Для получения кислорода , потребуются вещества, которые им богаты. Это пероксиды, селитры, хлораты. Мы будем использовать те, что можно достать без особого труда.

Для получения кислорода в домашних условиях есть несколько способов, разберём их по-порядку.

Самый простой и доступный способ получения кислорода – использовать марганцовку (или более правильное название – перманганат калия). Всем известно, что марганцовка – прекрасный антисептик, используется в качестве обеззараживающего вещества. Если её нет, то можно приобрести в аптеке.

Поступим так. В пробирку насыпаем немного марганцовки, закроем пробиркой с отверстием, в отверстие установим газоотводную трубку (по ней будет идти кислород). Другой конец трубки поместим в другую пробирку (она должна располагаться вверх дном, так как выделяющийся кислород легче воздуха и будет подниматься вверх. Такой же пробкой закром вторую пробирку.
В итоге у нас должно получиться две пробирки, соединённые между собой газоотводной трубкой через пробки. В одной (неперевёрнутой) пробирке - марганцовка. Будем нагревать пробирку с марганцовкой. Тёмно-фиолетово-вишнёвый цвет кристалликов марганцовки исчезнет и превратится в тёмно-зелёные кристаллы манганата калия.

Реакция протекает так:

2KMnO 4 → MnO 2 + K 2 MnO 4 +O 2

Так из 10 грамм марганцовки можно получить почти 1 литр кислорода. Через пару минут можно извлечь колбу с марганцовкой из пламени. Мы получили кислород в перевёрнутой пробирке. Можем его проверить. Для этого аккуратно отсоединим вторую трубку (с кислородом) от газоотводной трубки, прикрыв отверстие пальцем. Теперь, если внести слабо горящую спичку в колбу с кислородом, то она ярко вспыхнет!

Получение кислорода возможно также с помощью натриевой или калиевой селитры (соответствующие соли натрия и калия азотной кислоты).
(Нитраты калия и натрия – они же – селитры, продаются на магазинах для удобрений).

Итак, для получения кислорода из селитры возьмём пробирку из тугоплавкого стекла на штативе, поместим туда селитровый порошок (5 грамм будет достаточно).Потребуется под пробирку поставить керамическую чашечку с песком, та как стекло может расплавиться от температуры и потечь. Следовательно, горелку надо будет держать немного сбоку, а пробирку с селитрой – под наклоном.

При сильном нагреве селитры она начинает плавиться, при этом выделяется кислород. Реакция проходит так:

2KNO 3 → 2KNO 2 +O 2

Образующееся вещество – нитрит калия (или натрия, смотря, какая селитра использована) – соль азотистой кислоты.

Ещё один способ получения кислорода – использовать перекись водорода. Пероксид, гидроперит – всё одно и то же вещество. Перекись водорода продаётся в таблетках и в виде растворов (3%, 5%, 10%), которое можно приобрести в аптеке.

В отличии от предыдущих веществ, селитр или марганцовки, перекись водорода – неустойчивое вещество. Уже при наличии света она начинает распадаться на кислород и воду. Поэтому в аптеках перекись продаётся в пузырьках из тёмного стекла.

Кроме того, быстрому разложению перекиси водорода на воду и кислород способствуют катализаторы, например, оксид марганца, активированный уголь, стальной порошок (мелкая стружка) и даже слюна. Поэтому, перекись водорода нагревать не нужно, достаточно катализатора!

В уроке 17 «Получение кислорода » из курса «Химия для чайников » выясним, как получают кислород в лабораторных условиях; узнаем, что такое катализатор, и как растения влияют на производство кислорода на нашей планете.

Наиболее важным для человека и других живых организмов веществом, входящим в состав воздуха, является кислород. Большие количества кислорода используются в промышленности, поэтому важно знать, как можно его получать.

В химической лаборатории кислород можно получать нагреванием некоторых сложных веществ, в состав которых входят атомы кислорода. К числу таких веществ относится вещество KMnO 4 , которое имеется в вашей домашней аптечке под названием «марганцовка».

Вы знакомы с простейшими приборами для получения газов. Если в один из таких приборов поместить немного порошка KMnO 4 и нагреть, то будет выделяться кислород (рис. 76):

Кислород можно также получить разложением пероксида водорода H 2 O 2 . Для этого в пробирку с H 2 O 2 следует добавить очень небольшое количество особого вещества - катализатора - и закрыть пробирку пробкой с газоотводной трубкой (рис. 77).

Для данной реакции катализатором является вещество, формула которого MnO 2 . При этом протекает следующая химическая реакция:

Обратите внимание на то, что ни в левой, ни в правой частях уравнения формулы катализатора нет. Его формулу принято записывать в уравнении реакции над знаком равенства. Для чего же добавляется катализатор? Процесс разложения H 2 O 2 при комнатных условиях протекает очень медленно. Поэтому для получения заметных количеств кислорода необходимо много времени. Однако эту реакцию можно резко ускорить путем прибавления катализатора.

Катализатор - это вещество, которое ускоряет химическую реакцию, но само в ней не расходуется.

Именно потому, что катализатор не расходуется в реакции, мы не записываем его формулу ни в одной из частей уравнения реакции.

Еще один способ получения кислорода - разложение воды под действием постоянного электрического тока. Этот процесс называется электролизом воды. Получить кислород можно в приборе, схематично изображенном на рисунке 78.

При этом протекает следующая химическая реакция:

Кислород в природе

Огромное количество газообразного кислорода содержится в атмосфере, растворено в водах морей и океанов. Кислород необходим всем живым организмам для дыхания. Без кислорода невозможно было бы получать энергию за счет сжигания различных видов топлива. На эти нужды ежегодно расходуется примерно 2% атмосферного кислорода.

Откуда берется кислород на Земле и почему его количество остается примерно постоянным, несмотря на такой расход? Единственным источником кислорода на нашей планете являются зеленые растения, производящие его под действием солнечного света в процессе фотосинтеза. Это очень сложный процесс, включающий много стадий. В результате фотосинтеза в зеленых частях растений углекислый газ и вода превращаются в глюкозу C 6 H 12 O 6 и кислород. Суммарное
уравнение реакций, протекающих в процессе фотосинтеза, можно представить следующим образом:

Установлено, что примерно одну десятую часть (11%) производимого зелеными растениями кислорода дают наземные растения, а остальные девять десятых (89%) - водные растения.

Получение кислорода и азота из воздуха

Огромные запасы кислорода в атмосфере позволяют получать и использовать его в различных производствах. В промышленных условиях кислород, азот и некоторые другие газы (аргон, неон) получают из воздуха.

Для этого воздух сначала превращают в жидкость (рис. 79) путем охлаждения до такой низкой температуры, при которой все его компоненты переходят в жидкое агрегатное состояние.

Затем эту жидкость медленно нагревают, в результате чего при разных температурах происходит последовательное выкипание (т. е. переход в газообразное состояние) веществ, которые содержатся в воздухе. Собирая выкипающие при разных температурах газы, по отдельности получают азот, кислород и другие вещества.

Краткие выводы урока:

  1. В лабораторных условиях кислород получают разложением некоторых сложных веществ, в состав которых входят атомы кислорода.
  2. Катализатор - вещество, которое ускоряет протекание химической реакции, но само при этом не расходуется.
  3. Источником кислорода на нашей планете являются зеленые растения, в которых протекает процесс фотосинтеза.
  4. В промышленности кислород получают из воздуха.

Надеюсь урок 17 «Получение кислорода » был понятным и познавательным. Если у вас возникли вопросы, пишите их в комментарии.

>> Получение кислорода

Получение кислорода

В этом параграфе речь идет:

> об открытии кислорода;
> о получении кислорода в промышленности и лаборатории;
> о реакциях разложения.

Открытие кислорода.

Дж. Пристли получал этот газ из соединения, название которого - меркурий(II) оксид. Ученый использовал стеклянную линзу, с помощью которой фокусировал на веществе солнечный свет.

В современном исполнении этот опыт изображен на рисунке 54. При нагревании меркурий(||) оксид (порошок желтого цвета) превращается в ртуть и кислород. Ртуть выделяется в газообразном состоянии и конденсируется на стенках пробирки в виде серебристых капель. Кислород собирается над водой во второй пробирке.

Сейчас метод Пристли не используют, поскольку пары ртути токсичны. Кислород получают с помощью других реакций, подобных рассмотренной. Они, как правило, происходят при нагревании.

Реакции, при которых из одного вещества образуются несколько других, называют реакциями разложения.

Для получения кислорода в лаборатории используют такие оксигенсодержащие соединения:

Калий перманганат KMnO 4 (бытовое название марганцовка; вещество является распространенным дезинфицирующим средством)

Калий хлорат KClO 3 (тривиальное название - бертолетова соль, в честь французского химика конца XVIII - начала XIX в. К.-Л. Бертолле)

Небольшое количество катализатора - манган (IV) оксида MnO 2 - добавляют к калий хлорату для того, чтобы разложение соединения происходило с выделением кислорода 1 .

Лабораторный опыт № 8

Получение кислорода разложением гидроген пероксида H 2 O 2

Налейте в пробирку 2 мл раствора гидроген пероксида (традиционное название этого вещества - перекись водорода). Зажгите длинную лучинку и погасите ее (как вы это делаете со спичкой), что бы она едва тлела.
Насыпьте в пробирку с раствором гидроген оксида немного катализатора - черного порошка манган (IV) оксида. Наблюдайте бурное выделение газа. С помощью тлеющей лучинки убедитесь в том, что этот газ - кислород.

Составьте уравнение реакции разложения гидроген пероксида, которым продуктом реакции является вода.

В лаборатории кислород можно также получить разложением натрий нитрата NaNO 3 или калий нитрата KNO 3 2 . Соединения при нагревании сначала плавятся, а затем разлагаются:



1 При нагревании соединения без катализатора происходит другая реакция

2 Эти вещества используют в качестве удобрений. Их общее название - селитры.


Схема 7. Лабораторные методы получения кислорода

Превратите схемы реакций в химические уравнения.

Сведения о том, как получают кислород в лаборатории, собраны в схеме 7.

Кислород вместе с водородом являются продуктами разложения воды под действием электрического тока:

В природе кислород образуется вследствие фотосинтеза в зеленых листьях растений. Упрощенная схема этого процесса такова:

Выводы

Кислород был открыт в конце XVIII в. несколькими учеными .

Кислород получают в промышленности из воздуха, а в лаборатории - с помощью реакций разложения некоторых оксигенсодержащих соединений. Во время реакции разложения из одного вещества образуются два или более веществ.

129. Как получают кислород в промышленности? Почему для этого не используют калий перманганат или гидроген пероксид?

130. Какие реакции называют реакциями разложения?

131. Превратите в химические уравнения такие схемы реакций:


132. Что такое катализатор? Как он может влиять на протекание хими­ческих реакций? (Для ответа используйте также материал § 15.)

133. На рисунке 55 изображен момент разложения белого твердого вещества, которое имеет формулу Cd(NO3)2. Внимательно рассмотрите рисунок и опишите все, что происходит во время реакции. Почему вспыхивает тлеющая лучинка? Составьте соответствующее химическое уравнение.

134. Массовая доля Оксигена в остатке после нагревания калий нитрата KNO 3 составила 40 %. Полностью ли разложилось это соединение?

Рис. 55. Разложение вещества при нагревании

Попель П. П., Крикля Л. С., Хімія: Підруч. для 7 кл. загальноосвіт. навч. закл. - К.: ВЦ «Академія», 2008. - 136 с.: іл.

Содержание урока конспект урока и опорный каркас презентация урока интерактивные технологии акселеративные методы обучения Практика тесты, тестирование онлайн задачи и упражнения домашние задания практикумы и тренинги вопросы для дискуссий в классе Иллюстрации видео- и аудиоматериалы фотографии, картинки графики, таблицы, схемы комиксы, притчи, поговорки, кроссворды, анекдоты, приколы, цитаты Дополнения рефераты шпаргалки фишки для любознательных статьи (МАН) литература основная и дополнительная словарь терминов Совершенствование учебников и уроков исправление ошибок в учебнике замена устаревших знаний новыми Только для учителей календарные планы учебные программы методические рекомендации

Кислород появился в земной атмосфере с возникновением зелёных растений и фотосинтезирующих бактерий. Благодаря кислороду аэробными организмами осуществляется дыхание или окисление. Важно получение кислорода в промышленности – он используется в металлургии, медицине, авиации, народном хозяйстве и других отраслях.

Свойства

Кислород - восьмой элемент периодической таблицы Менделеева. Это газ, поддерживающий горение и осуществляющий окисление веществ.

Рис. 1. Кислород в таблице Менделеева.

Официально кислород был открыт в 1774 году. Английский химик Джозеф Пристли выделил элемент из оксида ртути:

2HgO → 2Hg + O 2 .

Однако Пристли не знал, что кислород является частью воздуха. Свойства и нахождение в атмосфере кислорода позже уставил коллега Пристли - французский химик Антуан Лавуазье.

Общая характеристика кислорода:

  • бесцветный газ;
  • не имеет запаха и вкуса;
  • тяжелее воздуха;
  • молекула состоит из двух атомов кислорода (О 2);
  • в жидком состоянии имеет бледно-голубой цвет;
  • плохо растворим в воде;
  • является сильным окислителем.

Рис. 2. Жидкий кислород.

Присутствие кислорода легко проверить, опустив в сосуд с газом тлеющую лучину. При наличии кислорода лучина вспыхивает.

Как получают

Известно несколько способов получения кислорода из различных соединений в промышленных и лабораторных условиях. В промышленности кислород получают из воздуха путём его сжижения под давлением и при температуре в -183°С. Жидкий воздух подвергают испарению, т.е. постепенно нагревают. При -196°C азот начинает улетучиваться, а кислород сохраняет жидкое состояние.

В лаборатории кислород образуется из солей, пероксида водорода и в результате электролиза. Разложение солей происходит при нагревании. Например, хлорат калия или бертолетову соль нагревают до 500°С, а перманганат калия или марганцовку - до 240°С:

  • 2KClO 3 → 2KCl + 3O 2 ;
  • 2KMnO 4 → K 2 MnO 4 + MnO 2 + O 2 .

Рис. 3. Нагревание бертолетовой соли.

Также можно получить кислород путём нагревания селитры или нитрата калия:

2KNO 3 → 2KNO 2 + O 2 .

При разложении пероксида водорода используется оксид марганца (IV) - MnO 2 , углерод или порошок железа в качестве катализатора. Общее уравнение выглядит следующим образом:

2Н 2 О 2 → 2Н 2 О + О 2 .

Электролизу подвергается раствор гидроксида натрия. В результате образуется вода и кислород:

4NaOH → (электролиз) 4Na + 2H 2 O + O 2 .

Также кислород с помощью электролиза выделяют из воды, разложив её на водород и кислород:

2H 2 O → 2H 2 + O 2 .

На атомных подводных лодках кислород получали из пироксида натрия - 2Na 2 O 2 + 2CO 2 → 2Na 2 CO 3 + O 2 . Способ интересен тем, что вместе с выделением кислорода поглощается углекислый газ.

Как применяют

Собирание и распознавание необходимо для выделения чистого кислорода, использующегося в промышленности для окисления веществ, а также для поддержания дыхания в космосе, под водой, в задымлённых помещениях (кислород необходим пожарным). В медицине баллоны кислорода помогают дышать пациентам с затруднённым дыханием. Также кислород используется для лечения респираторных заболеваний.

Кислород применяют для сжигания топлива - угля, нефти, природного газа. Кислород широко применяется в металлургии и машиностроении, например, для плавки, резки и сварки металла.

Средняя оценка: 4.9 . Всего получено оценок: 181.

Укрепим пробирку из тугоплавкого стекла на штативе и внесем в нее 5 г порошкообразной селитры (нитрата калия КNО 3 или нитрата натрия NaNO 3). Поставим под пробирку чашку из огнеупорного материала, наполненную песком, так как при этом опыте стекло часто плавится и вытекает горячая масса. Поэтому и горелку при нагревании будем держать сбоку. Когда мы сильно нагреем селитру, она расплавится и из нее выделится кислород (обнаружим это с помощью тлеющей лучины - она воспламенится в пробирке). При этом нитрат калия перейдет в нитрит KNO2. Бросим затем тигельными щипцами или пинцетом кусок черенковой серы в расплав (никогда не держать лицо над пробиркой).

Сера воспламенится и сгорит с выделением большого количества тепла. Опыт следует проводить при открытых окнах (из-за получающихся окислов серы). Полученный нитрит натрия сохраним для последующих опытов.

Процесс протекает следующим образом (через нагревание):

2KNO 3 → 2KNO 2 + O 2

Можно получить кислород и другими методами.

Перманганат калия КMnO 4 (калийная соль марганцевой кислоты) отдает при нагревании кислород и превращается при этом в оксид марганца (IV):

4KMnO 4 → 4Mn 2 + 2K 2 O + 3O 2

или 4KMnO 4 → MnO 2 + K 2 MnO 4 + O 2

Из 10 г перманганата калия можно получить примерно литр кислорода, значит двух граммов достаточно, чтобы наполнить кислородом пять пробирок нормальной величины. Перманганат калия можно приобрести в любой аптеке, если он отсутствует в домашней аптечке.

Некоторое количество перманганата калия нагреем в тугоплавкой пробирке и уловим в пробирки выделяющийся лислород с помощью пневматической ванны. Кристаллы, растрескиваясь, разрушаются, и, зачастую, некоторое количество пылеобразного перманганата увлекается вместе с газом. Вода в пневматической ванне и отводной трубке в этом случае окрасится в красный цвет. После окончания опыта очистим ванну и трубку раствором тиосульфата (гипосульфита) натрия - фотофиксажа, который немного подкислим разбавленной соляной кислотой.

В больших количествах кислород можно также получить из пероксида (перекиси) водорода Н 2 О 2 . Купим в аптеке трехпроцентный раствор - дезинфицирующее средство или препарат для обработки ран. Пероксид водорода мало устойчив. Уже при стоянии на воздухе он разлагается на кислород и воду:

2Н 2 О 2 → 2Н 2 О + О 2

Разложение можно существенно ускорить, если добавить к пероксиду немного диоксида марганца МnО 2 (пиролюзита), активного угля, металлического порошка, крови (свернувшейся или свежей), слюны. Эти вещества действуют как катализаторы.

Мы можем в этом убедиться, если в маленькую пробирку поместим примерно 1 мл пероксида водорода с одним из названных веществ, а наличие выделяющегося кислорода установим с помощью пробы лучинкой. Если в химическом стакане к 5 мл трехпроцентного раствора пероксида водорода добавить равное количество крови животного, то смесь сильно вспенится, пена застынет и вздуется в результате выделения пузырьков кислорода.

Затем испытаем каталитическое действие 10 %-ного раствора сульфата меди (II) с добавкой гидроксида калия (едкого кали), раствора сульфата железа (П), раствора хлорида железа (III) (с добавкой железного порошка и без него), карбоната натрия, хлорида натрия и органических веществ (молока, сахара, размельченных листьев зеленых растений и т. д.). Теперь мы на опыте убедились, что различные вещества каталитически ускоряют разложение пероксида водорода.

Катализаторы повышают скорость реакции химического процесса и при этом сами не расходуются. В конечном итоге они снижают энергию активации, необходимую для возбуждения реакции. Но существуют и вещества, действующие противоположным образом. Их называют отрицательными катализаторами, антикатализаторами, стабилизаторами или ингибиторами. Например, фосфорная кислота препятствует разложению пероксида водорода. Поэтому продажный раствор пероксида водорода обычно стабилизирован фосфорной или мочевой кислотой.

Катализаторы необходимы для многих химико-технологических процессов. Но и в живой природе во многих процессах участвуют так называемые биокатализаторы (энзимы, ферменты, гормоны). Так как катализаторы не потребляются в реакциях, то они могут действовать уже в малых количествах. Одного грамма сычужного фермента достаточно, чтобы обеспечить свертывание 400-800 кг молочного белка.

Особое значение для работы катализаторов имеет величина их поверхности. Для увеличения поверхности применяют пористые, испещренные трещинами вещества с развитой внутренней поверхностью, напыляют компактные вещества или металлы на так называемые носители. Например, 100 г платинового катализатора на носителе содержит только около 200 мг платины; 1 г компактного никеля имеет поверхность 0,8 см 2 , а 1 г порошка никеля - 10 мг. Это соответствует отношению 1: 100000; 1 г активного глинозема обладает поверхностью от 200 до 300 м 2 , для 1 г активного угля эта величина составляет даже 1000 м2. В некоторых установках катализатора - на несколько миллионов марок. Так, бензиновая контактная печь в Белене высотой 18 м содержит 9-10 тонн катализатора.