Основы теории вероятности

План:

1. Случайные события

2. Классическое определение вероятности

3. Вычисление вероятностей событий и комбинаторика

4. Геометрическая вероятность

Теоретические сведения

Случайные события.

Случайное явление – явление, исход которого однозначно не определен. Это понятие можно трактовать в достаточно широком смысле. А, именно: все в природе достаточно случайно, появление и рождение любого индивидуума есть случайное явление, выбор товара в магазине также случайное явление, получение оценки на экзамене есть случайное явление, заболевание и выздоровление есть случайные явления и т.д.

Примеры случайных явлений:

~ Производится стрельба из орудия, установленным под заданным углом к горизонту. Попадание его в цель случайно, но попадание снаряда в некоторую "вилку", есть закономерность. Можно указать расстояние, ближе которого и дальше которого, снаряд не полетит. Получится некоторая "вилка рассеивания снарядов"

~ Одно и тоже тело взвешивается несколько раз. Строго говоря, каждый раз будут получаться разные результаты, пусть отличающиеся на ничтожно малую величину, но отличаться.

~ Самолет, летая по одному и тому же маршруту, имеет некоторый полетный коридор, в пределах которого может лавировать самолет, но никогда у него не будет строго одинакового маршрута

~ Спортсмен никогда не сможет пробежать одну и туже дистанцию с одинаковым временем. Его результаты также будут находиться в пределах некоторого численного промежутка.

Опыт, эксперимент, наблюдение являются испытаниями

Испытание – наблюдение или выполнение некоторого комплекса условий, выполняемых неоднократно, причем регулярно повторяющихся в оной и тоже последовательности, длительности, с соблюдением иных одинаковых параметров.

Рассмотрим выполнение спортсменом выстрела по мишени. Чтобы он был произведен, необходимо выполнить такие условия как изготовка спортсмена, зарядка оружия, прицеливание и т.д. "Попал" и "не попал" – события, как результат выстрела.

Событие – качественный результат испытания.

Событие может произойти или не произойти События обозначаются заглавными латинскими буквами. Например: D ="Стрелок попал в мишень". S="Вынут белый шар". K="Взятый наудачу лотерейный билет без выигрыша.".

Подбрасывание монеты – испытание. Падение ее "гербом" – одно событие, падение ее "цифрой" – второе событие.

Любое испытание предполагает наступления нескольких событий. Одни из них могут быть нужными в данный момент времени исследователю, другие – не нужными.

Событие называется случайным , если при осуществлении определенной совокупности условий S оно может либо произойти, либо не произойти. В дальней­шем, вместо того чтобы говорить "совокупность условий S осуществлена", будем говорить кратко: "произведено испытание". Таким образом, событие будет рассматри­ваться как результат испытания.

~ Стрелок стреляет по мишени, разделенной на четыре, области. Выстрел - это испытание. Попадание в определенную область мишени - событие.

~ В урне имеются цветные шары. Из урны наудачу берут один шар. Извлечение шара из урны есть испытание. Появле­ние шара определенного цвета - событие.

Виды случайных событий

1. События называют несовместными, если появле­ние одного из них исключает появление других событий в одном и том же испытании.

~ Из ящика с деталями наудачу извлечена деталь. Появление стандартной детали исключает появление нестандартной детали. События € появилась стандартная деталь" и с появилась не­стандартная деталь" - несовместные.

~ Брошена монета. Появление "герба" исключает по­явление надписи. События "появился герб" и "появилась надпись" - несовместные.

Несколько событий образуют полную группу, если в результате испытания появится хотя бы одно из них. Другими словами, появление хотя бы одного из событий полной группы есть достоверное событие.

В частности, если события, образующие полную группу, попарно несов­местны, то в результате испытания появится одно и только одно из этих событий.Этот частный случай представляет для нас наибольший интерес, поскольку используется далее.

~ Приобретены два билета денежно-вещевой лотереи. Обязательно произойдет одно и только одно из следующих событий:

1. "выигрыш выпал на первый билет и не выпал на второй",

2. "выигрыш не выпал на первый билет и выпал на второй",

3. "выигрыш выпал на оба билета",

4. "на оба билета выигрыш не выпал".

Эти события обра­зуют полную группу попарно несовместных событий,

~ Стрелок произвел выстрел по цели. Обязательно прои­зойдет одно из следующих двух событий: попадание, промах. Эти два несовместных события также образуют полную группу.

2. События называют равновозможными, если есть осно­вания считать, что ни одно из них не является более возможным, чем другое.

~ Появление "герба" и появление надписи при бросании монеты - равновозможные события. Действительно, предполагается, что монета изготовлена из однородного материала, имеет правильную цилиндрическую форму, и наличие чеканки не оказывает влияния на выпадение той или иной стороны монеты.

~ Появление того или иного числа очков на брошенной игральной кости - равновозможные события. Действительно, предпо­лагается, что игральная кость изготовлена из однородного материала, имеет форму правильного многогранника, и наличие очков не оказы­вает влияния на выпадение любой грани.

3. Событие называется достоверным, если оно не может не произойти

4. Событие называется не достоверным , если оно не может произойти.

5. Событие называются противоположным к некоторому событию, если оно состоит из не появления данного события. Противоположные события не совместимые, но одно из них должно обязательно произойти. Противоположные события принято обозначать как отрицания, т.е. над буквой пишется черточка. События противоположные: А и Ā; U и Ū и т.д. .

Классическое определение вероятности

Вероятность - одно из основных понятий теории вероятностей.

Существует несколько определений этого понятия. Приведем определение, которое называют клас­сическим. Далее укажем слабые стороны этого определе­ния и приведем другие определения, позволяющие пре­одолеть недостатки классического определения.

Рассмотрим ситуацию: В ящике содержится 6 оди­наковых шаров, причем 2 - красные, 3- синие и 1-белый. Очевидно, возмож­ность вынуть наудачу из урны цветной (т. е. красный или синий) шар больше, чем возможность извлечь белый шар. Эту возможность можно охарактеризовать числом, которое и называют вероятностью события (появления - цветного шара).

Вероятность - число, характеризующее степень воз­можности появления события.

В рассматриваемой ситуации обозначим:

Событие А ="Вытаскивание цветного шара".

Каждый из возможных результатов испытания (испытание состоит в извлечении шара из урны) назовем элементарным (возможным) исходом и событием. Элементарные исходы можно обозначать буквами с индексами внизу, например: k 1 , k 2 .

В нашем примере 6 шаров, поэтому 6 возможных исходов: появился белый шар; появился красный шар; появился синий шар и т.д. Легко видеть, что эти исходы образуют полную группу попарно несовместных событий (обязательно появится только один шар) и они равновозможные (шар вынимают наудачу, шары одинаковы и тщательно перемешаны).

Элементарные исходы, в которых интересующее нас событие наступает, назовем благоприятствующими исходами этому событию. В нашем примере благоприятствуют со­бытию А (появлению цветного шара) следующие 5 исхо­дов:

Таким образом, событие А наблюдается, если в испы­тании наступает один, безразлично какой, из элементар­ных исходов, благоприятствующих А. Это появление любого цветного шара, которых в ящике 5 штук

В рассмат­риваемом примере элементарных исходов 6; из них 5 благоприятствуют событию А. Следовательно, Р(А)= 5/6. Это число дает ту количественную оценку степени возможности появления цветного шара.

Определение вероятности:

Вероятностью события А называется отношение числа благоприятствующих этому событию исходов к общему числу всех равновозможных несовместных элементарных исходов, образующих полную группу.

Р(А)=m/n или Р(А)=m: n, где:

m -число элементарных исходов, благоприятствую­щих А;

п - число всех возможных элементарных исходов испытания.

Здесь предполагается, что элементарные исходы не­совместные, равновозможные и образуют полную группу.

Из определения вероятности вытекают следующие ее свойства:

1. Вероятность достоверного события равна единице.

Действительно, если событие достоверно, то каждый элементарный исход испытания благоприятствует собы­тию. В этом случае m = n следовательно, p=1

2. Вероятность невозможного события равна нулю.

Действительно, если событие невозможно, то ни один из элементарных исходов испытания не благоприятствует событию. В этом случае m=0, следовательно, p=0.

3.Вероятность случайного события есть положительное число, заключенное между нулем и еди­ницей. 0т < n.

В последующих темах будут приведены теоремы, которые позволяют по из­вестным вероятностям одних событий находить вероятно­сти других событий.

Промер. В группе студентов 6 девушек и 4 юношей. Какова вероятность того, что наудачу выбранный студент будет девушка? будет юноша?

p дев = 6 / 10 =0,6 p юн = 4 / 10 = 0,4

Понятие "вероятность" в современные строгие курсы теории вероятностей построены на теоретико-множественной основе. Рассмотрим некоторые моменты такого подхода.

Пусть в результате испытания наступает одно и только одно из событий: w i (i=1, 2, .... п). События w i ,- называется элементарными событиями (элементарными исходами). О тсюда следует, что элементарные события попарно несовместны. Множество всех элементарных событий, которые могут появиться в испытании, называют пространством элементарных событий Ω (греческая буква омега заглавная), а сами элементарные собы­тия - точками этого пространства. .

Событие А отождествляют с подмножеством (пространства Ω), элементы которого есть элементарные исходы, благоприятствующие А; событие В есть подмножество Ω , элементы которого есть исходы, благоприятствующие В, и т, д. Таким образом, множества всех со­бытий, которые могут наступить в испытании, есть множество всех подмножеств Ω, Само Ω наступает при любом исходе испытания, поэтому Ω - достоверное событие; пустое подмножество пространства Ω- -невозможное событие (оно не наступает ни при каком исходе испытания).

Элементарные события выделяются из числа всех событий тем, "по каждое из них содержит только один элемент Ω

Каждому элементарному исходу w i ставят в соответствие поло­жительное число р i - вероятность этого исхода, причем сумма всех р i равна 1 или со знаком суммы этот факт запишется в виде выражения:

По определению, вероятность Р(А) события А равна сумме вероят­ностей элементарных исходов, благоприятствующих А. Поэтому вероятность события достоверного равна единице, не­возможного - нулю, произвольного - заключена между нулем и еди­ницей.

Рассмотрим важный частный случай, когда все исходы равновоз­можные, Число исходов равно л, сумма вероятностей всех исходов равна единице; следовательно, вероятность каждого исхода равна 1/п. Пусть событию А благоприятствует m исходов.

Вероятность события А равна сумме вероятностей исходов, благоприятствующих А:

Р(А)=1/n + 1/n+…+1/n = n·1/n=1

Получено классическое определение вероятности.

Существует еще аксиоматический подход к понятию "вероятность". В системе аксиом, предложенной. Колмогоровым А. Н, неопре­деляемыми понятиями являются элементарное событие и вероятность. Построение логически полноценной теории вероятностей основано на аксиоматическом определении случайного события и его вероятно­сти.

Приведем аксиомы, определяющие вероятность:

1. Каждому событию А поставлено в соответствие неотрицатель­ное действительное число Р(А). Это число называется вероятностью события А.

2. Вероятность достоверного события равна единице:

3. Вероятность наступления хотя бы одного из попарно несов­местных событий равна сумме вероятностей этих событий.

Исходя из этих аксиом, свойства вероятностей к зависимости между ними выводят в качестве теорем.

Классическое и статистическое определение вероятности

Для практической деятельности необходимо уметь сравнивать события по степени возможности их наступления. Рассмотрим классический случай. В урне находится 10 шаров, 8 из них белого цвета, 2 черного. Очевидно, что событие «из урны будет извлечен шар белого цвета» и событие «из урны будет извлечен шар черного цвета» обладают разной степенью возможности их наступления. Поэтому для сравнения событий нужна определенная количественная мера.

Количественной мерой возможности наступления события является вероятность . Наиболее широкое распространение получили два определения вероятности события: классическое и статистическое.

Классическое определение вероятности связано с понятием благоприятствующего исхода. Остановимся на этом подробнее.

Пусть исходы некоторого испытания образуют полную группу событий и равновозможны, т.е. единственно возможны, несовместны и равновозможны. Такие исходы называют элементарными исходами , или случаями . При этом говорят, что испытание сводится к схеме случаев или «схеме урн », т.к. любую вероятностную задачу для подобного испытания можно заменить эквивалентной задачей с урнами и шарами разных цветов.

Исход называется благоприятствующим событию А , если появление этого случая влечет за собой появление события А .

Согласно классическому определению вероятность события А равна отношению числа исходов, благоприятствующих этому событию, к общему числу исходов , т.е.

, (1.1)

где Р(А) – вероятность события А ; m – число случаев благоприятствующих событию А ; n – общее число случаев.

Пример 1.1. При бросании игральной кости возможны шесть исходов – выпадение 1, 2, 3, 4, 5, 6 очков. Какова вероятность появления четного числа очков?

Решение. Все n = 6 исходов образуют полную группу событий и равновозможны, т.е. единственно возможны, несовместны и равновозможны. Событию А – «появление четного числа очков» – благоприятствуют 3 исхода (случая) – выпадение 2, 4 или 6 очков. По классической формуле вероятности события получаем

Р(А) = = .

Исходя из классического определения вероятности события, отметим ее свойства:

1. Вероятность любого события заключена между нулем и единицей, т.е.

0 ≤ Р (А ) ≤ 1.

2. Вероятность достоверного события равна единице.

3. Вероятность невозможного события равна нулю.

Как было сказано ранее, классическое определение вероятности применимо только для тех событий, которые могут появиться в результате испытаний, обладающих симметрией возможных исходов, т.е. сводящихся к схеме случаев. Однако существует большой класс событий, вероятности которых не могут быть вычислены с помощью классического определения.

Например, если допустить, что монета сплющена, то очевидно, что события «появление герба» и «появление решки» нельзя считать равновозможными. Поэтому формула для определения вероятности по классической схеме в данном случае неприменима.

Однако существует другой подход при оценке вероятности событий, основанный на том, насколько часто будет появляться данное событие в произведенных испытаниях. В этом случае используется статистическое определениевероятности.

Статистической вероятностью события А называется относительная частота (частость) появления этого события в n произведенных испытаниях, т.е.

, (1.2)

где Р * (А) – статистическая вероятность события А ; w(A) – относительная частота события А ; m – число испытаний, в которых появилось событие А ; n – общее число испытаний.

В отличие от математической вероятности Р(А) , рассматриваемой в классическом определении, статистическая вероятность Р * (А) является характеристикой опытной , экспериментальной . Иначе говоря, статистической вероятностью события А называется число, относительно которого стабилизируется (устанавливается) относительная частота w(А) при неограниченном увеличении числа испытаний, проводимых при одном и том же комплексе условий.

Например, когда про стрелка говорят, что он попадает в цель с вероятностью 0,95, то это означает, что из сотни выстрелов, произведенных им при определенных условиях (одна и та же цель на том же расстоянии, та же винтовка и т.д.), в среднем бывает примерно 95 удачных. Естественно, не в каждой сотне будет 95 удачных выстрелов, иногда их будет меньше, иногда больше, но в среднем при многократном повторении стрельбы в тех же условиях этот процент попаданий будет оставаться неизменным. Цифра 0,95, служащая показателем мастерства стрелка, обычно очень устойчива , т.е. процент попаданий в большинстве стрельб будет для данного стрелка почти один и тот же, лишь в редких случаях отклоняясь сколько-нибудь значительно от своего среднего значения.

Еще одним недостатком классического определения вероятности (1.1 ), ограничивающим его применение, является то, что оно предполагает конечное число возможных исходов испытания. В некоторых случаях этот недостаток можно преодолеть, используя геометрическое определение вероятности, т.е. находя вероятность попадания точки в некоторую область (отрезок, часть плоскости и т.п.).

Пусть плоская фигура g составляет часть плоской фигуры G (рис. 1.1). На фигуру G наудачу бросается точка. Это означает, что все точки области G «равноправны» в отношении попадания на нее брошенной случайной точки. Полагая, что вероятность события А – попадания брошенной точки на фигуру g – пропорциональна площади этой фигуры и не зависит ни от ее расположения относительно G , ни от формы g , найдем

Классическая вероятность и ее свойства

Вероятность - одно из основных понятий теории вероятностей. Существует несколько определений этого понятия. Приведем определение, которое называют классическим.

Вероятностью события называется отношение числа элементарных исходов, благоприятствующих данному событию, к числу всех равновозможных исходов опыта, в котором может появиться это событие.

Вероятность события А обозначают через Р(А) (здесь Р – первая буква французского слова probabilite – вероятность).

В соответствии с определением

где – число элементарных исходов испытания, благоприятствующих появлению события ;

Общее число возможных элементарных исходов испытания.

Это определение вероятности называют классическим . Оно возникло на начальном этапе развития теории вероятностей.

Часто число называют относительной частотой появления события А в опыте.

Чем больше вероятность события, тем чаще оно наступает, и наоборот, чем меньше вероятность события, тем реже оно наступает. Когда вероятность события близка к единице или равна единице, то оно наступает почти при всех испытаниях. О таком событии говорят, что оно практически достоверно , т. е. что можно наверняка рассчитывать на его наступление.

Наоборот, когда вероятность равна нулю или очень мала, то событие наступает крайне редко; о таком событии говорят, что оно практически невозможно .

Иногда вероятность выражают в процентах: Р(А) 100% есть средний процент числа появлений события A .

Пример 2.13. Набирая номер телефона, абонент забыл одну цифру и набрал ее наудачу. Найти вероятность того, что набрана нужная цифра.

Решение.

Обозначим через А событие - «набрана нужная цифра».

Абонент мог набрать любую из 10 цифр, поэтому общее число возможных элементарных исходов равно 10. Эти исходы несовместны, равновозможны и образуют полную группу. Благоприятствует событию А лишь один исход (нужная цифра лишь одна).

Искомая вероятность равна отношению числа исходов, благоприятствующих событию, к числу всех элементарных исходов:

Формула классической вероятности дает очень простой, не требующий проведения экспериментов, способ вычисления вероятностей. Однако простота этой формулы очень обманчива. Дело в том, что при ее использовании возникают, как правило, два очень непростых вопроса:

1. Как выбрать систему исходов опыта так, чтобы они были равновозможны, и можно ли это сделать вообще?

2. Как найти числа m и n ?

Если в опыте участвуют несколько предметов, равновозможные исходы увидеть не всегда просто.

Великий французский философ и математик Даламбер вошел в историю теории вероятностей со своей знаменитой ошибкой, суть которой в том, что он неверно определил равновозможность исходов в опыте всего с двумя монетами!

Пример 2.14. (ошибка Даламбера ). Подбрасываются две одинаковые монеты. Какова вероятность того, что они упадут на одну и ту же сторону?

Решение Даламбера.

Опыт имеет три равновозможных исхода:

1. Обе монеты упадут на «орла»;

2. Обе монеты упадут на «решку»;

3. Одна из монет упадет на «орла», другая на «решку».

Правильное решение.

Опыт имеет четыре равновозможных исхода:

1. Первая монета упадет на «орла», вторая тоже на «орла»;

2. Первая монета упадет на «решку», вторая тоже на «решку»;

3. Первая монета упадет на «орла», а вторая - на «решку»;

4. Первая монета упадет на «решку», а вторая - на «орла».

Из них благоприятными для нашего события будут два исхода, поэтому искомая вероятность равна .

Даламбер совершил одну из самых распространенных ошибок, допускаемую при вычислении вероятности: он объединил два элементарных исхода в один, тем самым сделав его не равным по вероятности оставшимся исходам опыта.

МУНИЦИПАЛЬНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ

ГИМНАЗИЯ № 6

на тему «Классическое определение вероятности».

Выполнила ученица 8 «Б» класса

Климантова Александра.

Учитель по математике: Виденькина В. А.

Воронеж, 2008

Во многих играх используют игральный кубик. У кубика 6 граней, на каждой грани отмечено различное количество точек—от 1 до 6. Играющий бросает кубик и смотрит, сколько точек имеется на выпавшей грани (на той грани, которая располагается сверху). Довольно часто точки на грани кубика заменяют соответствующим числом и тогда говорят о выпадении 1, 2 или 6. Бросание кубика можно считать опытом, экспериментом, испытанием, а полученный результат—исходом испытания или элементарным событием. Людям интересно угадывать наступление того или иного события, предсказывать его исход. Какие предсказания они могут сделать, когда бросают игральный кубик? Например, такие:

  1. событие А—выпадает цифра 1, 2, 3, 4, 5 или 6;
  2. событие В—выпадает цифра 7, 8 или 9;
  3. событие С—выпадает цифра 1.

Событие А, предсказанное в первом случае, обязательно наступит. Вообще, событие, которое в данном опыте обязательно наступит, называют достоверным событием .

Событие В, предсказанное во втором случае, никогда не наступит, это просто невозможно. Вообще, событие, которое в данном опыте наступить не может, называют невозможным событием .

А событие С, предсказанное в третьем случае, наступит или не наступит? На этот вопрос мы с полной уверенностью ответить не в состоянии, поскольку 1 может выпасть, а может и не выпасть. Событие, которое в данном опыте может как наступить, так и не наступить, называют случайным событием .

Думая про наступление достоверного события, мы слово «вероятно» использовать, скорее всего, не будем. Например, если сегодня среда, то завтра четверг, это—достоверное событие. Мы в среду не станем говорить: «Вероятно, завтра четверг», мы скажем коротко и ясно: «Завтра четверг». Правда, если мы склонны к красивым фразам, то можем сказать так: «Со стопроцентной вероятностью утверждаю, что завтра четверг». Напротив, если сегодня среда, то наступление назавтра пятницы—невозможное событие. Оценивая это событие в среду, мы можем сказать так: «Уверен, что завтра не пятница». Или так: «Невероятно, что завтра пятница». Ну а если мы склонны к красивым фразам, то можем сказать так: «Вероятность того, что завтра пятница, равна нулю». Итак, достоверное событие—это событие, наступающее при данных условиях со стопроцентной вероятностью (т. е. наступающее в 10 случаях из 10, в 100 случаях из 100 и т. д.). Невозможное событие—это событие, не наступающее при данных условиях никогда, событие с нулевой вероятностью .

Но, к сожалению (а может быть, и к счастью), не все в жизни так четко и ясно: это будет всегда (достоверное событие), этого не будет никогда (невозможное событие). Чаще всего мы сталкиваемся именно со случайными событиями, одни из которых более вероятны, другие менее вероятны. Обычно люди используют слова «более вероятно» или «менее вероятно», как говорится, по наитию, опираясь на то, что называют здравым смыслом. Но очень часто такие оценки оказываются недостаточными, поскольку бывает важно знать, на сколько процентов вероятно случайное событие или во сколько раз одно случайное событие вероятнее другого. Иными словами, нужны точные количественные характеристики, нужно уметь охарактеризовать вероятность числом.

Первые шаги в этом направлении мы уже сделали. Мы говорили, что вероятность наступления достоверного события характеризуется как стопроцентная , а вероятность наступления невозможного события—как нулевая . Учитывая, что 100 % равно 1, люди договорились о следующем:

  1. вероятность достоверного события считается равной 1;
  2. вероятность невозможного события считается равной 0.

А как подсчитать вероятность случайного события? Ведь оно произошло случайно , значит, не подчиняется закономерностям, алгоритмам, формулам. Оказывается, и в мире случайного действуют определенные законы, позволяющие вычислять вероятности. Этим занимается раздел математики, который так и называется-теория вероятностей .

Математика имеет дело с моделью некоторого явления окружающей нас действительности. Из всех моделей, используемых в теории вероятностей, мы ограничимся самой простой.

Классическая вероятностная схема

Для нахождения вероятности события А при проведении некоторого опыта следует:

1) найти число N всех возможных исходов данного опыта;

2) принять предположение о равновероятности (равновозможности) всех этих исходов;

3) найти количество N(А) тех исходов опыта, в которых наступает событие А;

4) найти частное ; оно и будет равно вероятности события А.

Принято вероятность события А обозначать: Р(А). Объяснение такого обозначения очень простое: слово «вероятность» по-французски-probabilite , по-английски-probability .В обозначении используется первая буква слова.

Используя это обозначение, вероятность события А по классической схеме можно найти с помощью формулы

Р(А)=.

Часто все пункты приведенной классической вероятностной схемы выражают одной довольно длинной фразой.

Классическое определение вероятности

Вероятностью события А при проведении некоторого испытания называют отношение числа исходов, в результате которых наступает событие А, к общему числу всех равновозможных между собой исходов этого испытания.

Пример 1 . Найти вероятность того, что при одном бросании игрального кубика выпадет: а) 4; б) 5; в) четное число очков; г) число очков, большее 4; д) число очков, не кратное трем.

Решение . Всего имеется N=6 возможных исходов: выпадение грани куба с числом очков, равным 1, 2, 3, 4, 5 или 6. Мы считаем, что ни один из них не имеет никаких преимуществ перед другими, т. е. принимаем предположение о равновероятности этих исходов.

а) Ровно в одном из исходов произойдет интересующее нас событие А-выпадение числа 4. Значит, N(A)=1 и

P (A )= =.

б) Решение и ответ такие же, как и в предыдущем пункте.

в) Интересующее нас событие В произойдёт ровно в трёх случаях, когда выпадает число очков 2, 4 или 6. Значит,

N (B )=3 и P (B )==.

г) Интересующее нас событие С произойдет ровно в двух случаях, когда выпадет число очков 5 или 6. Значит,

N (C ) =2 и Р(С)=.

д) Из шести возможных выпавших чисел четыре (1, 2, 4 и 5) не кратны трем, а остальные два (3 и 6) делятся на три. Значит, интересующее нас событие наступает ровно в четырех из шести возможных и равновероятных между собой и равновероятных между собой исходах опыта. Поэтому в ответе получается .

Ответ: а) ; б) ; в) ; г) ; д).

Реальный игральный кубик вполне может отличаться от идеального (модельного) кубика, поэтому для описания его поведения требуется более точная и детальная модель, учитывающая преимущества одной грани перед другой, возможное наличие магнитов и т. п. Но «дьявол кроется в деталях», а большая точность ведет, как правило, к большей сложности, и получение ответа становится проблемой. Мы же ограничиваемся рассмотрением простейшей вероятностной модели, где все возможные исходы равновероятны.

Замечание 1 . Рассмотрим еще пример. Был задан вопрос: «Какова вероятность выпадения тройки при одном бросании кубика?» Ученик ответил так: «Вероятность равна 0, 5». И объяснил свой ответ: «Тройка или выпадет, или нет. Значит, всего есть два исхода и ровно в одном наступает интересующее нас событие. По классической вероятностной схеме получаем ответ 0, 5». Есть в этом рассуждении ошибка? На первый взгляд-нет. Однако она все же есть, причем в принципиальном моменте. Да, действительно, тройка или выпадет, или нет, т. е. при таком определении исхода бросания N=2. Правда и то, что N(A)=1 и уж, разумеется, верно, что =0, 5, т. е. три пункта вероятностной схемы учтены, а вот выполнение пункта 2) вызывает сомнения. Конечно, с чисто юридической точки зрения, мы имеем право считать, что выпадение тройки равновероятно ее невыпадению. Но вот можем ли мы так считать, не нарушая свои же естественные предположения об «одинаковости» граней? Конечно, нет! Здесь мы имеем дело с правильным рассуждением внутри некоторой модели. Только вот сама эта модель «неправильная», не соответствующая реальному явлению.

Замечание 2 . Рассуждая о вероятности, не упускайте из виду следующее важное обстоятельство. Если мы говорим, что при бросании кубика вероятность выпадения одного очка равна , это совсем не значит, что, кинув кубик 6 раз, вы получите одно очко ровно один раз, бросив кубик 12 раз, вы получите одно очко ровно два раза, бросив кубик 18 раз, вы получите одно очко ровно три раза и т. д. Слово вероятно носит предположительный характер. Мы предполагаем, что скорее всего может произойти. Вероятно, если мы бросим кубик 600 раз, одно очко выпадет 100 раз или около 100.

Теория вероятностей возникла в XVII веке при анализе различных азартных игр. Неудивительно поэтому, что первые примеры носят игровой характер. От примеров с игральными кубиками перейдем к случайному вытаскиванию игральных карт из колоды.

Пример 2 . Из колоды в 36 карт случайным образом одновременно вытаскивают 3 карты. Какова вероятность того, что среди них нет пиковой дамы?

Решение . У нас имеется множество из 36 элементов. Мы производим выбор трех элементов, порядок которых не важен. Значит, возможно получение N=C исходов. Будем действовать по классической вероятностной схеме, т. е. предположим, что все эти исходы равновероятны.

Осталось вычислить нужную вероятность по классическому определению:

А чему равна вероятность того, что среди выбранных трех карт есть пиковая дама? Число всех таких исходов нетрудно посчитать, надо просто из всех исходов N вычесть все те исходы, в которых дамы пик нет, т. е. вычесть найденное в примере 3 число N(A). Затем эту разность N—N(A) в соответствии с классической вероятностной схемой следует поделить на N. Вот что получим:

Мы видим, что между вероятностями двух событий имеется определенная связь. Если событие А заключается в отсутствии дамы пик, а событие В состоит в ее наличии среди выбранных трех карт, то

Р(В)= 1—Р(А),

Р(А)+Р(В)=1.

К сожалению, в равенстве Р(А)+Р(В)=1 нет никакой информации о связи событий А и В между собой; эту связь нам приходится держать в уме. Удобнее было бы заранее дать событию В название и обозначение, явно указывающие на его связь с А.

Определение 1 . Событие В называют противоположным событию А и обозначают В=Ā, если событие В происходит тогда и только тогда, когда не происходит событие А.

Т еорема 1 . Для нахождения вероятности противоположного события следует из единицы вычесть вероятность самого события: Р(Ā)= 1—Р(А). В самом деле,

На практике вычисляют то, что проще найти: или Р(А), или Р(Ā). После этого пользуются формулой из теоремы и находят, соответственно, или Р(Ā)= 1—Р(А), или Р(А)= 1—Р(Ā).

Часто используется способ решения той или иной задачи «перебором случаев», когда условия задачи разбиваются на взаимоисключающие друг друга случаи, каждый из которых рассматривается отдельно. Например, «направо пойдешь—коня потеряешь, прямо пойдешь—задачу по теории вероятности решать будешь, налево пойдешь—…». Или при построении графика функции у=│х+1│—│2х—5│расматривают случаи х

Пример 3 . Из 50 точек 17 закрашены в синий цвет, а 13—в оранжевый цвет. Найти вероятность того, что случайным образом выбранная точка окажется закрашенной.

Решение . Всего закрашено 30 точек из 50. Значит, вероятность равна = 0,6.

Ответ: 0,6.

Рассмотрим, однако, этот простой пример более внимательно. Пусть событие А состоит в том, что выбранная точка—синяя, а событие В состоит в том, что выбранная точка—оранжевая. По условию, события А и В не могут произойти одновременно.

Обозначим буквой С интересующее нас событие. Событие С наступает тогда и только тогда, когда происходит хотя бы одно из событий А или В . Ясно, что N(C)= N(A)+N(B).

Поделим обе части этого равенства на N—число всех возможных исходов данного опыта; получим

Мы на простом примере разобрали важную и часто встречающуюся ситуацию. Для нее есть специальное название.

Определение 2 . События А и В называют несовместными , если они не могут происходить одновременно.

Теорема 2 . Вероятность наступления хотя бы одного из двух несовместных событий равна сумме их вероятностей.

При переводе этой теоремы на математический язык, возникает необходимость как-то назвать и обозначить событие, состоящее в наступлении хотя бы одного из двух данных событий А и В. Такое событие называют суммой событий А и В и обозначают А+В.

Если А и В несовместны, то Р(А+В)= Р(А)+Р(В).

В самом деле,

Несовместность событий А и В удобно иллюстрировать рисунком. Если все исходы опыта—некоторое множество точек на рисунке, то события А и В—это некоторые подмножества данного множества . Несовместность А и В означает, что эти два подмножества не пересекаются между собой. Типичный пример несовместных событий—любое событие А и противоположное событие Ā.

Разумеется, указанная теорема верна и для трех, и для четырех, и для любого конечного числа попарно несовместных событий. Вероятность суммы любого числа попарно несовместных событий равна сумме вероятностей этих событий. Это важное утверждение как раз и соответствует способу решения задач «перебором случаев».

Между событиями, происходящими в результате некоторого опыта, и между вероятностями этих событий могут быть какие-то соотношения, зависимости, связи и т. п. Например, события можно «складывать», а вероятность суммы несовместных событий равна сумме их вероятностей.

В заключение обсудим следующий принципиальный вопрос: можно ли доказать , что вероятность выпадения «решки» при одном бросании монеты равна

Ответ отрицательный. Вообще говоря, сам вопрос не корректен, неясен точный смысл слова «доказать». Ведь доказываем мы что-либо всегда в рамках некоторой модели , в которой уже известны правила, законы, аксиомы, формулы, теоремы и т. п. Если речь идет о воображаемой, «идеальной» монете, то потому-то она и считается идеальной, что, по определению , вероятность выпадения «решки» равна вероятности выпадения «орла». А, в принципе, можно рассмотреть модель, в которой вероятность выпадения «решки» в два раза больше вероятности выпадения «орла» или в три раза меньше и т. п. Тогда возникает вопрос: по какой причине из различных возможных моделей бросания монеты мы выбираем ту, в которой оба исхода бросания равновероятны между собой?

Совсем лобовой ответ таков: «А нам так проще, понятнее и естественнее!» Но есть и более содержательные аргументы. Они приходят из практики. В подавляющем большинстве учебников по теории вероятностей приводят примеры французского естествоиспытателя Ж. Бюффона (XVIII в.) и английского математика-статистика К. Пирсона (конец XIX в.), которые бросали монету, соответственно, 4040 и 24000 раз и подсчитывали число выпадений «орла» или «решки». У них «решка» выпала, соответственно, 1992 и 11998 раз. Если подсчитать частоту выпадения «решки», то получится = =0,493069… у Бюффона и = 0,4995 у Пирсона. Возникает естественное предположение , что при неограниченном увеличении числа бросаний монеты частота выпадения «решки», как и частота выпадения «орла», все больше и больше будет приближаться к 0,5. Именно это предположение, основанное на практических данных, является основой выбора в пользу модели с равновероятными исходами.

Сейчас можно подвести итоги. Основное понятие—вероятность случайного события , подсчет которой производится в рамках простейшей модели—классической вероятностной схемы . Важное значение и в теории, и в практике имеет понятие противоположного события и формула Р(Ā)= 1—Р(А) для нахождения вероятности такого события.

Наконец, мы познакомились с несовместными событиями и с формулами.

Р(А+В)= Р(А)+Р(В),

Р(А+В+С)= Р(А)+Р(В)+Р(С),

позволяющими находить вероятности суммы таких событий.

Список литературы

1.События. Вероятности. Статистическая обработка данных: Доп. параграфы к курсу алгебры 7—9 кл. общеобразовательных учреждений / А. Г. Мордкович, П. В. Семенов.—4-е изд.—М.: Мнемозина, 2006.—112 с.: ил.

2.Ю. Н. Макарычев, Н. Г. Миндюк «Алгебра. Элементы статистики и теории вероятностей».—Москва, «Просвещение», 2006.