Уравнением химической реакции называется символьная запись, отображающая взаимодействующие химические элементы, их количественное соотношение и получающиеся в результате взаимодействия вещества. Данные уравнения отражают сущность взаимодействия веществ с точки зрения атомно-молекулярного или электронного взаимодействия.

  1. В самом начале школьного курса химии учат решать уравнения на основе понятия валентности элементов периодической таблицы. На основе данного упрощения рассмотрим решение химического уравнения на примере окисления алюминия кислородом. Алюминий, взаимодействуя с кислородом, образует оксид алюминия. Обладая указанными исходными данными составим схему уравнения.

    Al + O 2 → AlO


    В данном случае мы записали примерную схему химической реакции, которая лишь частично отражает ее сущность. В левой части схемы записываются вещества, вступающую в реакцию, а в правой результат их взаимодействия. Кроме того, кислород и другие типичные окислители, обычно записываются правее металлов и других восстановителей в обоих частях уравнения. Стрелка показывает направление реакции.

  2. Чтобы данная составленная схема реакции приобрела законченный вид и соответствовала закону сохранения массы веществ, необходимо:
    • Проставить индексы в правой части уравнения у вещества, получившегося в результате взаимодействия.
    • Уровнять количество участвующих в реакции элементов с количеством получившегося вещества в соответствии с законом сохранения массы веществ.
  3. Начнем с приостановки индексов в химической формуле готового вещества. Индексы устанавливаются в соответствии с валентностью химических элементов. Валентностью называют способность атомов образовывать соединения с другими атомами за счет соединения их неспаренных электронов, когда одни атомы отдают свои электроны, а другие присоединяют их себе на внешний энергетический уровень. Принято считать, что валентность химического элемента определяет его группой (колонкой) в периодической таблице Менделеева. Однако на практике взаимодействие химических элементов происходит гораздо сложнее и разнообразнее. Например, атом кислорода во всех реакциях имеет валентность Ⅱ, несмотря на то, что в периодической таблице находится в шестой группе.
  4. Чтобы помочь вам сориентироваться в этом многообразии, предлагаем вам следующий небольшой справочный помощник, который поможет определить валентность химического элемента. Выберите интересующий вас элемент и вы увидите возможные значения его валентности. В скобках указаны редкие для выбранного элемента валентности.
  5. Вернемся к нашему примеру. Запишем в правой части схемы реакции сверху над каждым элементом его валентность.

    Для алюминия Al валентность будет равна Ⅲ, а для молекулы кислорода O 2 валентность равна Ⅱ. Находим наименьшее общее кратное к этим числам. Оно будет равно шести. Делим наименьшее общее кратное на валентность каждого элемента и получаем индексы. Для алюминия шесть делим на валентность получаем индекс 2, для кислорода 6/2=3. Химическая формула оксида алюминия, полученного в результате реакции, примет вид Al 2 O 3 .

    Al + O 2 → Al 2 O 3

  6. После получения правильной формулы готового вещества необходимо проверить и в большинстве случаев уравнять правые и левые части схемы согласно закона сохранения массы, так как продукты реакции образуются из тех же атомов, которые изначально входили в состав исходных веществ, участвующих в реакции.
  7. Закон сохранения массы гласит, что количество атомов вступивших в реакцию должно равняться количеству атомов получившихся в результате взаимодействия. В нашей схеме во взаимодействии участвуют один атом алюминия и два атома кислорода. В результате реакции получаем два атома алюминия и три кислорода. Очевидно, что схему необходимо уровнять, используя коэффициенты для элементов и вещества, чтобы соблюдался закон сохранения массы.
  8. Уравнивание выполняют также через нахождение наименьшего общего кратного, которое находится между элементами, обладающими наибольшими индексами. В нашем примере это будет кислород с индексом в правой части равным 3 и в левой части равным 2. Наименьшее общее кратное и в этом случае будет равно 6. Теперь разделим наименьшее общее кратное на значение наибольшего индекса в левой и правой частях уравнения и получим следующие индексы для кислорода.

    Al + 3∙O 2 → 2∙Al 2 O 3

  9. Теперь остается уравнять только алюминий в правой части. Для этого в левую часть поставим коэффициент 4.

    4∙Al + 3∙O 2 = 2∙Al 2 O 3

  10. После расстановки коэффициентов уравнение химической реакции соответствует закону сохранения массы и между его левой и правой частями можно поставить знак равенства. Расставленные коэффициенты в уравнении обозначают число молекул веществ, участвующих в реакции и получающихся в результате нее, или соотношение данных веществ в молях.
После выработки навыков решения химических уравнений на основе валентностей взаимодействующих элементов, школьный курс химии знакомит с понятием степени окисления и теорией окислительно-восстановительных реакций. Данный тип реакций является наиболее распространенным и в дальнейшем химические уравнения чаще всего решают на основе степеней окисления взаимодействующих веществ. О том, рассказано в соответствующей статье на нашем сайте.

Часто от приличных на вид людей можно услышать о вреде для здоровья какого-то продукта или средства. Причем главным аргументом в пользу такого утверждения будет фраза: «Это химия!». Однако так говорить могут лишь те, кто в школе явно прогуливал уроки по данному предмету. Дело в том, что человеческий, да и любой биологический организм, сам по себе состоит из множества органических и неорганических веществ. При этом поддерживать его жизнеспособность помогают различные процессы, непрерывно происходящие внутри него. Одним из главных среди них - является химическая реакция разложения. Давайте узнаем больше о ней и особенностях ее протекания с органическими и неорганическими веществами.

Что за процесс называется химической реакцией

Прежде всего, стоит узнать значение понятия «химическая реакция». Это словосочетание означает превращение одного и более исходных веществ (называются реагентами) в другие. В процессе подобной метаморфозы ядра атомов взаимодействующих соединений не поддаются изменениям, однако происходит перераспределение электронов. Таким образом, после превращения на выходе образуются новые атомные соединения.

Химические реакции имеют качественное отличие от физических и ядерных.

  • В результате первых исходные реагенты никогда не меняют свой состав, хотя и способны образовывать смеси или переходить из одного агрегатного состояния в другое. В отличие от них, процессы химические сопровождаются образованием новых соединений, с совершенно иными свойствами.
  • Результатом вторых является изменения изотопного состава и числа атомов. Таким образом, на выходе из одних элементов, образовываются другие. Однако для столь глубокие метаморфозы не характерны. Поскольку изменения, произошедшие из-за них, не влияют на внутреннюю структуру атомов.

Условия протекания химических реакций

Во многих случаях, для успешного протекания процессов такого рода, необходим просто физический контакт реагентов друг с другом или их смешивание. Но часто для начала химической реакции, ей необходимы катализаторы. В этой роли могут выступать как различные вещества, так и определенные внешние условия.

  • Воздействие температуры. Для того чтобы запустить отдельные химические процессы, необходимо нагревать реагенты. К примеру, чтобы начать реакцию разложения карбоната кальция, это температуру этого соединений необходимо повысить до 900-1200 °C.
  • Электромагнитные волны. Наиболее эффективно стимулирующей протекание любых процессов является воздействие на реагенты световыми волнами. Такие реакции носят название «фотохимические». Классическим примером такой реакции является фотосинтез.
  • Ионизирующее излучение.
  • Воздействие электрического тока.
  • Разного рода механическое влияние на реагирующие вещества.

Какие виды химических реакций существуют

Классификация подобных процессов в основном производится по шести признакам.

  • По наличию границы разделения фаз: гомо-/гетерогенные реакции.
  • По выделению/поглощению тепла: экзотермически и эндотермические процессы.
  • По наличию/отсутствию катализаторов: каталитические и некаталитические реакции.
  • По направлению протекания: обратимые и В зависимости от данной категории находится тип знака между левой и правой частями химического уравнения. При необратимых - это две стрелки направленные в противоположные стороны, при обратимых - только одна, направленная слева на право.
  • По изменению степени окисления. По этому принципу выделяют окислительно-восстановительную реакцию.
  • Разложение (расщепление), соединение, замещение и обмен - это виды химических процессов по типу метаморфоз реагентов.

(расщепления): что это

Под данным термином подразумевается процесс, в результате которого одно разделяется на два и более простых. В большинстве случаев катализатором для этого выступает высокая температура. По этой причине данный процесс еще называют реакцией термического разложения.

В качестве примера можно привести один из классических способов получения чистого кислорода (О 2) в промышленности. Это происходит в следствии нагревании KMnO 4 (более известен всем под бытовым названием «марганцовка»).

В результате расщепления образуется не только кислород, но и манганат калия (K 2 MnO 4) , а также диоксид марганца (MnO 2).

Уравнение реакции разложения

Любое химическое уравнение состоит из двух частей: левой и правой. В первой из них записываются реагирующие соединения, а во второй - продукты реакции. Между ними обычно ставится направленная вправо стрелка. Иногда она бывает двухсторонней, если речь идет об обратимом процессе. В отдельных случаях ее допустимо заменить знаком равенства (=).

Рассматриваемый процесс, как и остальные виды химических процессов, имеет собственную формулу. Схематически уравнение реакции разложения выглядит таким образом: AB (t) → A+B.

Стоит помнить, что преимущественное большинство таких процессов происходит под воздействием тепла. Чтобы сообщить об этом, над стрелкой или рядом с ней часто ставится либо литера t, либо треугольник. Однако, иногда вместо тепла, в роли катализаторов выступают различные вещества, излучения.

В рассмотренной выше формуле AB - то исходное сложное соединения, A, B - это новые вещества, образованные в результате реакции разложения.

Примеры практические такого процесса встречаются очень часто. Можно проиллюстрировать данную формулу, с помощью уравнения процесса, описанного в предыдущем пункте: 2KMnO 4 (t) → K 2 MnO 4 + MnO 2 + O 2 .

Виды реакций разложения

В зависимости от типа катализатора (который способствует расщеплению сложного вещества на более простые) выделяют несколько видов разложения.


Расщепление Н2О

Разобравшись с теорией, касающейся реакции разложения, примеры практические ее проведения стоит рассмотреть. Поскольку Н 2 О сегодня является одним из наиболее доступных веществ для проведения химических опытов, стоит начать с нее.

Данная реакция разложения воды именуется еще электролизом и выглядит таким образом: 2Н 2 О (электрический ток) → 2Н 2 + О 2 .
Расшифровывается данное уравнение так: под воздействием на молекулы воды электрического тока, они расщепляют и образуют два газа - кислород и водород.

Стоит отметить, что этот метод активно используется на подводных лодках для получения кислорода. В современном мире он заменил более дорогой способ получения этого жизненно важного вещества из пероксида натрия (Na 2 O 2) , с помощью его взаимодействия с углекислым газом: Na 2 O 2 + CO 2 → Na 2 CO 3 + O 2 .

В перспективе реакция разложения воды может иметь огромное значение для будущего планеты. Поскольку таким образом можно добывать не только кислород, но и водород, использующийся как ракетное топливо. Разработки в этой области уже ведутся многие годы, однако основной проблемой является необходимость снизить количество энергозатрат на расщепление молекул воды.

Расщепление Н2О2

Среди других примеров реакции разложения стоит обратить внимание на образование воды и кислорода из пероксида водорода (перекись).

Выглядит она таким образом: Н 2 О 2 (t) → 2Н 2 О + О 2 .

Данный процесс также является термическим, поскольку для его начала, необходимо, чтобы исходное веществ было нагрето до температуры в 150 °C.

Именно по этой причине, перекись водорода (которую большинство использует для обработки ран) не превращается в воду, стоя в домашних аптечках.

Однако стоит помнить, что реакция разложения пероксида водорода может происходить и при обычной комнатной температуре, если вещество контактирует с такими соединениями, как каустическая сода (NaOH) или диоксид марганца (MnO 2). Также в роли катализаторов могут выступать платина (Pt) и купрум (Cu).

Реакция термического разложения CaCO3

Еще одним интересным примером может служить расщепление карбоната кальция. Данный процесс можно записать с помощью такого уравнения: CaCO 3 (t) → CaO + CO 2 .

Продуктом этой реакции буде (оксид кальция) и углекислый газ.

Представленный выше процесс активно используется в промышленности для получения углекислого газа. Подобные реакции производятся в специализированных шахтах, поскольку расщепление карбоната кальция происходит лишь при температуре от 900 °C.

ОПРЕДЕЛЕНИЕ

Химическими реакция называют превращения веществ, в которых происходит изменение их состава и (или) строения.

Наиболее часто под химическими реакциями понимают процесс превращения исходных веществ (реагентов) в конечные вещества (продукты).

Химические реакции записываются с помощью химических уравнений, содержащих формулы исходных веществ и продуктов реакции. Согласно закону сохранения массы, число атомов каждого элемента в левой и правой частях химического уравнения одинаково. Обычно формулы исходных веществ записывают в левой части уравнения, а формулы продуктов – в правой. Равенство числа атомов каждого элемента в левой и правой частях уравнения достигается расстановкой перед формулами веществ целочисленных стехиометрических коэффициентов.

Химические уравнения могут содержать дополнительные сведения об особенностях протекания реакции: температура, давление, излучение и т.д., что указывается соответствующим символом над (или «под») знаком равенства.

Все химические реакции могут быть сгруппированы в несколько классов, которым присущи определенные признаки.

Классификация химических реакций по числу и составу исходных и образующихся веществ

Согласно этой классификации, химические реакции подразделяются на реакции соединения, разложения, замещения, обмена.

В результате реакций соединения из двух или более (сложных или простых) веществ образуется одно новое вещество. В общем виде уравнение такой химической реакции будет выглядеть следующим образом:

Например:

СаСО 3 + СО 2 + Н 2 О = Са(НСО 3) 2

SO 3 + H 2 O = H 2 SO 4

2Mg + O 2 = 2MgO.

2FеСl 2 + Сl 2 = 2FеСl 3

Реакции соединения в большинстве случаев экзотермические, т.е. протекают с выделением тепла. Если в реакции участвуют простые вещества, то такие реакции чаще всего являются окислительно-восстановительными (ОВР), т.е. протекают с изменением степеней окисления элементов. Однозначно сказать будет ли реакция соединения между сложными веществами относиться к ОВР нельзя.

Реакции, в результате которых из одного сложного вещества образуется несколько других новых веществ (сложных или простых) относят к реакциям разложения . В общем виде уравнение химической реакции разложения будет выглядеть следующим образом:

Например:

CaCO 3 CaO + CO 2 (1)

2H 2 O =2H 2 + O 2 (2)

CuSO 4 × 5H 2 O = CuSO 4 + 5H 2 O (3)

Cu(OH) 2 = CuO + H 2 O (4)

H 2 SiO 3 = SiO 2 + H 2 O (5)

2SO 3 =2SO 2 + O 2 (6)

(NH 4) 2 Cr 2 O 7 = Cr 2 O 3 + N 2 +4H 2 O (7)

Большинство реакций разложения протекает при нагревании (1,4,5). Возможно разложение под действием электрического тока (2). Разложение кристаллогидратов, кислот, оснований и солей кислородсодержащих кислот (1, 3, 4, 5, 7) протекает без изменения степеней окисления элементов, т.е. эти реакции не относятся к ОВР. К ОВР реакциям разложения относится разложение оксидов, кислот и солей, образованных элементами в высших степенях окисления (6).

Реакции разложения встречаются и в органической химии, но под другими названиями — крекинг (8), дегидрирование (9):

С 18 H 38 = С 9 H 18 + С 9 H 20 (8)

C 4 H 10 = C 4 H 6 + 2H 2 (9)

При реакциях замещения простое вещество взаимодействует со сложным, образуя новое простое и новое сложное вещество. В общем виде уравнение химической реакции замещения будет выглядеть следующим образом:

Например:

2Аl + Fe 2 O 3 = 2Fе + Аl 2 О 3 (1)

Zn + 2НСl = ZnСl 2 + Н 2 (2)

2КВr + Сl 2 = 2КСl + Вr 2 (3)

2КСlO 3 + l 2 = 2KlO 3 + Сl 2 (4)

СаСО 3 + SiO 2 = СаSiO 3 + СО 2 (5)

Са 3 (РО 4) 2 + ЗSiO 2 = ЗСаSiO 3 + Р 2 О 5 (6)

СН 4 + Сl 2 = СН 3 Сl + НСl (7)

Реакции замещения в своем большинстве являются окислительно-восстановительными (1 – 4, 7). Примеры реакций разложения, в которых не происходит изменения степеней окисления немногочисленны (5, 6).

Реакциями обмена называют реакции, протекающие между сложными веществами, при которых они обмениваются своими составными частями. Обычно этот термин применяют для реакций с участием ионов, находящихся в водном растворе. В общем виде уравнение химической реакции обмена будет выглядеть следующим образом:

АВ + СD = АD + СВ

Например:

CuO + 2HCl = CuCl 2 + H 2 O (1)

NaOH + HCl = NaCl + H 2 O (2)

NаНСО 3 + НСl = NаСl + Н 2 О + СО 2 (3)

AgNО 3 + КВr = АgВr ↓ + КNО 3 (4)

СrСl 3 + ЗNаОН = Сr(ОН) 3 ↓+ ЗNаСl (5)

Реакции обмена не являются окислительно-восстановительными. Частный случай этих реакций обмена -реакции нейтрализации (реакции взаимодействия кислот со щелочами) (2). Реакции обмена протекают в том направлении, где хотя бы одно из веществ удаляется из сферы реакции в виде газообразного вещества (3), осадка (4, 5) или малодиссоциирующего соединения, чаще всего воды (1, 2).

Классификация химических реакций по изменениям степеней окисления

В зависимости от изменения степеней окисления элементов, входящих в состав реагентов и продуктов реакции все химические реакции подразделяются на окислительно-восстановительные (1, 2) и, протекающие без изменения степени окисления (3, 4).

2Mg + CO 2 = 2MgO + C (1)

Mg 0 – 2e = Mg 2+ (восстановитель)

С 4+ + 4e = C 0 (окислитель)

FeS 2 + 8HNO 3 (конц) = Fe(NO 3) 3 + 5NO + 2H 2 SO 4 + 2H 2 O (2)

Fe 2+ -e = Fe 3+ (восстановитель)

N 5+ +3e = N 2+ (окислитель)

AgNO 3 +HCl = AgCl ↓ + HNO 3 (3)

Ca(OH) 2 + H 2 SO 4 = CaSO 4 ↓ + H 2 O (4)

Классификация химических реакций по тепловому эффекту

В зависимости от того, выделяется ли или поглощается тепло (энергия) в ходе реакции, все химические реакции условно разделяют на экзо – (1, 2) и эндотермические (3), соответственно. Количество тепла (энергии), выделившееся или поглотившееся в ходе реакции называют тепловым эффектом реакции. Если в уравнении указано количество выделившейся или поглощенной теплоты, то такие уравнения называются термохимическими.

N 2 + 3H 2 = 2NH 3 +46,2 кДж (1)

2Mg + O 2 = 2MgO + 602, 5 кДж (2)

N 2 + O 2 = 2NO – 90,4 кДж (3)

Классификация химических реакций по направлению протекания реакции

По направлению протекания реакции различают обратимые (химические процессы, продукты которых способны реагировать друг с другом в тех же условиях, в которых они получены, с образованием исходных веществ) и необратимые (химические процессы, продукты которых не способны реагировать друг с другом с образованием исходных веществ).

Для обратимых реакций уравнение в общем виде принято записывать следующим образом:

А + В ↔ АВ

Например:

СН 3 СООН + С 2 Н 5 ОН↔ Н 3 СООС 2 Н 5 + Н 2 О

Примерами необратимых реакций может служить следующие реакции:

2КСlО 3 → 2КСl + ЗО 2

С 6 Н 12 О 6 + 6О 2 → 6СО 2 + 6Н 2 О

Свидетельством необратимости реакции может служить выделение в качестве продуктов реакции газообразного вещества, осадка или малодиссоциирующего соединения, чаще всего воды.

Классификация химических реакций по наличию катализатора

С этой точи зрения выделяют каталитические и некаталитические реакции.

Катализатором называют вещество, ускоряющее ход химической реакции. Реакции, протекающие с участием катализаторов, называются каталитическими. Протекание некоторых реакций вообще невозможно без присутствия катализатора:

2H 2 O 2 = 2H 2 O + O 2 (катализатор MnO 2)

Нередко один из продуктов реакции служит катализатором, ускоряющим эту реакцию (автокаталитические реакции):

MeO+ 2HF = MeF 2 + H 2 O, где Ме – металл.

Примеры решения задач

ПРИМЕР 1

Для характеристики определенной химической реакции необходимо уметь составить запись, которая будет отображать условия протекания химической реакции, показывать какие вещества вступили в реакцию, а какие образовались. Для этого используют схемы химических реакций.

Схема химической реакции – условная запись, показывающая, какие вещества вступают в реакцию, какие продукты реакции образуются, а также условия протекания реакции

Рассмотрим в качестве примера реакцию взаимодействия угля и кислорода. Схема данной реакции записывается следующим образом:

С + О2 → СО2.

уголь взаимодействует с кислородом с образованием углекислого газа

Углерод и кислород – в данной реакции реагенты, а полученный углекислый газ – продукт реакции. Знак «» обозначает протекание реакции. Часто над стрелкой пишут условия, при которых происходит реакция

Например, знак « t° → » обозначает, что реакция протекает при нагревании. Знак « Р → » обозначает давление, а знак « hv → » – что реакция протекает под действием света. Также над стрелкой могут указывать дополнительные вещества, участвующие в реакции. Например, « О2 → ».

Если в результате химической реакции образуется газообразное вещество, то в схеме реакции, после формулы этого вещества записывают знак «». Если при протекании реакции образуется осадок, его обозначают знаком «».

Например, при нагревании порошка мела (он содержит вещество с химической формулой CaCO3), образуются два вещества: негашеная известь CaO и углекислый газ.

СaCO3 t° → CaO + CO2 .

В тех случаях, когда и реагенты и продукты реакции, например, являются газами, знак «» не ставят. Так, природный газ, в основном состоит из метана CH4, при его нагревании до 1500°С он превращается в два других газа: водород Н2 и ацетилен С2Н2. Схема реакции записывается так:

CH4 t° → C2H2 + H2.

Важно не только уметь составлять схемы химических реакций, но и понимать, что они обозначают. Рассмотрим, еще одну схему реакции:

H2O эл.ток → Н2 + О2

Данная схема означает, что под действием электрического тока, вода разлагается на два простых газообразных вещества: водород и кислород. Схема химической реакции является подтверждением закона сохранения массы и показывает, что химические элементы во время химической реакции не исчезают, а только перегруппировываются в новые химические соединения.

Уравнения химических реакций

Согласно закону сохранения массы исходная масса продуктов всегда равна массе полученных реагентов. Количество атомов элементов до и после реакции всегда одинаковое, атомы только перегруппировываются и образуют новые вещества.

Вернемся к схемам реакций, записанным ранее:

СaCO3 t° → CaO + CO2; С + О2 СО2.

В данных схемах реакций знак «» можно заменить на знак «=», так как видно, что количество атомов до и после реакций одинаковое. Записи будут иметь следующий вид:

СaCO3 = CaO + CO2; С + О2 = СО2.

Именно такие записи называют уравнениями химических реакций, то есть, это – записи схем реакций, в которых количество атомов до и после реакции одинаковое.

Уравнение химической реакции – условная запись химической реакции посредством химических формул, которая соответствует закону сохранения массы вещества

Если мы рассмотрим другие, приведенные ранее схемы уравнений, можно заметить, что на первый взгляд, закон сохранения массы в них не выполняется:

CH4 t° → C2H2 + H2.

Видно, что в левой части схемы, атом углерода один, а в правой – их два. Атомов водорода поровну и в левой и правой частях их по четыре. Превратим данную схему в уравнение. Для этого необходимо уравнять количество атомов углерода. Уравнивают химические реакции при помощи коэффициентов, которые записывают перед формулами веществ.

Очевидно, чтобы количество атомов углерода стало одинаковым слева и справа, в левой части схемы, перед формулой метана, необходимо поставить коэффициент 2:

2CH4 t° → C2H2 + H2

Видно, что атомов углерода слева и справа теперь поровну, по два. Но теперь неодинаково количество атомов водорода. В левой части уравнения их 2∙4 = 8. В правой части уравнения атомов водорода 4 (два из них в молекуле ацетилена, и еще два – в молекуле водорода). Если поставить коэффициент перед ацетиленом, нарушится равенство атомов углерода. Поставим перед молекулой водорода коэффициент 3:

2CH4 = C2H2 + 3H2

Теперь количество атомов углерода и водорода в обеих частях уравнения одинаковое. Закон сохранения массы выполняется!

Рассмотрим другой пример. Схему реакции Na + H2O → NaOH + H2 необходимо превратить в уравнение.

В данной схеме различным является количество атомов водорода. В левой части два, а в правой – три атома. Поставим коэффициент 2 перед NaOH.

Na + H2O → 2NaOH + H2

Тогда атомов водорода в правой части станет четыре, следовательно, коэффициент 2 необходимо добавить и перед формулой воды:

Na + 2H2O → 2NaOH + H2

Уравняем и количество атомов натрия:

2Na + 2H2O = 2NaOH + H2

Теперь количество всех атомов до и после реакции одинаковое.

Таким образом, можно сделать вывод: чтобы превратить схему химической реакции в уравнение химической реакции, необходимо уравнять количество всех атомов, входящих в состав реагентов и продуктов реакции при помощи коэффициентов. Коэффициенты ставятся перед формулами веществ.

Подведем итоги об Уравнения химических реакций

  • Схема химической реакции – условная запись, показывающая, какие вещества вступают в реакцию, какие продукты реакции образуются, а также условия протекания реакции
  • В схемах реакций используют обозначения, указывающие на особенности их протекания
  • Уравнение химической реакции – условная запись химической реакции посредством химических формул, которая соответствует закону сохранения массы вещества
  • Схему химической реакции превращают в уравнение путем расстановки коэффициентов перед формулами веществ