Ядро клетки - это одна из основных составных частей всех растительных и животных клеток, неразрывно связанная с обменом, передачей наследственной информации и др.

Форма ядра клетки варьирует в зависимости от типа клетки. Имеются овальные, шаровидные и неправильной формы - подковообразные или многолопастные ядро клетки (у лейкоцитов), четковидные ядра клетки (у некоторых инфузорий), разветвленные ядра клетки (в железистых клетках насекомых) и др. Величина ядра клетки различна, но обычно связана с объемом цитоплазмы. Нарушение этого соотношения в процессе роста клетки приводит к клеточному делению. Количество ядер клетки также неодинаково - большинство клеток имеет одно ядро, хотя встречаются двуядерные и многоядерные клетки (например, некоторые клетки печени и костного мозга). Положение ядра в клетке является характерным для клеток каждого типа. В зародышевых клетках ядро обычно находится в центре клетки, но может смещаться по мере развития клетки и образования в цитоплазме специализированных участков или отложения в ней резервных веществ.

В ядре клетки различают основные структуры: 1) ядерную оболочку (ядерную мембрану), через поры которой осуществляется обмен между ядром клетки и цитоплазмой [имеются данные, указывающие на то, что ядерная мембрана (состоящая из двух слоев) без перерыва переходит в мембраны эндоплазматической сети (см. ) и комплекса Гольджи]; 2) ядерный сок, или кариоплазму,- полужидкую, слабо окрашиваемую плазматическую массу, заполняющую все ядра клетки и содержащую в себе остальные компоненты ядра; 3) (см.), которые в неделящемся ядре видны только с помощью специальных методов микроскопии (на окрашенном срезе неделящейся клетки хромосомы обычно имеют вид неправильной сети из темных тяжей и зернышек, в совокупности называемых ); 4) одно или несколько сферических телец - ядрышек, являющихся специализированной частью ядра клетки и связанных с синтезом рибонуклеиновой кислоты и белков.

Ядро клетки обладает сложной химической организацией, в которой важнейшую роль играют нуклеопротеиды - продукт соединения с белками. В жизни клетки имеются два основных периода: интерфазный, или метаболический, и митотический, или период деления. Оба периода характеризуются главным образом изменениями в строении ядра клетки. В интерфазе ядро клетки находится в покоящемся состоянии и участвует в синтезе белков, регуляции формообразования, процессах секреции и других жизненных отправлениях клетки. В период деления в ядре клетки происходят изменения, приводящие к перераспределению хромосом и образованию дочерних ядер клетки; наследственная информация передается, таким образом, через ядерные структуры новому поколению клеток.

Ядра клетки размножаются только делением, при этом в большинстве случаев делятся и сами клетки. Обычно различают: прямое деление ядра клетки путем перешнуровки - амитоз и самый распространенный способ деления ядер клетки- типичное непрямое деление, или митоз (см.).

Действие ионизирующей радиации и некоторых других факторов способно изменять заключенную в ядре клетки генетическую информацию, приводя к различным изменениям ядерного аппарата, что иногда может приводить к гибели самих клеток или служить причиной наследственных аномалий у потомства (см. Наследственность), Поэтому изучение структуры и функций ядра клетки, особенно связей между хромосомными соотношениями и наследованием признаков, которыми занимается цитогенетика, имеет существенное практическое значение для медицины (см. ).

См. также Клетка.

Ядро клетки - важнейшая составная часть всех растительных и животных клеток.

Клетка, лишенная ядра или с поврежденным ядром, не способна нормально выполнять свои функции. Ядро клетки, точнее, организованная в его хромосомах (см.) дезоксирибонуклеиновая кислота (ДНК),- носитель наследственной информации, определяющей все особенности клетки, тканей и целого организма, его онтогенез и свойственные организму нормы реагирования на воздействия среды. Заключенная в ядре наследственная информация закодирована в составляющих хромосомы молекулах ДНК последовательностью четырех азотистых оснований: аденина, тимина, гуанина и цитозина. Эта последовательность является матрицей, определяющей структуру синтезируемых в клетке белков.

Даже самые незначительные нарушения структуры ядра клетки ведут к необратимым изменениям свойств клетки или к ее гибели. Опасность ионизирующих излучений и многих химических веществ для наследственности (см.) и для нормального развития плода имеет в своей основе повреждения ядер в половых клетках взрослого организма или в соматических клетках развивающегося эмбриона. В основе преобразования нормальной клетки в злокачественную также лежат определенные нарушения структуры ядра клетки.

Размеры и форма ядра клетки и соотношение его объема и объема всей клетки характерны для различных тканей. Одним из главных признаков, отличающих элементы белой и красной крови, являются форма и размер их ядер. Ядра лейкоцитов могут быть неправильной формы: изогнуто-колбасовидной, лапчатой или четковидной; в последнем случае каждый участок ядра соединен с соседним тонкой перемычкой. В зрелых мужских половых клетках (сперматозоидах) ядро клетки составляет подавляющую часть всего объема клетки.

Зрелые эритроциты (см.) человека и млекопитающих не имеют ядра, так как они теряют его в процессе дифференцировки. Они имеют ограниченный срок жизни и не способны размножаться. В клетках бактерий и сине-зеленых водорослей отсутствует резко очерченное ядро. Однако в них содержатся все характерные для ядра клетки химические вещества, распределяющиеся при делении по дочерним клеткам с такой же правильностью, как и в клетках высших многоклеточных организмов. У вирусов и фагов ядро представлено единственной молекулой ДНК.

При рассмотрении покоящейся (неделящейся) клетки в световом микроскопе ядро клетки может иметь вид бесструктурного пузырька с одним или несколькими ядрышками. Ядро клетки хорошо красится специальными ядерными красками (гематоксилин, метиленовый синий, сафранин и др.), которые обычно используют в лабораторной практике. При помощи фазово-контрастного устройства ядро клетки можно исследовать и прижизненно. В последние годы для изучения процессов, протекающих в ядре клетки, широко используют микрокинематографию, меченые атомы С14 и Н3 (ауторадиография) и микроспектрофотометрию. Последний метод особенно успешно применяют для изучения количественных изменений ДНК в ядре в процессе жизненного цикла клетки. Электронный микроскоп позволяет выявить детали тонкой структуры ядра покоящейся клетки, необнаруживаемые в оптическом микроскопе (рис. 1).

Рис. 1. Современная схема строения клетки, основанная на наблюдениях в электронном микроскопе: 1 - цитоплазма; 2 - аппарат Гольджи; 3 - центросомы; 4 - эндоплазматический ретикулум; 5 - митохондрии; 6 - оболочка клетки; 7 - оболочка ядра; 8 - ядрышко; 9 - ядро.


При делении клеток - кариокинезе или митозе (см.) - ядро клетки претерпевает ряд сложных преобразований (рис. 2), во время которых становятся отчетливо видимыми его хромосомы. Перед делением клетки каждая хромосома ядра синтезирует из веществ, присутствующих в ядерном соке, себе подобную, после чего материнская и дочерняя хромосомы расходятся к противоположным полюсам делящейся клетки. В результате каждая дочерняя клетка получает такой же хромосомный набор, какой был у материнской клетки, а вместе с ним и заключенную в нем наследственную информацию. Митоз обеспечивает идеально правильное разделение всех хромосом ядра на две равнозначные части.

Митоз и мейоз (см.) являются важнейшими механизмами, обеспечивающими закономерности явлений наследственности. У некоторых простейших организмов, а также в патологических случаях в клетках млекопитающих и человека ядра клетки делятся путем простой перетяжки, или амитоза. В последние годы показано, что и при амитозе происходят процессы, обеспечивающие разделение ядра клетки на две равнозначные части.

Набор хромосом в ядре клетки особи называют кариотипом (см.). Кариотип во всех клетках данной особи, как правило, одинаков. Многие врожденные аномалии и уродства (синдромы Дауна, Клайнфелтера, Тернера-Шерешевского и др.) обусловлены различными нарушениями кариотипа, возникшими либо на ранних стадиях эмбриогенеза, либо при созревании половой клетки, из которой возникла аномальная особь. Аномалии развития, связанные с видимыми нарушениями хромосомных структур ядра клетки, называют хромосомными болезнями (см. Наследственные болезни). Различные повреждения хромосом могут быть вызваны действием физических или химических мутагенов (рис. 3). В настоящее время методы, позволяющие быстро и точно устанавливать кариотип человека, используют для ранней диагностики хромосомных болезней и для уточнения этиологии некоторых заболеваний.


Рис. 2. Стадии митоза в клетках культуры ткани человека (перевиваемый штамм НЕр-2): 1 - ранняя профаза; 2 - поздняя профаза (исчезновение ядерной оболочки); 3 - метафаза (стадия материнской звезды), вид сверху; 4 - метафаза, вид сбоку; 5 - анафаза, начало расхождения хромосом; 6 - анафаза, хромосомы разошлись; 7 - телофаза, стадия дочерних клубков; 8 - телофаза и разделение клеточного тела.


Рис. 3. Повреждения хромосом, вызываемые ионизирующей радиацией и химическими мутагенами: 1 - нормальная телофаза; 2-4 - телофазы с мостами и фрагментами в эмбриональных фибробластах человека, облученных рентгеновыми лучами в дозе 10 р; 5 и 6 - то же в кроветворных клетках морской свинки; 7 - хромосомный мост в эпителии роговицы мыши, облученной дозой в 25 р; 8 - фрагментация хромосом в эмбриональных фибробластах человека в результате воздействия нитрозоэтилмочевиной.

Важный органоид ядра клетки - ядрышко - является продуктом жизнедеятельности хромосом. Оно продуцирует рибонуклеиновую кислоту (РНК), являющуюся обязательным промежуточным звеном в синтезе белка, вырабатываемого каждой клеткой.

Ядро клетки отделено от окружающей цитоплазмы (см.) оболочкой, толщина которой 60-70 Å.

Через поры в оболочке вещества, синтезируемые в ядре, поступают в цитоплазму. Пространство между оболочкой ядра и всеми его органоидами заполнено кариоплазмой, состоящей из основных и кислых белков, ферментов, нуклеотидов, неорганических солей и других низкомолекулярных соединений, необходимых для синтеза дочерних хромосом при делении ядра клетки.

1

Концепция единства материальных структур и онтологической безмассовой волновой среды позволяет понять природу всех типов взаимодействия и системную организацию структуры нуклонов, ядер и атомов. Нейтроны играют ключевую роль в формировании и сохранении стабильности ядер, которая обеспечивается двумя бозоно-обменными связями между протонами и нейтронами. Альфа-частицы – главные «кирпичики» в структуре. Структуры ядер, близкие по форме к сферической, образованы в соответствии с периодами в периодической системе Д.И. Менделеева последовательным добавлением комплекса n-p-n, альфа-частицы и нейтронов. Причиной радиоактивного распада атомов является не оптимальная структура ядра: превышение числа протонов или нейтронов, асимметрия. Альфа-структура ядер объясняет причины и энергетический баланс всех типов радиоактивного распада.

структура нуклонов

альфа-частиц

«бозоно-обменные» силы

стабильность

радиоактивность

1. Вернадский В.И. Биосфера и ноосфера. – М.: Рольф. 2002. – 576 с.

2. Дмитриев И.В. Вращение по одной, двум или трём собственным внутренним осям – необходимое условие и форма существования частиц физического мира. – Самара: Самарское кн. изд-во, 2001. – 225 с.

3. Поляков В.И. Экзамен на «Homo sapiens» (От экологии и макроэкологии… к МИРУ). – Саранск: изд-во Мордовского университета, 2004. – 496 с.

4. Поляков В.И. ДУХ МИРА вместо хаоса и вакуума (Физическая структура Вселенной) // «Современные наукоёмкие технологии».- –2004. №4. – С.17-20.

5. Поляков В.И. Электрон = позитрон?! //Современные наукоёмкие технологии. – 2005. – №11. – С. 71-72.

6. Поляков В.И. Рождение материи //Фундаментальные исследования 2007. №12. – С.46-58.

7. Поляков В.И. Экзамен на «Homo sapiens – II». От концепций естествознания ХХ века – к естествопониманию. – Изд-во «Академия естествознания». – 2008. – 596 с.

8. Поляков В.И. Почему стабильны протоны и радиоактивны нейтроны? // «Радиоактивность и радиоактивные элементы в среде обитания человека»: IV Международная Конференция, Томск, 5-7 июня 2013. – Томск, 2013. – С. 415-419.

9. Поляков В.И. Основы естествопонимания структуры нуклонов, ядер, стабильности и радиоактивности атомов // Там же. – С. 419-423.

10. Поляков В.И. Структуры атомов – орбитально волновая модель// Успехи современного естествознания. – 2014. №3. – С.108-114.

12. Физические величины: Справочник // А.П. Бабичев, Н.А. Бабушкина, А.М. Братковскийи др.; Под ред. И.С. Григорьева, Е.З. Мелихова. – М.: Энергоатомиздат, 1991. – 1232 с.

Современная физика предлагает для описания структуры ядер капельную, оболочечную, обобщённую и другие модели. Связь нуклонов в ядрах объясняется энергией связи, обусловленной «особыми специфическими ядерными силами» . Свойства этих сил (притяжение, короткодействие, зарядовая независимость и т.д.) приняты как аксиома. Вопрос «почему так?» возникает почти к каждому тезису. «Принято (?), что эти силы одинаковы для нуклонов… (?). Для лёгких ядер удельная энергия связи круто возрастает, претерпевая целый ряд скачков (?), затем более медленно возрастает (?), а потом постепенно уменьшается» . «Наиболее устойчивым оказываются так называемые «магические ядра», у которых число протонов или нейтронов равно одному из магических чисел: 2, 8, 20, 28, 50, 82, 126…(?) Особенно стабильны дважды магические ядра: 2He2, 8O8, 20Ca20, 20Ca28, 82Pb126» (левый и правый индексы соответствуют числу протонов и нейтронов в ядре, соответственно). Почему существуют «магические» ядра, а магический изотоп 28Ni28 с максимальной удельной энергией связи 8,7 МэВ - короткоживущий
(Т1/2 = 6,1 сут.)? «Ядра характеризуются практически постоянной энергией связи и постоянной плотностью, не зависящей от числа нуклонов» (?!). Это означает, что энергия связи ничего не характеризует, также как и табличные значения дефекта массы (у 20Са20 меньше, чем 21Sc24, у 28Ni30 меньше, чем 27Co32 и 29Cu34 и т.д.) . Физика признаёт, что «сложный характер ядерных сил и трудности решения уравнений…не позволили до настоящего времени разработать единую последовательную теорию атомного ядра» . Наука ХХ века, построенная на постулатах теории относительности, отменила логику и причинно-следственную связь, а математические фантомы объявила реальностью. Не познав структуры ядер и атомов, учёные создали атомные бомбы и пытаются в коллайдерах имитировать Большой взрыв Вселенной…

«Революция в естествознании А. Эйнштейна» подменила уравнениями «пространственно-временного континиума» труды десятков выдающихся учёных (Гюйгенс, Гук, Юнг, Навье, Стокс, Герц, Фарадей, Максвелл, Лоренц, Томсон, Тесла и др.), которые развивали теории электромагнетизма и атомизма в среде «эфир». Следует вернуться на век назад…

Цель и метод работы. Выход из тупика науки возможен на основе понимания сущности среды «эфир». В.И. Вернадский писал: «Излучениями НЕ МАТЕРИАЛЬНОЙ среды охвачено всё доступное, всё мыслимое пространство… Кругом нас, в нас самих, всюду и везде, без перерыва, вечно сменяясь, совпадая и сталкиваясь, идут излучения разной длины волны - от волн, длина которых исчисляется десятимиллионными долями миллиметра, до длинных, измеряемых километрами…Всё пространство ими заполнено…» . Всё материальное формируется этой онтологической, не материальной, волновой средой и существует во взаимодействии с ней. «Эфир» - это не газ и не хаос вихрей, а «Действие, Упорядочивающие Хаос - ДУХ» . В среде ДУХ из единственной элементарной частицы - массона (электрон/позитрон) закономерно и системно организованы структуры от нуклонов, ядер и атомов до Вселенной .

В работе развита модель структуры ядер, которая объясняет их свойства, причины связи нуклонов в ядрах, особую стабильность и радиоактивность.

Структура и свойства нуклонов

Принятая в физике модель нуклонов построена из десятков гипотетических частиц со сказочным названием «кварк» и сказочными отличиями, среди которых: цвет, очарование, странность, прелесть . Эта модель слишком сложна, не имеет доказательств и не может объяснить даже массу частиц. Модель структуры нуклонов, объясняющая все их свойства, была разработана И.В. Дмитриевым (г. Самара) на основе экспериментально открытого им принципа максимума конфигурационной энтропии (равенство структурных элементов на поверхности и в объёме первочастиц) и тезиса о существовании частиц только при вращении «по одной, двум или трём собственным внутренним осям» . Нуклон сформирован из 6-и гексагональных структур π+(-)-мезонов, окружающих плюс-мюон μ+, а их структура построена подбором количества шаров: электронов и позитронов двух типов. Такая структура была обоснована на основе взаимодействия материальных частиц массонов и среды ДУХ в работе , а затем уточнена и доказана на основе построения структуры мезонов в соответствии с постоянной тонкой структуры
1/α = 2h(ε0/μ0)1/2/e2 = 137,036 . Над физическим смыслом этой константы ломали головы физики В. Паули, Р. Фейнман), а в среде ДУХ он очевиден: только на относительном расстоянии 1/α от заряда существует волновое взаимодействие материи и среды.

Расчётное число массонов (me) в структуре мюона должно быть 3/2α = 205,6 , а масса мюона 206,768 me . В его структуре из 207 массонов, центральный определяет заряд ±e и спин ±1/2, а 206 взаимно компенсируются. Пионы, как постулировано И. Дмитриевым, сформированы из «двухосных» электронов и позитронов (спин = 0, заряд +/-, масса me). В среде ДУХ бозоны с массой 2/3 me должны образовываться как первый этап формирования материи из квантов фонового излучения Вселенной в атмосфере Солнца . Таких частиц в плотной структуре должно быть 3/α = 411 частиц, а их масса должна составлять 3/α · 2/3 me = 274 me , что соответствует пи-мезонам (mπ = 273,210 me ). Их структура подобна мюонам: частица в центре определяет заряд ± 2/3e и спин 0, а 205 частицы взаимно уравновешены.

Структура протона из центрального мюона и 6 пионов, с учётом потери массы на обменную («ядерную») связь из 6 массонов (связь мюона с пионами) и 6 бозонов (связь между пионами, 4 me) объясняет его массу.

Мр = 6mp + mm - 10me = 6·273,210 me+ +206,768 me - 10me =1836,028 me.

Это значение с точностью 0,007 % соответствует массе протона Мр = 1836,153me . Заряд протона +e и спин ±1/2 определяются центральным массоном+ в центральном мюоне+. Модель протона объясняет все его свойства, включая стабильность. В среде ДУХ взаимодействие материальных частиц происходят в результате резонанса связанных с ними «облаков» среды (совпадения формы и частоты). Протон стабилен, так как защищён от материальных частиц и квантов оболочкой из пионов, имеющих иное волновое поле.

Масса протона 1836,153 me, а нейтрона 1838,683 me . Компенсацию заряда протона, по аналогии с атомом водорода, обеспечит электрон на волновой орбите в его экваториальной плоскости («одна ось вращения»), а его «двухосное вращение» оказывается «своим» в пионовом облаке. Добавим 2 бозона в противоположно расположенных пионах нейтрона; они компенсируют орбитальный момент, а масса нейтрона составит 1838,486 me. Такая структура объясняет массу нейтрона (отличие 0,01%), отсутствие заряда и, главное, - «ядерные» силы. «Лишний» бозон слабо связан в структуре и обеспечивает «обменную» связь, занимая с ядерной частотой «вакансию» в соседнем пионе протона, он вытесняет другой бозон, возвращающийся в нейтрон. «Лишние» бозоны в нейтроне - это его «две руки», скрепляющие ядра.

Нейтрон в ядрах элементов обеспечивает стабильность ядер, и сам «спасается» в ядре от распада (Т1/2 =11,7 мин.), причина которого - его «слабые места»: орбита электрона и наличие в «пионовой шубе» у двух из шести пионов по «лишнему» бозону.

Учёные ХХ века придумали десятки теорий и сотни «элементарных» частиц, но не смогли объяснить структуры атомов, а Природе потребовалось всего две подобных частицы, чтобы создать два нуклона, а из них 92 элемента и построить весь материальный МИР!!!

Альфа-структура атомных ядер

Изотопы всех элементов, наиболее распространенных в Природе, имеют чётное число нейтронов (исключение 4Be5 и 7N7). Всего из 291 стабильных изотопов 75 % имеет чётное число нейтронов и только 3 % чётно-нечётных ядер. Это свидетельствует о предпочтении связи протона с двумя нейтронами, отсутствии протон-протонных связей и «зарядовой независимости ядерных сил». Каркас ядер формируют связи нейтрон-протон, где каждый нейтрон может обменом двух бозонов удерживать 2 протона (пример, 2Не1). В тяжёлых ядрах относительное число нейтронов возрастает, усиливая каркас ядра.

Изложенные аргументы и принцип системности организации материи в не материальной среде позволяют предложить модель «блочного строительства» структуры ядер элементов, в которой «блоком» является ядро атома гелия - альфа-частица . Гелий - основной элемент космологического нуклеосинтеза, и по распространённости во Вселенной он второй элемент после водорода . Альфа-частицы являются оптимальной структурой прочно связанных двух пар нуклонов. Это очень компактная, крепко связанная шарообразная структура, которую геометрически можно представить как сферу с вписанным в неё кубом с узлами в противоположных диагоналях из 2 протонов и 2 нейтронов. Каждый нейтрон имеет две «ядерно-обменные» связи с двумя протонами. Электромагнитную связь сближения нейтрона с протонами обеспечивает орбитальный электрон в его структуре (подтверждение: магнитные моменты: μ (p) = 2,793 μN, μ (n) = -1,913 μN , где μN - ядерный магнетон Бора ).

Предполагаемое «кулоновское» отталкивание протонов не противоречит их сближению. Объяснение этому, также как в структурах мюонов из массонов, заложено в понимании «заряда» как неотъемлемого свойства массы частицы - движения среды ДУХ, связанного с волновым движением массы, выражающимся как сила в этой среде (единицей заряда может служить кулон2 - сила, умноженная на поверхность) . Два типа зарядов +/- - это левое и правое направление вращения. При сближении двух протонов в экваториальной плоскости движение «схваченной» среды будет противоположно, а при сближении «с полюсов» оно происходит в одном направлении, способствуя сближению. Сближение частиц ограничено взаимодействием их «полевых» оболочек, соответствующих «комптоновской» длине волны: λК(р) = 1,3214·10-15 м, а λК(n) = 1,3196·10-15 м. При сближении протона и нейтрона на такое расстояние действуют бозоно-обменные («ядерные») силы между ними.

Структуры ядер из альфа-частиц формируются с минимальным объёмом и формой, близкой к сферической. Структура альфа-частиц позволяет им объединяться путём разрыва одной бозоно-обменной связи n-p и формированием двух связей n-p и p-n с соседней альфа-частицей. При любом количестве протонов в ядре формируется единое сферическое поле, напряжённость которого такая же, как, если бы заряд был сосредоточен в центре (правило Остроградского - Гаусса). Образование единого поля ядра подтверждается орбитально-волновой структурой атомов, где все s, p, d, f орбиты образуют сферические оболочки .

Построение ядер элементов из альфа-частиц происходит системно, последовательно в каждом периоде на основе ядра предшествующего элемента. В ядрах с чётным числом протонов связи уравновешены, появление в структуре следующего атома дополнительного протона не возможно. В ядрах атомов после кислорода прибавление протона происходит по схеме (n-p-n). Чёткая последовательность формирования структур в соответствии с периодами и рядами в таблице Д.И. Менделеева - подтверждение правомерности предлагаемой модели ядер и служит подтверждением мысли В.И. Вернадского о «череде атомов»: «Процесс закономерной бренности атомов неизбежно и непреоборимо происходит… Беря историю любого атома в космическое время, мы видим, что он через определённые промежутки времени, сразу, одинаковыми скачками, в направлении полярного вектора времени переходит в другой атом, другой химический элемент» . Схемы ядер первых периодов атомов представлены в табл. 1.

Таблица 1

Предполагаемая структура ядер (плоская проекция) основных изотопов стабильных атомов из альфа-частиц (α), протонов (р) и нейтронов (n): pAn

nnααααααnn

nnααααααnn

nnαααnnαααnn

nnααnαααnααnn

nαααnnαααn

nnααααααnn

nααnnαααnnααn

nαααnnαααn

Следующие 5 и 6 периоды элементов могут быть смоделированы аналогично с учётом того, что увеличение числа протонов потребует увеличения числа нейтронов как во внутреннем каркасе ядер, так в поверхностном слое, по схеме n-n.

Представленная наглядная плоская проекция структуры ядер может быть дополнена орбитальной схемой, соответствующей периодам в таблице Менделеева
(табл. 2).

Таблица 2

Ядерные оболочки элементов и периоды в таблице Д.И. Менделеева

Ядерная оболочка- период

Начальный и конечный элемент в ряду

Число элементов

Отношение n/p

Начальный

Конечный

55Cs78 -82Pb126 (83Bi126… 86Rn136)

(87Fr136 - 92U146 …).

Оболочки строятся подобно структуре атома, где сферические оболочки из электронных орбит в каждом периоде формируются на большем радиусе, чем в предыдущем периоде .

Элементы после 82Pb126 (83Bi126 T1/2 ≈1018 лет) не стабильны (в табл. 2 даны в скобках). 41 альфа-частица в структуре свинца формируют электрический заряд, который для сохранения стабильности ядер требует силы дополнительных 40-44 нейтронов. Соотношение количества нейтронов и протонов n/p> (1,5÷1,6) - предел стабильности для тяжёлых ядер. Периоды полураспада ядер после 103 «элемента» - секунды. Эти «элементы» не могут сохранить структуру ядра и сформировать электронную оболочку атома. Вряд ли стоит тратить средства и время учёных на их искусственное производство. «Острова стабильности» быть не может!

Модель альфа-структуры ядер объясняет силы взаимосвязи, стабильность, и все свойства элементов (завершённость структуры инертных газов, распространённость в природе и особая стабильность элементов с симметричной структурой: О, С, Si, Mg, Ca, подобие Cu, Ag, Au…).

Причины «не спонтанного» распада

Структуры радиоактивных изотопов отличаются не симметричностью, наличием не уравновешенной пары n-p. Период полураспада изотопов тем меньше, чем больше их структура отличается от оптимальной. Радиоактивность изотопов с большим числом протонов объяснятся тем, что «обменные» силы нейтронов не способны удерживать их суммарный заряд, а распад изотопов с избытком нейтронов объясняется их излишеством для оптимальной структуры. Альфа-структура ядер позволяет объяснить причины всех видов радиоактивного распада .

Альфа-распад. В ядерной физике «согласно современным представлениям, альфа-частицы образуются в момент радиоактивного распада при встрече движущихся внутри ядра двух протонов и двух нейтронов… вылет альфа-частицы из ядра возможен благодаря туннельному эффекту через потенциальный барьер высотой не меньше 8,8 МэВ» . Всё происходит случайно: движение, встреча, формирование, набор энергии и вылет через некий барьер. В ядрах с альфа-структурой для вылета нет барьеров. Когда сила суммарного заряда всех протонов превышает бозоно-обменные силы сдерживания всех нейтронов, ядро сбрасывает альфа-частицу, наименее связанную в структуре, и «омолаживается» на 2 заряда. Появление возможности альфа-распада зависит от структуры ядер. Он проявляется при 31 альфа-частицt в ядре 62Sm84 (n/p =1,31), и становится необходимым от 84Ро (n/p = 1,48).

β+-распад. В ядерной физике «процесс β+- распада протекает так, как если бы один из протонов ядра превратился в нейтрон, испустив при этом позитрон и нейтрино: 11p→ 01n + +10e + 00νe… Так как масса протона меньше, чем у нейтрона, то такие реакции для свободного протона наблюдаться не могут. Однако, для протона, связанного в ядре, благодаря ядерному взаимодействию частиц, эти реакции оказываются энергетически возможными» . Объяснения процесса реакции, появления позитрона в ядре и увеличение массы на 2,5 me для превращения протона в нейтрон физика заменила постулатом: «процесс возможен». Такая возможность объясняется альфа-структурой. Рассмотрим классическую схему распада: 15Р15 → 14Si16 + +10e + 00νe. В соответствие с табл.1 структура стабильного изотопа 15Р16 (7α-npn). Cтруктура изотопа
15Р15 - (7α-np), но связь (n-p) в структуре - слабая, поэтому период полураспада 2,5 мин. Схема распада может быть представлена в несколько этапов. Слабо связанный протон выталкивается зарядом ядра, но «хватается» за нейтрон альфа-частицы и разрушает её с освобождением 4-х бозонов-связи. «Двухосные» бозоны не могут существовать в среде ДУХ и преобразуются в «трёхосные» массоны с разными моментами (+ и - ; электрон и позитрон) с испусканием нейтрино и антинейтрино по схемам
β-: (е--- + е+++ → е- -++ + ν0-) и β+: (е--- + е+++ → е+ --+ + ν0+). Позитрон выталкивается из ядра, а электрон на орбите вокруг бывшего протона компенсирует его заряд, превращая в нейтрон. Предполагаемая схема реакции: (7α-np) → (6α- n-p-n-р-n-p + 2е--- + 2e+++) → {(6 α) + (npnp) + n + (p-e-)} + e+ + ν0- + ν0+ → (7 α -nn) + e+ + ν0- + ν0+ . Схема объясняет причину и процесс распада, изменение массы частиц и предполагает испускание 2-х импульсов: нейтрино и антинейтрино.

β- -распад. «Поскольку электрон не вылетает из ядра и не вырывается из оболочки атома, было сделано предположение что β- электрон рождается в результате процессов, происходящих внутри ядра…» . Есть объяснение! Такой процесс характерен для ядер, имеющих в своей структуре количество нейтронов, большее, чем у стабильных изотопов этого элемента. Структура ядра следующего изотопа после ядра со сформированной чётно-чётной структурой прирастает «блоком» n-p-n, а следующий по массе за ним изотоп содержит ещё один «очень не лишний» нейтрон. Нейтрон может быстро «сбросить» орбитальный электрон, став протоном, и сформировать альфа-структуру: npn + (n→p) = npnp = α. Электрон и антинейтрино уносят избыток массы и энергии, а заряд ядра возрастает на единицу.

ε-захват. При недостатке нейтронов для стабильной структуры излишний заряд протонов притягивает и захватывает электрон с одной из внутренних оболочек атома, испуская нейтрино. Протон в ядре превращается в нейтрон.

Заключение

Представленная модель альфа-структуры ядер элементов позволяет объяснить закономерности образования ядер, их стабильность, причины, стадии и энергетический баланс всех видов радиоактивного распада. Структуры протонов, нейтронов, ядер и атомов элементов, подтверждённые соответствием универсальным постоянным, которые являются физическими характеристиками среды ДУХ, объясняют все свойства и все взаимодействия. Современная ядерная и атомная физика на это не способны. Необходим пересмотр основных концепций: от постулатов - к пониманию.

Библиографическая ссылка

Поляков В.И. СТРУКТУРА ЯДЕР АТОМОВ И ПРИЧИНЫ РАДИОАКТИВНОСТИ // Успехи современного естествознания. – 2014. – № 5-2. – С. 125-130;
URL: http://natural-sciences.ru/ru/article/view?id=33938 (дата обращения: 27.02.2019). Предлагаем вашему вниманию журналы, издающиеся в издательстве «Академия Естествознания»

В процессе эволюции претерпевали ряд изменений. Появлению новых органелл предшествовали преобразования в атмосфере и литосфере молодой планеты. Одним из значительных приобретений стало клеточное ядро. Эукариотические организмы получили, благодаря наличию обособленных органелл, существенные преимущества перед прокариотами и быстро стали доминировать.

Клеточное ядро, строение и функции которого несколько отличаются в разных тканях и органах, позволило повысить качество биосинтеза РНК и передачу наследственной информации.

Происхождение

На сегодняшний день есть две основные гипотезы об образовании эукариотической клетки. Согласно симбиотической теории органеллы (например, жгутики или митохондрии) когда-то были отдельными прокариотическими организмами. Предки современных эукариот поглотили их. В результате образовался симбиотический организм.

Ядро при этом сформировалось в результате выпячивания внутрь участка цитоплазматической было необходимым приобретением на пути освоения клеткой нового способа питания, фагоцитоза. Захват пищи сопровождался повышением степени подвижности цитоплазмы. Генофоры, представлявшие собой генетический материал прокариотической клетки и прикреплявшиеся к стенкам, попадали в зону сильного «течения» и нуждались в защите. В результате и образовалось глубокое впячивание участка мембраны, содержавшего прикрепленные генофоры. В пользу этой гипотезы свидетельствует тот факт, что оболочка ядра неразрывно связана с цитоплазматической мембраной клетки.

Существует и другая версия развития событий. Согласно вирусной гипотезе происхождения ядра, оно сформировалось в результате заражения клетки древней археи. В нее внедрился ДНК-вирус и постепенно получил полный контроль над жизненными процессами. Ученые, считающие эту теорию более правильной, приводят массу доводов в ее пользу. Однако на сегодняшний день нет исчерпывающего доказательства ни для одной из существующих гипотез.

Одно или несколько

Большая часть клеток современных эукариот имеет ядро. Подавляющее их число содержит только одну подобную органеллу. Существуют, однако, и клетки, которые утратили ядро по причине некоторых функциональных особенностей. К ним относятся, например, эритроциты. Встречаются и клетки с двумя (инфузории) и даже несколькими ядрами.

Структура клеточного ядра

Вне зависимости от особенностей организма, строение ядра характеризуется набором типичных органелл. От внутреннего пространства клетки оно отгорожено двойной мембраной. Внутренние и внешние ее прослойки в некоторых местах сливаются, образуя поры. Их функция заключается в обмене веществ между цитоплазмой и ядром.

Пространство органеллы заполнено кариоплазмой, также называемой ядерным соком или нуклеоплазмой. В ней размещается хроматин и ядрышко. Иногда последний из названных органоид клеточного ядра присутствует не в единственном экземпляре. У некоторых же организмов ядрышки, наоборот, отсутствуют.

Мембрана

Ядерная оболочка образована липидами и состоит из двух слоев: наружного и внутреннего. По сути, это та же клеточная мембрана. Ядро сообщается с каналами эндоплазматической сети через перинуклеарное пространство, полость, образованную двумя слоями оболочки.

Наружная и внутренняя мембрана имеют свои особенности в строении, однако в целом довольно похожи.

Ближайший к цитоплазме

Наружный слой переходит в мембрану эндоплазматической сети. Ее основное отличие от последней — значительно более высокая концентрация белков в структуре. Мембрана, непосредственно контактирующая с цитоплазмой клетки, покрыта слоем рибосом с наружной стороны. С внутренней мембраной она соединяется многочисленными порами, представляющими собой довольно крупные белковые комплексы.

Внутренний слой

Обращенная в клеточное ядро мембрана, в отличие от наружной, гладкая, не покрытая рибосомами. Она ограничивает кариоплазму. Характерная особенность внутренней мембраны — слой ядерной ламины, выстилающий ее со стороны, соприкасающейся с нуклеоплазмой. Эта специфическая белковая структура поддерживает форму оболочки, участвует в регуляции экспрессии генов, а также способствует прикреплению хроматина к мембране ядра.

Обмен веществ

Взаимодействие ядра и цитоплазмы осуществляется через Они представляют собой довольно сложные структуры, образованные 30 белками. Количество пор на одном ядре может быть разным. Он зависит от типа клетки, органа и организма. Так, у человека клеточное ядро может иметь от 3 до 5 тысяч пор, у некоторых лягушек оно доходит до 50 000.

Главная функция пор — обмен веществ между ядром и остальным пространством клетки. Некоторые молекулы проникают сквозь поры пассивно, без дополнительных затрат энергии. Они обладают небольшими размерами. Транспортировка крупных молекул и надмолекулярных комплексов требует расхода определенного количества энергии.

Из кариоплазмы в клетку попадают синтезируемые в ядре молекулы РНК. В обратном направлении транспортируются белки, необходимые для внутриядерных процессов.

Нуклеоплазма

Строение ядерного сока меняется в зависимости от состояния клетки. Их два — стационарное и возникающее в период деления. Первое характерно для интерфазы (время между делениями). При этом ядерный сок отличается равномерным распределением нуклеиновых кислот и неструктурированными молекулами ДНК. В этот период наследственный материал существует в виде хроматина. Деление клеточного ядра сопровождается преобразованием хроматина в хромосомы. В это время изменяется строение кариоплазмы: генетический материал приобретает определенную структуру, ядерная оболочка разрушается, и кариоплазма смешивается с цитоплазмой.

Хромосомы

Основные функции нуклеопротеидных структур преобразованного на время деления хроматина — хранение, реализация и передача наследственной информации, которую содержит клеточное ядро. Хромосомы характеризуются определенной формой: делятся на части или плечи первичной перетяжкой, также называемой целомерой. По ее расположению выделяют три типа хромосом:

  • палочкообразные или акроцентрические: для них характерно размещение целомеры практически на конце, одно плечо получается очень маленьким;
  • разноплечие или субметацентрические обладают плечами неравной длины;
  • равноплечие или метацентрические.

Набор хромосом в клетке называется кариотипом. У каждого вида он фиксирован. При этом разные клетки одного организма могут содержать диплоидный (двойной) или гаплоидный (одинарный) набор. Первый вариант характерен для соматических клеток, в основном составляющих тело. Гаплоидный набор — привилегия половых клеток. Соматические клетки человека содержат 46 хромосом, половые — 23.

Хромосомы диплоидного набора составляют пары. Одинаковые нуклеопротеидные структуры, входящие в пару, называются аллельными. Они имеют одинаковое строение и выполняют одни и те же функции.

Структурной единицей хромосом является ген. Он представляет собой участок молекулы ДНК, кодирующий определенный белок.

Ядрышко

Клеточное ядро обладает еще одним органоидом — это ядрышко. Оно не отделяется от кариоплазмы мембраной, но при этом его легко заметить во время изучения клетки с помощью микроскопа. Некоторые ядра могут иметь несколько ядрышек. Существуют и такие, в которых подобные органоиды отсутствуют совсем.

По форме ядрышко напоминает сферу, имеет достаточно небольшие размеры. В его состав входят различные белки. Основная функция ядрышка — синтез рибосомных РНК и самих рибосом. Они необходимы для создания полипептидных цепей. Ядрышки образуются вокруг специальных участков генома. Они получили название ядрышковых организаторов. Здесь содержатся гены рибосомной РНК. Ядрышко, кроме прочего, является местом с наибольшей концентрацией белка в клетке. Часть белков необходима для выполнения функций органоида.

В составе ядрышка выделяют два компонента: гранулярный и фибриллярный. Первый представляет собой созревающие субъединицы рибосом. В фибриллярном центре осуществляется Гранулярный компонент окружает фибриллярный, расположенный в центре ядрышка.

Клеточное ядро и его функции

Роль, которую играет ядро, неразрывно связана с его строением. Внутренние структуры органоида совместно реализуют важнейшие процессы в клетке. Здесь размещается генетическая информация, которая определяет строение и функции клетки. Ядро отвечает за хранение и передачу наследственной информации, осуществляющееся во время митоза и мейоза. В первом случае дочерняя клетка получает идентичный материнскому набор генов. В результате мейоза образуются половые клетки с гаплоидным набором хромосом.

Другая не менее важная функция ядра — регуляция внутриклеточных процессов. Она осуществляется в результате контроля синтеза белков, отвечающих за строение и функционирование клеточных элементов.

Влияние на белковый синтез имеет еще одно выражение. Ядро, контролируя процессы внутри клетки, объединяет все ее органоиды в единую систему с отлаженным механизмом работы. Сбои в нем приводят, как правило, к гибели клетки.

Наконец, ядро является местом синтеза субъединиц рибосом, которые отвечают за образование все того же белка из аминокислот. Рибосомы незаменимы в процессе транскрипции.

Представляет собой более совершенную структуру, чем прокариотическая. Появление органоидов с собственной мембраной позволило повысить эффективность внутриклеточных процессов. Формирование ядра, окруженного двойной липидной оболочкой, играло в этой эволюции очень важную роль. Защита наследственной информации мембраной позволила освоить древним одноклеточным организмам новые способы жизнедеятельности. Среди них был фагоцитоз, который по одной из версий привел к появлению симбиотического организма, позже ставшего прародителем современной эукариотической клетки со всеми характерными для нее органоидами. Клеточное ядро, строение и функции некоторых новых структур позволили задействовать кислород в метаболизме. Следствием этого стало кардинальное изменение в биосфере Земли, была заложена основа для формирования и развития многоклеточных организмов. Сегодня эукариотические организмы, к которым относится и человек, доминируют на планете, и ничто не предвещает изменений в этом плане.

Ядро представляет собой обязательную часть клетки у многих одноклеточных и всех многоклеточных организмов.

Рис. 1.

Оно содержит ядерные гены, и соответственно выполняет 2 главные функции:

1. Хранение и воспроизведение генетической информации;

2. Регуляция процессов обмена веществ, протекающих в клетке.

По наличию или отсутствию в клетках оформленного ядра все организмы делятся на прокариотические и эукариотические. Основное отличие заключается в степени обособления генетического материала (ДНК) от цитоплазмы и в образовании у эукариот сложных ДНК-содержащих структур-хромосом. Клетки эукариот содержат оформленные ядра. Клетки прокариот не имеют морфологически оформленного ядра.

Путем реализации заключенной в генах наследственной информации ядро управляет белковыми синтезами, физиологическими и морфологическими процессами в клетке. Функции ядра осуществляются в тесном взаимодействии с цитоплазмой.

Впервые ядро наблюдал Я. Пуркине (1825) в яйцеклетке курицы. Ядра растительных клеток были описаны Р. Броуном (1831-33), который наблюдал в них шарообразные структуры. Ядра животных клеток были описано Т. Шванном (1838-39 гг.)

Размеры ядра колеблются от 1 мкм (у некоторых простейших) до 1 мм (в яйцах некоторых рыб и земноводных). В состав большинства эукариотических клеток входит одно ядро. Однако, встречаются и многоядерные клетки (поперечнополосатые мышечные волокна и т.д.). В состав клеток инфузории, например, входит 2 ядра (макронуклеус и микронуклеус). Встречаются и полиплоидные клетки, в которых произошло увеличение наборов хромосом.

Форма ядра может быть различной (сферической, эллипсовидной, неправильной и т.д.) и зависит от формы клетки.

Между объемом ядра и объемом цитоплазмы существует взаимосвязь. Более молодые клетки обычно имеют более крупные ядра. Положение ядра в клетке может меняться по мере дифференцировки или накопления питательных веществ.

Ядро окружено ядерной мембраной, которая является двухслойной и содержит ядерные поры, расположенные на равном расстоянии друг от друга.

В состав интерфазного ядра входят кариоплазма, хроматин, ядрышки, а также синтезируемые в ядре структуры (перихроматиновые фибриллы, перихроматиноые гранулы, интерхроматиновые гранулы). Во время активных фаз деления ядра происходит спирализация хроматина и образование хромосом.

Структура ядра неоднородна. Имеются более спирализованные гетерохроматиновые участки (ложные или хроматиновые ядрышки). Остальные участки - эухроматиновые. Удельный вес ядра выше, чем у остальной цитоплазмы. Среди ядерных структур наибольшим весом обладает ядрышко. Вязкость ядра выше, чем вязкость цитоплазмы. Если ядерная оболочка разрывается и кариоплазма выходит наружу, происходит спадание ядра без всяких признаков реконструкции.

Рис. 2.


Рис. 3.

Ядерная оболочка состоит из двух мембран, причем наружная является продолжением мембраны эндоплазматического ретикулума. Липидный бислой внутренней и наружной ядерных мембран соединяются в ядерных порах. Две сети нитевидных промежуточных фибрилл (цветные линии) обеспечивают механическую прочность ядерной оболочки.Фибриллы внутри ядра образуют подстилающую ядерную ламину (по Альбертсу).

Ядерная оболочка непосредственно связана с эндоплазматическим ретикулумом. С обеих сторон к ней прилегают сетеподобные структуры, состоящие из промежуточных филаментов. Сетеподобная структура, которая выстилает внутреннюю ядерную мембрану называется ядерной ламиной.


Рис. 4.

Ядерная оболочка

Эта структура характерна для всех эукариотических клеток. Ядерная оболочка состоит из внешней и внутренней липопротеидных мембран, толщина которых составляет 7-8 нм. Липопротеидные мембраны разделены перинуклеарным пространством шириной от 20 до 60 нм. Ядерная оболочка ограничивает ядро от цитоплазмы.

Ядерная оболочка пронизана порами, диаметр которых составляет 60-100 нм. По краю каждой поры находится плотное вещество (аннулус). По границе округлого отверстия в ядерной оболочке располагаются три ряда гранул, по 8 штук в каждом: один ряд лежит со стороны ядра, другой - со стороны цитоплазмы, третий расположен в центральной части пор. Размер гранул около 25 нм. От этих гранул отходят фибриллярные отростки, в просвете поры имеется центральный элемент диаметром 15-20 нм, соединенный с аннулусом радиальными фибриллами. Вместе эти структуры образуют поровый комплекс, который регулирует прохождение макромолекул через поры.

Внешняя ядерная мембрана может переходить в мембраны эндоплазматической сети. На внешней ядерной мембране обычно располагается большое количество рибосом. У большинства животных и растительных клеток внешняя мембрана ядерной оболочки не представляет собой идеально ровную поверхность - она может образовывать различной величины выпячивания или выросты в сторону цитоплазмы.

Число ядерных пор зависит от метаболической активности клеток: чем выше синтетические процессы в клетках, тем больше пор на единицу поверхности клеточного ядра.

С химической точки зрения, в состав ядерной оболочки входит ДНК (0-8%), РНК (3-9%), липиды (13-35%) и белки (50-75%).

Что касается липидного состава ядерной мембраны, то он сходен с химическим составом мембран ЭПС (эндоплазматической сети). В ядерных мембранах наблюдается низкое содержание холестерина и высокое содержание фосфолипидов.

Белковый состав мембранных фракций очень сложен. Среди белков обнаружен ряд ферментов, общих с ЭР (например, глюкозо-6-фосфатаза, Mg-зависимая АТФаза, глютамат-дегидрогеназа и др.) не обнаружена РНК-полимераза. Тут выявлены активности многих окислительных ферментов (цитохромоксидазы, НАДН-цитохром-с-редуктазы) и различных цитохромов.

Среди белковых фракций ядерных мембран встречаются основные белки типа гистонов, что объясняется связью участков хроматина с ядерной оболочкой.

Ядерная оболочка проницаема для ионов, веществ с малым молекулярным весом (сахара, аминокислоты, нуклеотиды). Из ядра в цитоплазму происходит транспорт РНК.

Ядерная оболочка является барьером, ограничивающим содержимое ядра от цитоплазмы и препятствующим свободному доступу в ядро крупных биополимеров.

Рис. 5. Ядерная оболочка отделяет ядро от цитоплазматических органелл. На этой электронной микрофотографии представлен тонкий срез ооцита морского ежа, ядро которого окрашивается необычайно равномерно, а цитоплазма плотно забита органеллами. (По Альбертсу)

Кариоплазма

Кариоплазма или ядерный сок - это содержимое клеточного ядра, в которое погружены хроматин, ядрышки, внутриядерные гранулы. После экстракции хроматина химическими агентами в кариоплазме сохраняется так называемый ядерный матрикс. Этот комплекс не представляет собой какую-то чистую фракцию, сюда входят компоненты и ядерной оболочки, и ядрышка, и кариоплазмы. С ядерным матриксом оказались связаны как гетерогенная РНК, так и часть ДНК. Матрикс ядра играет важную роль не только в поддержании общей структуры интерфазного ядра, но и может участвовать в регуляции синтеза нуклеиновых кислот.

Хроматин

Клеточное ядро является вместилищем почти всей генетической информации клетки, поэтому основное содержимое клеточного ядра -- это хроматин: комплекс дезоксирибонуклеиновой кислоты (ДНК) и различных белков. В ядре и, особенно, в митотических хромосомах, ДНК хроматина многократно свернута, упакована особым образом для достижения высокой степени компактизации.

Ведь все длинные нити ДНК необходимо уложить в клеточное ядро, диаметр которого всего несколько микрометров. Эта задача решается последовательной упаковкой ДНК в хроматине с помощью специальных белков. Основная масса белков хроматина -- это белки гистоны, входящие в состав глобулярных субъединиц хроматина, называемых нуклеосомами. Хроматин представляет собой нуклеопротеидные нити, входящие в состав хромосом. Термин «хроматин» был введен В.Флеммингом (1880). Хроматин - это дисперсное состояние хромосом в интерфазе клеточного цикла. Основными структурными компонентами хроматина являются: ДНК (30-45%), гистоны (30-50%), негистоновые белки (4-33%). Существует 5 типов белков-гистонов, входящих в состав хроматина (Н1, Н2А, Н2В, Н3 и Н4). Белок Н1 слабо связан с хроматином.

По своей морфологии хроматин напоминает структуру «бус», состоящих из нуклеосом (частиц диаметром около 10 нм). Нуклеосома- это сегмент ДНК длиной 200 пар оснований, навитый на белковую сердцевину, которая состоит из 8 молекул белков-гистонов (Н2А, Н2В, Н3 и Н4). Каждая нуклеосома маскирует 146 пар оснований. Нуклеосома представляет собой цилиндрическую частицу, состоящую из 8 молекул гистонов, диаметром около 10 нм, на которую «намотано» чуть менее двух витков нити молекулы ДНК. Все белки-гистоны, кроме Н1, входя в состав сердцевины нуклеосомы. Белок Н1 вместе с ДНК связывает отдельные нуклеосомы между собой (этот участок называется линкерная ДНК). В электронном микроскопе такой искусственно деконденсированный хроматин выглядит как «бусины на нитке». В живом ядре клетки нуклеосомы плотно объединены между собой с помощью еще одного линкерного гистонового белка, образуя так называемую элементарную хроматиновую фибриллу, диаметром 30 нм. Другие белки, негистоновой природы, входящие в состав хроматина обеспечивают дальнейшую компактизацию, т. е. укладку, фибрилл хроматина, которая достигает своих максимальнах значений при делении клетки в митотических или мейотических хромосомах. В ядре клетки хроматин присутствует как в виде плотного конденсированного хроматина, в котором 30 нм элементарные фибриллы упакованы плотно, так и в виде гомогенного диффузного хроматина. Количественное соотношение этих двух видов хроматина зависит от характера метаболической активности клетки, степени ее дифференцированности. Так, например, ядра эритроцитов птиц, в которых не происходит активных процессов репликации и транскрипции, содержат практически только плотный конденсированный хроматин. Некоторая часть хроматина сохраняет свое компактное, конденсированное состояние в течение всего клеточного цикла -- такой хроматин называется гетерохроматином и отличается от эухроматина рядом свойств.

Спирализованные участки хромосом инертны в генетическом отношении. Передачу генетической информации осуществляют деспирализованные участки хромосом, которые в силу своей малой толщины не видны в световой микроскоп. В делящихся клетках все хромосомы сильно спирализуются, укорачиваются и приобретают компактные размеры и форму.

Хроматин интерфазных ядер представляет собой несущие ДНК тельца (хромосомы), которые теряют в это время свою компактную форму, разрыхляются, деконденсируются. Степень такой деконденсации хромосом может быть различной в ядрах разных клеток. Когда хромосома или ее участок полностью деконденсирован, тогда эти зоны называют диффузным хроматином. При неполном разрыхлении хромосом в интерфазном ядре видны участки конденсированного хроматина (иногда называемого гетерохроматин). Показано, что степень деконденсации хромосомного материала в интерфазе может отражать функциональную нагрузку этой структуры. Чем более диффузен хроматин интерфазного ядра, тем выше в нем синтетические процессы. Падение синтеза РНК в клетках обычно сопровождается увеличением зон конденсированного хроматина.

Максимально конденсирован хроматин во время митотического деления клеток, когда он обнаруживается в виде плотных телец - хромосом. В этот период хромосомы не несут никаких синтетических нагрузок, в них не происходит включение предшественников ДНК и РНК.

Рис. 6.

Нуклеосомные частицы состоят из двух полных витков ДНК (83 нуклеотидных пары на виток), закрученных вокруг кора, представляющего собой гистоновый октамер, и соединяются между собой линкерной ДНК. Нуклеосом-ная частица выделена из хроматина путем ограниченного гидролиза линкерных участков ДНК микрококковой нуклеазой. В каждой нуклеосомнои частице фрагмент двойной спирали ДНК, имеющий в длину 146 пар оснований, закручен вокруг гистонового кора. Этот белковый кор содержит по две молекулы каждого из гистонов Н2А, Н2В, НЗ и Н4. Полипептидные цепи гистонов насчитывают от 102 до 135 аминокислотных остатков, а общий вес октамера составляет приблизительно 100000 Да. В деконденсированной форме хроматина каждая «бусина» связана с соседней частицей нитевидным участком линкерной ДНК (по Альбертсу).

Рис. 7.


Рис. 8.

Показаны три нити хроматина, на одной из которых две молекулы РНК-полимеразы транскрибируют ДНК. Большая часть хроматина в ядре высших эукариот не содержит активных генов, и, следовательно, свободна от РНК-транскриптов. Следует отметить, что нуклеосомы имеются как в транскрибируемых, так и в нетранскрибируемых областях, и что они связаны с ДНК непосредственно перед и сразу же за движущимися молекулами РНК-полимераз. (по Альбертсу) .


Рис. 9.

А. Вид сверху. Б. Вид сбоку.

При таком типе упаковки на нуклеосому приходится одна молекула гистона Н1 (не указано). Хотя место прикрепления гистона Н1 к нуклеосоме определено, расположение молекул Н1 на этой фибрилле неизвестно (по Альбертсу).

Белки хроматина

Гистоны - сильноосновные белки. Их щелочность связана с их обогащенностью основными аминокислотами (главным образом лизином и аргинином). Эти белки не содержат триптофана. Препарат суммарных гистонов можно разделить на 5 фракций:

Н 1 (от английского histone) - богатый лизином гистон, мол. Масса 2100;

Н 2а - умеренно богатый лизином гистон, масса 13 700;

Н 2б - умеренно богатый лизином гистон, масса 14 500;

Н 4 - богатый аргинином гистон, масса 11 300;

Н 3 - богатый аргинином гистон, масса 15 300.

В препаратах хроматина эти фракции гистонов обнаруживаются в приблизительно равных количествах, кроме Н 1 , которого примерно в 2 раза меньше любой из других фракций.

Для молекул гистонов характерно неравномерное распределение основных аминокислот в цепи: обогащенные положительно заряженными аминогруппами наблюдается на концах белковых цепей. Эти участки гистонов связываются с фосфатными группировками на ДНК, в то время как сравнительно менее заряженные центральные участки молекул обеспечивают их взаимодействие между собой. Таким образом, взаимодействие между гистонами и ДНК, приводящее к образованию дезоксирибонуклеопротеинового комплекса, носит ионный характер.

Гистоны синтезируются на полисомах в цитоплазме, этот синтез начинается несколько раньше редупликации ДНК. Синтезированные гистоны мигрируют из цитоплазмы в ядро, где и связываются с участками ДНК.

Функциональная роль гистонов не вполне ясна. Одно время считалось, что гистоны являются специфическими регуляторами активности ДНК хроматина, но одинаковость строения основной массы гистонов говорит о малой вероятности этого. Более очевидна структурная роль гистонов, которая обеспечивает не только специфическую укладку хромосомной ДНК, но и играет роль в регуляции транскрипции.

Рис. 10.

Нуклеосомные частицы состоят из двух полных витков ДНК (83 нуклеотидных пары на виток), закрученных вокруг кора, представляющего собой гистоновый октамер, и соединяются между собой линкерной ДНК. Нуклеосом-ная частица выделена из хроматина путем ограниченного гидролиза линкерных участков ДНК микрококковой нуклеазой. В каждой нуклеосомнои частице фрагмент двойной спирали ДНК, имеющий в длину 146 пар оснований, закручен вокруг гистонового кора. Этот белковый кор содержит по две молекулы каждого из гистонов Н2А, Н2В, НЗ и Н4. Полипептидные цепи гистонов насчитывают от 102 до 135 аминокислотных остатков, а общий вес октамера составляет приблизительно 100000 Да. В деконденсированной форме хроматина каждая «бусина» связана с соседней частицей нитевидным участком линкерной ДНК.

Негистоновые белки - наиболее плохо охарактеризованная фракция хроматина. Кроме ферментов, непосредственно связанных с хроматином (ферменты, ответственные за репарацию, редубликацию, транскрипцию и модификации ДНК, ферменты модификации гистонов и других белков), в эту фракцию входит множество других белков. Весьма вероятно, что часть негистоновых белков представляет собой специфические белки - регуляторы, узнающие определенные нуклеотидные последовательности в ДНК.

РНК хроматина составляет от 0,2 до 0,5% от содержания ДНК. Эта РНК представляет собой все известные клеточные типы РНК, находящиеся в процессе синтеза или созревания в связи с ДНК хроматина.

В составе хроматина могут быть обнаружены липиды до 1 % от весового содержания ДНК, их роль в структуре и функционировании хромосом остается неясной.

В химическом отношении препараты хроматина представляют собой сложные комплексы дезоксирибонуклеопротеидов, в состав которых входит ДНК и специальные хромосомные белки - гистоны. В составе хроматина обнаружено также РНК. В количественном отношении ДНК, белок и РНК находятся как 1:1,3:0,2. О значении РНК в составе хроматина еще нет достаточно однозначных данных. Возможно, что эта РНК представляет собой сопутствующую препарату функцию синтезирующейся РНК и поэтому частично связанной с ДНК или это особый вид РНК, характерный для структуры хроматина.

ДНК хроматина

В препарате хроматина на долю ДНК приходится обычно 30-40%. Эта ДНК представляет собой двухцепочечную спиральную молекулу. ДНК хроматина обладает молекулярной массой 7-9*10 6 . Такую сравнительно малую массу ДНК из препаратов можно объяснить механическими повреждениями ДНК в процессе выделения хроматина.

Общее количество ДНК, входящее в ядерные структуры клеток, в геном организмов, колеблется от вида к виду. Сравнивая количество ДНК на клетку у эукариотических организмов, трудно уловить какие-либо корреляции между степенью сложности организма и количеством ДНК на ядро. Примерно одинаковое количество ДНК имеют различные организмы, как лен, морской еж, окунь (1,4-1,9 пг) или рыба голец и бык (6,4 и 7 пг).

У некоторых амфибий в ядрах количество ДНК больше, чем в ядрах человека, в 10-30 раз, хотя генетическая конституция человека несравненно сложнее, чем у лягушек. Следовательно, можно предполагать, что избыточное количество ДНК у более низко организованных организмов либо не связано с выполнением генетической роли, либо число генов повторяется то или иное число раз.

Сателлитная ДНК, или фракция ДНК с часто повторяющимися последовательностями, может участвовать в узнавании гомологичных районов хромосом при мейозе. По другим предположениям, эти участки играют роль разделителей (спейсеров) между различными функциональными единицами хромосомной ДНК.

Как оказалось, фракция умеренно повторяющихся (от 10 2 до 10 5 раз) последовательностей принадлежит к пестрому классу участков ДНК, играющих важную роль в обменных процессах. В эту фракцию входят гены рибосомных ДНК, многократно повторенные участки для синтеза всех тРНК. Более того, некоторые структурные гены, ответственные за синтез определенных белков, также могут быть многократно повторены, представлены многими копиями (гены для белков хроматина - гистонов).

Ядрышко

Ядрышко (нуклеола) - это плотное тельце внутри ядра большинства клеток эукариот. Состоит из рибонуклеопротеидов - предшественников рибосом. Обычно в клетке одно ядрышко, реже много. В ядрышке выделяют зону внутриядрышкового хроматина, зону фибрилл и зону гранул. Ядрышко-это не постоянная структура в клетках эукариот. При активном митозе ядрышки распадаются, а затем синтезируются вновь. Основная функция ядрышек-синтез РНК и субъединиц рибосом.

В ядрышке выделяют зону внутриядрышкового хроматина, зону фибрилл и зону гранул. Ядрышко не является самостоятельным органоидом клетки, лишено мембраны и образуется вокруг участка хромосомы, в котором закодирована структура рРНК (ядрышковый организатор), на нем синтезируется рРНК; кроме накопления рРНК в ядрышке формируются рибосомы, которые затем перемещаются в цитоплазму. Т.о. ядрышко - это скопление рРНК и рибосом на разных этапах формирования.

Основной функцией ядрышка является синтез рибосом (в этом процессе принимает участие РНК-полимераза I)


ЯДЕРНАЯ СТРУКТУРА АТОМА

Альфа-частицы . В 1896 году французским физиком Беккерелем было открыто явление радиоактивности. После этого начался быстрый прогресс в изучении строения атома. Этому, прежде всего способствовало то, что в руках физиков оказался очень эффективный инструмент исследования атомной структуры – α -частица. С помощью α -частиц, испускаемых естественными радиоактивными веществами, были сделаны важнейшие открытия: установлена ядерная структура атома, получены первые ядерные реакции, обнаружено явление искусственной радиоактивности и, наконец, найден нейтрон, сыгравший важную роль как при объяснении строения атомного ядра, так и при открытии процесса деления тяжелых ядер.

Альфа-частицы – это движущиеся с большой скоростью ядра гелия. Измерения скоростей α- частиц естественных излучателей по отклонению в электрическом и магнитном полях дали величину скорости (1,5-2).10 7 м/с, что соответствует кинетической энергии 4,5-8 МэВ (1 МэВ=1,6.10 -13 Дж). Такие частицы движутся в веществе прямолинейно, быстро теряют энергию на ионизацию атомов и после остановки превращаются в нейтральные атомы гелия.

Рассеяние альфа-частиц. Опыты Резерфорда. Изучая прохождение коллимированного пучка альфа-частиц через тонкую металлическую фольгу, английский физик Резерфорд обратил внимание на размытие изображения пучка частиц на регистраторе – фотопластинке. Резерфорд объяснил это размытие рассеянием альфа-частиц. Детальное изучение рассеяния альфа-частиц показало, что в редких случаях они рассеиваются на большие углы иногда превышающие 90 0 , что соответствует отбрасыванию быстродвижущихся частиц в обратном направлении. Такие случаи рассеяния в рамках модели Томпсона объяснить нельзя.

Тяжелая альфа-частица в одном акте столкновения может быть отброшена назад только при взаимодействии с частицей большей массы, превосходящей массу альфа-частицы. Электроны не могут быть такими частицами. Кроме того, рассеяние в обратном направлении предполагает сильное торможение альфа-частицы, т.е. энергия взаимодействия должна быть порядка кинетической энергии альфа-частицы. Энергия же электростатического взаимодействия альфа-частицы с атомом Томпсона, имеющим положительный заряд, распределенный в объеме или на поверхности атома радиусом 10 -8 см и равный в единицах элементарного заряда примерно половине атомной массы, много меньше этой величины. Результаты опыта можно объяснить, если расстояние от альфа частицы до центра положительного электрического заряда порядка 10 -12 см. Такое расстояние в 10000 раз меньше радиуса атома, а радиус положительного заряда должен быть еще меньше. Предположение о малом объеме рассеивающего центра согласуется с очень малым количеством случаев рассеяния на большие углы.

Для объяснения результатов своих наблюдений по рассеянию альфа-частиц Резерфорд предложил ядерную модель атома . Согласно этой модели в центре атома находится ядро, занимающее очень малый объем, содержащее почти всю массу атома и несущее положительный электрический заряд. Основной объем атома занят движущимися электронами, число которых равно числу элементарных положительных зарядов ядра, т.к. атом в целом нейтрален.

Теория рассеяния альфа-частиц. Чтобы обосновать предположение о ядерной структуре атома и доказать, что рассеяние альфа-частиц происходит в результате кулоновского взаимодействия с ядром, Резерфорд развил теорию рассеяния альфа-частиц точечными электрическими зарядами с большой массой и получил зависимость между углом рассеяния θ и числом частиц, рассеянных на угол θ . Если альфа-частица движется в направлении точечного заряда Ze , где Z – число элементарных зарядов, и при этом ее начальная траектория отстоит от оси, проходящей через рассеивающий центр, на расстоянии а (рис.1.1), то на основании закона Кулона методами классической механики можно вычислить угол θ , на который отклонится альфа-частица вследствие электростатического отталкивания одноименных электрических зарядов:

где M и v – масса и скорость альфа-частицы; 2e – ее заряд; ε 0 – электрическая постоянная, равная 8,85.10 -12 Ф/м.

Рис.1.1. Рассеяние альфа-частицы электрическим полем атомного ядра:

а) – схема рассеяния в плоскости траектории частицы; б) – кольцо, из которого происходит рассеяние под углом θ ; в) – схема рассеяния в конический телесный угол под угломθ к оси.

Доля частиц dn/n 0 , имеющих параметр удара а , от полного числа n 0 , падающих на мишень, равна доле элементарной площадки 2πada на полной площади F поперечного сечения пучка альфа-частиц (рис. 1.1, б). Если на площади F имеется не один, а N F рассеивающих центров, то соответствующая доля возрастет в N F раз и отнесенная к единице а, составит:

, (1.2)

где N 1 – число рассеивающих центров на единице площади мишени.

Учитывая, что dΩ=2π sinθ dθ, можно получить долю частиц, рассеянных в единицу конического телесного угла под углом θ к оси, как :

(1.3)

Экспериментальная проверка полностью подтвердила последнюю зависимость при рассеянии веществом альфа-частиц. Строгое выполнение закона 1/sin 4 свидетельствует о том, что за рассеяние ответственны только электрические силы и что геометрические размеры электрических зарядов обоих тел по крайней мере меньше наименьшего расстояния в акте рассеяния r мин . Расстояние r мин тем меньше, чем больше угол рассеяния θ . При θ =π () оно самое малое и определяется условием , которое соответствует случаю обращения всей кинетической энергии альфа-частицы в потенциальную энергию отталкивания одноименных зарядов.

По результатам обработки результатов экспериментов, исходя из различных в то время оценок величины заряда ядер Z , Резерфорд оценил радиус ядра величиной порядка 10 -12 см.

Атом Резерфорда-Бора. С открытием атомного ядра возникла необходимость объяснения устойчивости атома. С точки зрения классической электродинамики атом Резерфорда не может существовать длительно. Поскольку разноименные заряды притягиваются, электроны могут находится на определенном расстоянии от ядра только при условии движения вокруг ядра. Однако движение по замкнутой траектории является движением с ускорением, а движущийся с ускорением электрический заряд излучает энергию в окружающее пространство. За ничтожно малое время любой атом должен излучить энергию движения электронов и уменьшиться до размера ядра.



Первую стационарную модель атома предложил датский физик Нильс Бор в 1913 году. Бор связал устойчивость атомов с квантовой природой излучения. Гипотеза квантов энергии, выдвинутая немецким физиком Планком в 1900 году для объяснения спектра излучения абсолютно черного тела, утверждала, что микроскопические системы способны излучать энергию лишь определенными порциями – квантами с частотой v , пропорциональной энергии кванта E:

где h – универсальная постоянная Планка, равная 6,62.10 -24 Дж.с.

Бор предположил, что энергия атомного электрона в кулоновском поле ядра не меняется непрерывно, а принимает ряд устойчивых дискретных значений, которым соответствуют стационарные орбиты электронов. При движении по таким орбитам электрон не излучает энергию. Излучение атома происходит только при переходе электрона с орбиты с более высоким значением энергии на другую стационарную орбиту. Это излучение характеризуется единственным значением частоты, пропорциональной разности энергий орбит:

hv=Е нач - Е кон

Условие стационарности орбиты – это равенство механического момента количества движения электрона целому кратному числу h/2π :

mvr n = n ,

где mv – модуль импульса электрона;

r n – радиус n -ой стационарной орбиты;

n – любое целое число.

Введенное Бором условие квантования круговых орбит позволило рассчитать спектр атома водорода и вычислить спектроскопическую константу Ридберга для атома водорода. Система уровней одноэлектронного атома и радиусы стационарных орбит можно определить из последнего соотношения и закона Кулона:

; (1.4)

Расчет по этим формулам при n=1 и Z=1 дает радиус наименьшей стационарной орбиты электрона в атоме водорода или первый боровский радиус:

. (1.6)

Движение электрона по орбите можно представить как замкнутый электрический ток и вычислить создаваемый им магнитный момент. Для первой орбиты водорода он называется магнетоном Бора и равен:

(1.7)

Магнитный момент обратно пропорционален массе частицы, но для частиц данного сорта, например электронов, имеет смысл единицы. Характерно, что как раз этой единице равен собственный момент электрона, связанный с его спином.

Ядерная модель атома с электронами на устойчивых орбитах называется планетарной моделью Резерфорда-Бора. Она не приводит к верным количественным результатам в приложении к атомам с более, чем одним электроном, но зато очень удобна при качественной интерпретации атомных явлений. Точную теорию атома дает квантовая механика.

Дискретная природа микромира. Открытие атомного строения вещества оказалось первым шагом на пути открытий дискретной природы микромира. Не только массы и электрические заряды микротел дискретны, но и динамические величины, описывающие состояния микросистем, такие, как энергия, момент количества движения, также дискретны и характеризуются скачкообразным изменением своих численных значений.