С развитием химической науки и появлением большого числа новых химических соединений все более возрастала необходимость в разработке и принятии понятной ученым всего мира системы их наименования, т.е. . Далее приведем обзор oсновных номенклатур органических соединений.

Тривиальная номенклатура

В истоках развития oрганической химии новым сoединениям приписывали тривиальные названия, т.е. названия сложившиеся исторически и нередко связанные со способом их получения, внешним видом и даже вкусом и т.п. Такая номенклатура органических соединений называется тривиальной. В таблице ниже приведены некоторые из соединений, сохранивших свои названия и в нынешние дни.

Рациональная номенклатура

С расширением списка органических соединений, возникла необходимость связывать их название со Базой рациональной номенклатуры органических соединений является наименование простейшего органического соединения. Например:

Однако, более сложным органическим соединениям невозможно приписать названия подобным способом. В этом случае следует называть соединения согласно правилам систематической номенклатуры ИЮПАК.

Систематическая номенклатура ИЮПАК

ИЮПАК (IUPAC) - Международный союз теоретической и прикладной химии (International Union of Pure and Applied Chemistry).

В данном случае, называя соединения, следует учитывать местоположение атомов углерода в молекуле и структурных элементов. Наиболее часто применяемой является заместительная номенклатура органических соединений, т.е. выделяется базовая основа молекулы, в которой атомы водорода замещены на какие-либо структурные звенья или атомы.

Прежде чем приступить к построению названий соединений, советуем выучить наименования числовых приставок, корней и суффиксов используемых в номенклатуре ИЮПАК .

А также названия функциональных групп:

Для обозначения числа кратных связей и функциональных групп пользуются числительными:

Предельные углеводородные радикалы:

Непредельные углеводородные радикалы:

Ароматические углеводородные радикалы:

Правила построения названия органического соединения по номенклатуре ИЮПАК:

  1. Выбрать главную цепь молекулы

Определить все присутствующие функциональные группы и их старшинство

Определить наличие кратных связей

  1. Пронумеровать главную цепь, причем нумерацию следует начинать с наиболее близкому к старшей группе конца цепи. При существовании нескольких таких возможностей, нумеруют цепь так, чтобы минимальный номер получили или кратная связь, или другой заместитель, присутствующий в молекуле.

Карбоциклические соединения нумеруют начиная со связанного со старшей характеристической группой атома углерода. При наличии двух и более заместителей цепь стараются пронумеровать так, чтобы заместителям принадлежали минимальные номера.

  1. Составить название соединения:

— Определить основу названия соединения, составляющего корень слова, который обозначает предельный углеводород с тем же количеством атомов, что и главная цепь.

— После основы названия следует суффикс, показывающий степень насыщенности и количество кратных связей. Например, — тетраен, — диен . При отсутствии кратных связей используют суффикс – ск.

— Затем, также в суффикс добавляется наименование самой старшей функциональной группы .

— После следует перечисление заместителей в алфавитном порядке с указанием их местоположения арабской цифрой. Например, — 5-изобутил, — 3-фтор. При наличии нескольких одинаковых заместителей указывают их количество и положение, например, 2,5 – дибром-, 1,4,8-тримети-.

Следует учесть, что цифры отделяются от слов дефисом, а между собой – запятыми.

В качестве примера дадим название следующему соединению:

1. Выбираем главную цепь , в состав которой обязательно входит старшая группа – СООН.

Определяем другие функциональные группы : — ОН, — Сl, — SH, — NH 2 .

Кратных связей нет.

2. Нумеруем главную цепь , начиная со старшей группы.

3. Число атомов в главной цепи – 12. Основа названия

10-амино-6-гидрокси -7-хлоро-9-сульфанил-метиловыйэфир додекановой кислоты.

10-амино-6-гидрокси-7-хлоро-9-сульфанил-метилдодеканоат

Номенклатура оптических изомеров

  1. В некоторых классах соединений, таких как альдегиды, окси- и аминокислоты для обозначения взаимного расположения заместителей используют D , L – номенклатуру. Буквой D обозначают конфигурацию правовращающего изомера, L – левовращающего.

В основе D,L -номенклатуры органических соединений лежат проекции Фишера:

  • α-аминокислот и α- оксикислот вычленяют «оксикислотный ключ», т.е. верхние части их проекционных формул. Если гидроксильная (амино-) группа расположена справа, то это D -изомер, слева L -изомер.

Например, представленная ниже винная кислота имеет D — конфигурацию по оксикислотному ключу:

  • чтобы определить конфигурации изомеров сахаров вычленяют «глицериновый ключ», т.е. сравнивают нижние части (нижний асимметрический атом углерода) проекционной формулы сахара с нижней частью проекционной формулы глицеринового альдегида.

Обозначение конфигурации сахара и направление вращения аналогично конфигурации глицеринового альдегида, т.е. D – конфигурации соответствует расположение гидроксильной группы расположена справа, L – конфигурации – слева.

Так, например, ниже представлена D-глюкоза.

2) R -, S-номенклатура (номенклатура Кана, Ингольда и Прелога)

В данном случае заместители при асимметрическом атоме углерода располагаются по старшинству. Оптических изомеры имеют обозначения R и S , а рацемат — RS .

Для описания конфигурации соединения в соответствии с R,S-номенклатурой поступают следующим образом:

  1. Определяют все заместители у асимметричного атома углерода.
  2. Определяют старшинство заместителей, т.е. сравнивают их атомные массы. Правила определения ряда старшинства те же, что и при использовании E/Z-номенклатуры геометрических изомеров.
  3. Ориентируют в пространстве заместители так, чтобы младший заместитель (обычно водород) находился в наиболее отдаленном от наблюдателя углу.
  4. Определяют конфигурацию по расположению остальных заместителей. Если движение от старшего к среднему и далее к младшему заместителю (т.е. в порядке уменьшения старшинства) осуществляется по часовой стрелке, то это R конфигурация, против часовой стрелки — S-конфигурация.

В таблице ниже приведен перечень заместителей, расположенных в порядке возрастания их старшинства:

Категории ,

Все вещества, которые содержат углеродный атом, помимо карбонатов, карбидов, цианидов, тиоционатов и угольной кислоты, представляют собой органические соединения. Это значит, что они способны создаваться живыми организмами из атомов углерода посредством ферментативных или прочих реакций. На сегодняшний день многие органические вещества можно синтезировать искусственно, что позволяет развивать медицину и фармакологию, а также создавать высокопрочные полимерные и композитные материалы.

Классификация органических соединений

Органические соединения являются самым многочисленным классом веществ. Здесь присутствует порядка 20 видов веществ. Они различны по химическим свойствам, отличаются физическими качествами. Их температура плавления, масса, летучесть и растворимость, а также агрегатное состояние при нормальных условиях также различны. Среди них:

  • углеводороды (алканы, алкины, алкены, алкадиены, циклоалканы, ароматические углеводороды);
  • альдегиды;
  • кетоны;
  • спирты (двухатомные, одноатомные, многоатомные);
  • простые эфиры;
  • сложные эфиры;
  • карбоновые кислоты;
  • амины;
  • аминокислоты;
  • углеводы;
  • жиры;
  • белки;
  • биополимеры и синтетические полимеры.

Данная классификация отражает особенности химического строения и наличие специфических атомных групп, определяющих разность свойств того или иного вещества. В общем виде классификация, в основе которой лежит конфигурация углеродного скелета, не учитывающая особенностей химических взаимодействий, выглядит по-другому. Соответственно ее положениям, органические соединения делятся на:

  • алифатические соединения;
  • ароматические вещества;
  • гетероциклические вещества.

Данные классы органических соединений могут иметь изомеры в разных группах веществ. Свойства изомеров различны, хотя их атомный состав может быть одинаковым. Это вытекает из положений, заложенных А. М. Бутлеровым. Также теория строения органических соединений является руководящей основой при проведении всех исследований в органической химии. Ее ставят на один уровень с менделеевским Периодическим законом.

Само понятие о химическом строении ввел А. М. Бутлеров. В истории химии оно появилось 19 сентября 1861 года. Ранее в науке существовали различные мнения, а часть ученых вовсе отрицало наличие молекул и атомов. Потому в органической и неорганической химии не было никакого порядка. Более того, не существовало закономерностей, по которым можно было судить о свойствах конкретных веществ. При этом были и соединения, которые при одинаковом составе проявляли разные свойства.

Утверждения А. М. Бутлерова во многом направили развитие химии в нужное русло и создали для нее прочнейший фундамент. Посредством нее удалось систематизировать накопленные факты, а именно, химические или же физические свойства некоторых веществ, закономерности вступления их в реакции и прочее. Даже предсказание путей получения соединений и наличие некоторых общих свойств стало возможным благодаря данной теории. А главное, А. М. Бутлеров показал, что структуру молекулы вещества можно объяснить с точки зрения электрических взаимодействий.

Логика теории строения органических веществ

Поскольку до 1861 года в химии многие отвергали существование атома или же молекулы, то теория органических соединений стала революционным предложением для ученого мира. И поскольку сам Бутлеров А. М. исходит лишь из материалистических умозаключений, то ему удалось опровергнуть философские представления об органике.

Ему удалось показать, что молекулярное строение можно распознать опытным путем посредством химических реакций. К примеру, состав любого углевода можно выяснить посредством сжигания его определенного количества и подсчета образовавшейся воды и углекислого газа. Количество азота в молекуле амина подсчитывается также при сжигании путем измерения объема газов и выделения химического количества молекулярного азота.

Если рассматривать суждения Бутлерова о химическом строении, зависящем от структуры, в обратном направлении, то напрашивается новый вывод. А именно: зная химическое строение и состав вещества, можно эмпирически предположить его свойства. Но самое главное - Бутлеров объяснил, что в органике встречается огромное количество веществ, проявляющих разные свойства, но имеющие одинаковый состав.

Общие положения теории

Рассматривая и исследуя органические соединения, Бутлеров А. М. вывел некоторые важнейшие закономерности. Он объединил их в положения теории, объясняющей строение химических веществ органического происхождения. Положения теории таковы:

  • в молекулах органических веществ атомы соединены между собой в строго определенной последовательности, которая зависит от валентности;
  • химическое строение - это непосредственный порядок, согласно которому соединены атомы в органических молекулах;
  • химическое строение обуславливает наличие свойств органического соединения;
  • в зависимости от строения молекул с одинаковым количественным составом возможно появление различных свойств вещества;
  • все атомные группы, участвующие в образовании химического соединения, имеют взаимное влияние друг на друга.

Все классы органических соединений построены согласно принципам данной теории. Заложив основы, Бутлеров А. М. смог расширить химию как область науки. Он пояснил, что благодаря тому, что в органических веществах углерод проявляет валентность равную четырем, обуславливается многообразие данные соединений. Наличие множества активных атомных групп определяет принадлежность вещества к определенному классу. И именно за счет наличия специфических атомных групп (радикалов) появляются физические и химические свойства.

Углеводороды и их производные

Данные органические соединения углерода и водорода являются самыми простыми по составу среди всех веществ группы. Они представлены подклассом алканов и циклоалканов (насыщенных углеводородов), алкенов, алкадиенов и алкатриенов, алкинов (непредельных углеводородов), а также подклассом ароматических веществ. В алканах все атомы углерода соединены только одинарной С-С связью, из-за чего в состав углеводорода уже не может быть встроен ни один атом Н.

В непредельных углеводородах водород может встраиваться по месту наличия двойной С=С связи. Также С-С связь может быть тройной (алкины). Это позволяет данным веществам вступать во множество реакций, связанных с восстановлением или присоединением радикалов. Все остальные вещества для удобства изучения их способности вступать в реакции рассматриваются как производные одного из классов углеводородов.

Спирты

Спиртами называются более сложные, чем углеводороды органические химические соединения. Они синтезируются в результате протекания ферментативных реакций в живых клетках. Самым типичным примером является синтез этанола из глюкозы в результате брожения.

В промышленности спирты получают из галогеновых производных углеводородов. В результате замещения галогенового атома на гидроксильную группу и образуются спирты. Одноатомные спирты содержат лишь одну гидроксильную групп, многоатомные - две и более. Примером двухатомного спирта является этиленгликоль. Многоатомный спирт - это глицерин. Общая формула спиртов R-OH (R - углеродная цепь).

Альдегиды и кетоны

После того как спирты вступают в реакции органических соединений, связанные с отщеплением водорода от спиртовой (гидроксильной) группы, замыкается двойная связь между кислородом и углеродом. Если данная реакция проходит по спиртовой группе, расположенной у концевого углеродного атома, то в результате ее образуется альдегид. Если углеродный атом со спиртовой расположен не на конце углеродной цепи, то результатом реакции дегидратации является получение кетона. Общая формула кетонов - R-CO-R, альдегидов R-COH (R - углеводородный радикал цепи).

Эфиры (простые и сложные)

Химическое строение органических соединений данного класса усложненное. Простые эфиры рассматриваются как продукты реакции между двумя молекулами спиртов. При отщеплении воды от них образуется соединение образца R-O-R. Механизм реакции: отщепление протона водорода от одного спирта и гидроксильной группы от другого спирта.

Сложные эфиры - продукты реакции между спиртом и органической карбоновой кислотой. Механизм реакции: отщепление воды от спиртовой и карбоновой группы обеих молекул. Водород отщепляется от кислоты (по гидроксильной группе), а сама ОН-группа отделяется от спирта. Полученное соединение изображается как R-CO-O-R, где буковой R обозначены радикалы - остальные участки углеродной цепи.

Карбоновые кислоты и амины

Карбоновыми кислотами называются особенные вещества, играющие важную роль в функционировании клетки. Химическое строение органических соединений такое: углеводородный радикал (R) с присоединенной к нему карбоксильной группой (-СООН). Карбоксильная группа может располагаться только у крайнего атома углерода, потому как валентность С в группе (-СООН) равна 4.

Амины - это более простые соединения, которые являются производными углеводородов. Здесь у любого атома углерода располагается аминный радикал (-NH2). Существуют первичные амины, у которых группа (-NH2) присоединяется к одному углероду (общая формула R-NH2). У вторичных аминов азот соединяется с двумя углеродными атомами (формула R-NH-R). У третичных аминов азот соединен с тремя углеродными атомами (R3N), где р - радикал, углеродная цепь.

Аминокислоты

Аминокислоты - комплексные соединения, которые проявляют свойства и аминов, и кислот органического происхождения. Существует несколько их видов в зависимости от расположения аминной группы по отношению к карбоксильной. Наиболее важны альфа-аминокислоты. Здесь аминная группа расположена у атома углерода, к которому присоединена карбоксильная. Это позволяет создавать пептидную связь и синтезировать белки.

Углеводы и жиры

Углеводы являются альдегидоспиртами или кетоспиртами. Это соединения с линейной или циклической структурой, а также полимеры (крахмал, целлюлоза и прочие). Их важнейшая роль в клетке - структурная и энергетическая. Жиры, а точнее липиды, выполняют те же функции, только участвуют в других биохимических процессах. С точки зрения химического строения жир является сложным эфиром органических кислот и глицерина.

Тема: КЛАССИФИКАЦИЯ ОРГАНИЧЕСКИХ ВЕЩЕСТВ, ОСНОВЫ НОМЕНКЛАТУРЫ ОРГАНИЧЕСКИХ СОЕДИНЕНИЙ

Цели урока:

образовательные: Сформировать понятия изомерии, структурной формулы, изомеров. Познакомить с принципами классификации органиче­ских соединений по строению углеродной цепи и по функциональ­ным группам и на этой основе дать первоначальный обзор основных классов органических соединений. Дать общее представление об основных принципах формирования названий органических соединений по международ­ной номенклатуре.

воспитательные: Формирование научной картины мира, воспитание чувства патриотизма на примере Бутлерова.

развивающие: Развивать умения учащихся сравнивать, обобщать, проводить аналогию.

Тип урока : урок комбинированный

Методы ведения :

общие: объяснительно-иллюстративный

частные : словесно-наглядный

конкретные : беседа

Оборудование : схема класси­фикации органических соединений

План

1.Организационный момент – 5 мин

2.Проверка домашнего задания – 25 мин

3.Объяснение и закрепление нового материала – 55 мин

4.Домашнее задание - 3 мин

5.Итоги урока – 2 мин

Ход урока

1.Организационный момент: Приветствие, проверка посещаемости.

2. Проверка домашнего задания

? какая связь называется сигма связью?

какая связь пи?

Назовите механизмы разрыва химической связи

3.Объяснение нового материала:

Классификация органических веществ

На прошлом занятии мы говорили, насколько велико число известных органических соедине­ний. В этом безбрежном океане легко утонуть даже опытному химику. Поэтому ученые всегда стремятся классифи­цировать какое-либо множество «по полочкам», навести порядок в своем хозяйстве. Кстати, не мешает это делать и каждому из нас со своими вещами, чтобы в любой момент знать, где что находится.

Классифицировать вещества можно по разным признакам, на­пример, по составу, строению, свойствам, применению - по столь привычной логической системе признаков. Т. к. в состав всех органи­ческих соединений входят атомы углерода, то, очевидно, важнейшим признаком классификации органических веществ может служить по­рядок их соединения, т. е. строение. По этому признаку все органи­ческие вещества разделены на группы в зависимости от того, какой остов (скелет) образуют углеродные атомы, включает ли этот остов какие-либо иные атомы, кроме углерода.

Давайте рассмотрим более подробно данную классификацию, используя следующую схему:

атомы углерода, соединяясь друг с другом, могут образовывать цепи различной длины. Если такая цепь не замкнута, вещество относит­ся к группе ациклических (нециклических) соединений. Замкнутая це­почка углеродных атомов позволяет назвать вещество циклическим. Атомы углерода в цепочке могут быть связаны как простыми (одинарными), так и двойными, тройными (кратными) связями. Если в молекуле есть хотя бы одна кратная углерод-углеродная связь, она называется непредельной или ненасыщенной, в противном слу­чае - предельной (насыщенной). Если замкнутую цепочку циклического вещества составляют только атомы углерода, оно называется карбоциклическим. Однако вместо одного или нескольких атомов углерода в цикле могут оказаться атомы других элементов, например азота, кислорода, серы. Их иног­да называют гетероатомами, а соединение - гетероциклическим. В группе карбоциклических веществ есть особая «полочка», на которой расположены вещества с особым расположением двойных и одинарных связей в цикле. одно из таких веществ - бензол. Бензол, его ближайшие и дальние «родственники» называются ароматическими вещества­ми, а остальные карбоциклические соединения - алициклическими.

В основе классификации лежит строение молекулы.

Ациклические соединения – соединения с открытой (незамкнутой) цепью углеродных атомов. Такие соединения называют также алифатическими соединениями или соединениями жирного ряда.

Предельные соединения – соединения, имеющие в своём составе одинарные связи.

Непредельные соединения – соединения, в которых присутствуют двойные или тройные (кратные) связи.

Циклические соединения – соединения, в которых углеродные атомы образуют циклы, бывают карбоциклическими и гетероциклическими.

Карбоциклические – циклические соединения, образованные только углеродными атомами, бывают алициклическими и ароматическими.

Гетероциклические соединения – циклы, в состав которых кроме атомов углерода входят и другие атомы – гетероатомы (азот, сера, кислород)

Основные классы органических соединений

Углеводороды – наиболее простые органические соединения, в состав которых входят только углерод и водород. Они бывают предельными (алканы), непредельными (алкены, алкины, алкадиены и др.) и ароматическими (арены).

При замене атомов водорода в углеводороде на другие атомы или группы атомов – функциональные группы – образуются многочисленные классы органических соединений (спирты, альдегиды, кетоны, карбоновые кислоты, эфиры, амины, аминокислоты и др).

Запишем таблицу:

Класс соединений

Функциональная группа

Название функциональной группы

Пример соединения данного класса

Название

Гидроксильная

Метанол (метиловый спирт)

Гидроксильная

Альдегиды

Карбонильная

Метаналь (формальдегид)

Карбонильная

CH 3 -C(=O)-CH 3

Пропанон-2 (ацетон)

Карбоновые кислоты

Карбоксильная

Этановая кислота (уксусная кислота)

X (X=Cl, Br, F, I)

Галогенная

Хлорметан

Аминогруппа

Этиламин

Амидогруппа

Ацетамид

Нитросоединения

Нитрогруппа

Нитроэтан

Аминокислоты

COOH и - NH 2

Карбоксильная и аминогруппы

Аминоуксусная кислота (глицин)

Номенклатура органических веществ

Номенклатура - это система названий, употребляющихся в какой-либо науке.

На заре развития органической химии известных веществ жи­вой природы было достаточно мало. Ученые той поры могли позво­лить себе придумывать для каждого вещества собственное название, которое часто даже не укладывалось в одно слово, да еще и не одно. Такие названия чаще всего отражали проис­хождение вещества или наиболее яркое его свойство: уксусная кисло­та, горькоминдальное масло (бензальдегид), глицерин (от греч.- сладкий), формальдегид (от латинского - муравей). Та­кие названия именуются тривиальными. Тривиальная номенклатура – исторически сложившиеся названия. Они широко распростране­ны в химии для обозначения веществ простого строения. С накоплением экспериментального материала выяснилось, что многие вещества обладают похожими свойствами, т. е. принадле­жат к одной группе (классу) соединений. На все вещества данного класса стали распространять похожие названия веществ.

Число известных органи­ческих соединений растет в геометрической прогрессии. Химикам разных стран стало трудно общаться, поскольку одни и те же вещества имели различные названия, а под одним названием подразумевали не­сколько веществ. Возникли большие сложности с названиями сложных молекул. Чтобы разрешить эту проблему, химики всех стран, входящих в Международный союз теоретической и прикладной химии (ИЮПАК), создали специальный комитет, который выработал основы единой для всех органических веществ номенклатуры. Эту номенклатуру называют международной или номенклатурой ИЮПАК.

Для того чтобы уметь пользоваться ею, нужно хорошо знать названия первых представите­лей гомологического ряда предельных углеводородов (от этана до де­кана) и нескольких простейших предельных радикалов (метил, этил, пропил).

Запишем таблицу:

Названия алканов и алкильных заместителей

Основные принципы номенклатуры ИЮПАК

1.Основу названия вещества составляет название предельно­ го углеводорода с тем же числом углеродных атомов, что и в самой длинной цепи ациклической молекулы.

    Положение заместителя, функциональных групп и кратных связей в главной цепи обозначается с помощью цифр.

    Заместители, функциональные группы и кратные связи указываются в названии с помощью префиксов (те же приставки, но специфические, химические) и суффиксов.

    При написании названия все цифры отделяются друг от друга запятыми, а от букв - дефисами.

? Задание : Определите к какому классу относятся соединения и дать названия

СН 3 – СН = СН - СН 3 Н 2 N - СН 2 - СООН

CН 3 – СН 2 – СН 2 – СН 2 _ - СН 3 CН 3 – СН 2 – СН 2 – ОН

CН 3 – СН 2 – NН 2 CН 3 – СН 2 – СН 2 – NО 2

Рассмотрим изомерию органических веществ

? Что такое изомерия?

Пример: CН 3 – СН 2 – СН 2 – СН 2 - СН 3 CН 3 – СН 2 (СН 3) – СН 2 –- СН 3

3. Домашнее задание:

Л.А. Цветков «Органическая химия – 10» §3;

4. Итоги: Таким образом, сегодня мы познакомились с классификацией, номенклатурой и изомерией органических веществ. Оценки за урок.

В основу классификации органических соединений положена теория химического строения А. М. Бутлерова. Систематическая классификация - фундамент научной номенклатуры. Благодаря ей стало возможным дать название каждому известному ранее и новому органическому веществу, исходя из имеющейся

Классы органических соединений

Классифицируются по двум основным признакам: локализации и количеству функциональных групп в молекуле и структуре карбонового скелета.

Карбоновый скелет представляет собой часть молекулы, которая достаточно стабильна в различных химических реакциях. Органические соединения разделяются на большие группы, при этом учитывают органического вещества.

Ациклические соединения (биосоединения жирного ряда или алифатические соединения). Указанные органические соединения в структуре молекул содержат прямую или разветвленную карбоновую цепь.

Карбоциклические соединения - это вещества с замкнутыми карбоновыми цепями - циклами. Указанные биосоединения разделяют на группы: ароматические и алициклические.

Гетероциклические природные органические соединения - вещества, в структуре молекул которых есть циклы, образованные атомами карбона и атомами других химических элементов (Оксигена, Нитрогена, Сульфура) гетероатомами.

Соединения каждого ряда (группы) делятся на классы различных органических соединений. Принадлежность органического вещества к тому или иному классу определяют наличием в его молекуле определенных функциональных групп. Например, классы углеводородов (единственный класс органических веществ у которых отсутствуют функциональные группы), аминов, альдегидов, фенолов, карбоновых кислот, кетонов, спиртов и т.д.

Для определения принадлежности органического соединения к ряду и классу выделяют карбоновый скелет или карбоновую цепь (ациклические соединения), цикл (карбоциклических соединения) или ядро В дальнейшем определяют наличие в молекуле органического вещества других атомных (функциональных) групп, например, гидроксила - ОН, карбоксила - СООН, аминогруппы, иминогруппы, сульфгидридной группы - SH и т.д. Функциональная группа или группы определяют принадлежность биосоединения к определенному классу, его главные физические и химические свойства. Следует сказать, что каждая функциональная группа не только определяет эти свойства, но и влияет на другие атомы и атомные группы, одновременно испытывая и их влияние.

При замещении в молекулах ациклических и циклических углеводородов или гетероциклических соединений атома Гидрогена на различные функциональные группы получают органические соединения, которые относятся к определенным классам. Приводим отдельные функциональные группы, определяющие принадлежность органического соединения к определенному классу: углеводороды R-H, галогенопроизводные углеводородов - R-Hal, альдегиды - R-COH, кетоны - R1-CO-R2, спирты и фенолы R-OH, карбоновые кислоты - R-COOH, - R1-O-R2, галогеноангидриды карбоновых кислот R-COHal, R-COOR, нитросоединения - R-NO2, сульфокислоты -R-SO3H, металлоорганические соединения - R-Me, меркаптаны R-SH.

Органические соединения, имеющие в структуре своих молекул одну функциональную группу, называют органическими соединениями с простыми функциями, две и более - соединениями со смешанными функциями. Примерами органических соединений с простыми функциями могут быть углеводороды, спирты, кетоны, альдегиды, амины, карбоновые кислоты, нитросоединения и т.д. Примерами соединений со смешанными функциями могут быть гидроксикислоты, кетокислоты и т.п.

Особое место занимают сложные биоорганические соединения: протеины, протеиды, липиды, нуклеиновые кислоты, углеводы, в молекулах которых большое количество различных функциональных групп.

Известно, что свойства органических веществ определяются их составом и химическим строением. Поэтому неудивительно, что в основе классификации органических соединений лежит именно теория строения - теория Л. М. Бутлерова. Классифицируют органические вещества по наличию и порядку соединения атомов в их молекулах. Наиболее прочной и малоизменяемой частью молекулы органического вещества является ее скелет - цепь атомов углерода. В зависимости от порядка соединения атомов углерода в этой цепи вещества делятся на ациклические, не содержащие замкнутых цепей атомов углерода в молекулах, и карбоциклические, содержащие такие цени (циклы) в молекулах.
Помимо атомов углерода и водорода молекулы органических веществ могут содержать атомы и других химических элементов. Вещества, в молекулах которых эти так называемые гетероатомы включены в замкнутую цепь, относят к гетероциклическим соединениям.
Гетероатомы (кислород, азот и др.) могут входить в состав молекул и ациклических соединений, образуя в них функциональные группы, например, гидроксильную - ОН, карбонильную, карбоксильную, аминогруппу -NН2.
Функциональная группа - группа атомов, которая определяет наиболее характерные химические свойства вещества и его принадлежность к определенному классу соединений.

Углеводороды - это соединения, состоящие только из атомов водорода и углерода.

В зависимости от строения углеродной цепи органические соединения разделяют на соединения с открытой цепью - ациклические (алифатические) и циклические - с замкнутой цепью атомов.

Циклические делятся на две группы: карбоциклические соединения (циклы образованы только атомами углерода) и гетероциклические (в циклы входят и другие атомы, такие как кислород, азот, сера).

Карбоциклические соединения, в свою очередь, включают два ряда соединений: алицикличвские и ароматические.

Ароматические соединения в основе строения молекул имеют плоские углеродсодержащие циклы с особой замкнутой системой р-электронов, образующих общую π-систему (единое π-электронное облако). Ароматичность характерна и для многих гетероциклических соединений.

Все остальные карбоциклические соединения относятся к алициклическому ряду.

Как ациклические (алифатические), так и циклические углеводороды могут содержать кратные (двойные или тройные) связи. Такие углеводороды называют непредельными (ненасыщенными) в отличие от предельных (насыщенных), содержащих только одинарные связи.

Предельные алифатические углеводороды называют алканами , они имеют общую формулу С n Н 2 n +2 , где n - число атомов углерода. Старое их название часто употребляется и в настоящее время - парафины.

Содержащие одну двойную связь , получили название алкены . Они имеют общую формулу С n Н 2 n .

Непредельные алифатические углеводороды с двумя двойными связями называют алкадиенами

Непредельные алифатические углеводороды с одной тройной связью называют алкинами . Их общая формула С n Н 2 n — 2 .

Предельные алициклические углеводороды - циклоалканы , их общая формула С n Н 2 n .

Особая группа углеводородов, ароматических , или аренов (с замкнутой общей π-электронной системой), известна из примера углеводородов с общей формулой С n Н 2 n -6.

Таким образом, если в их молекулах один или большее число атомов водорода заменить на другие атомы или группы атомов (галогены, гидроксильные группы, аминогруппы и др.), образуются производные углеводородов : галогенопроизводные, кислородсодержащие, азотсодержащие и другие органические соединения.

Галогенопроизводные углеводородов можно рассматривать как продукты замещения в углеводородах одного или нескольких атомов водорода атомами галогенов. В соответствии с этим могут существовать предельные и непредельные моно-, ди-, три- (в общем случае поли-) галогенопроизводные.

Общая формула моногалогенопроизводных предельных углеводородов:

а состав выражается формулой

C n H 2 n +1 Г,

где R - остаток от предельного углеводорода (алкана), углеводородный радикал (это обозначение используется и далее при рассмотрении других классов органических веществ), Г - атом галогена (F, Сl, Вг, I).

Спирты - производные углеводородов, в которых один или несколько атомов водорода замещены на гидроксильные группы.

Спирты называют одноатомными , если они имеют одну гидроксильную группу, и предельными, если они являются производными алканов.

Общая формула предельных одноатомных спиртов:

а их состав выражается общей формулой:
С n Н 2 n +1 ОН или С n Н 2 n +2 О

Известны примеры многоатомных спиртов, т. е. имеющих несколько гндроксильных групп.

Фенолы - производные ароматических углеводородов (ряда бензола), в которых один или несколько атомов водорода в бензольном кольце замещены на гидроксильные группы.

Простейший представитель с формулой С 6 Н 5 ОН называется фенолом.

Альдегиды и кетоны - производные углеводородов, содержащие карбонильную группу атомов (карбонил).

В молекулах альдегидов одна связь карбонила идет на соединение с атомом водорода, другая - с углеводородным радикалом.

В случае кетонов карбонильная группа связана с двумя (в общем случае разными) радикалами.

Состав предельных альдегидов и кетонов выражается формулой С n Н 2л О.

Карбоновые кислоты - производные углеводородов, содержащие карбоксильные группы (-СООН).

Если в молекуле кислоты одна карбоксильная группа, то карбоновая кислота является одноосновной. Общая формула предельных одноосновных кислот (R-СООН). Их состав выражается формулой С n Н 2 n O 2 .

Простые эфиры представляют собой органические вещества, содержащие два углеводородных радикала, соединенных атомом кислорода: R-О-R или R 1 -O-R 2 .

Радикалы могут быть одинаковыми или разными. Состав простых эфиров выражается формулой С n Н 2 n +2 O

Сложные эфиры - соединения, образованные замещением атома водорода карбоксильной группы в карбоновых кислотах на углеводородный радикал.

Нитросоединения - производные углеводородов, в которых один или несколько атомов водорода замещены на нитрогруппу -NO 2 .

Общая формула предельных мононитросоединений:

а состав выражается общей формулой

С n Н 2 n +1 NO 2 .

Амины - соединения, которые рассматривают как производные аммиака (NН 3), в котором атомы водорода замещены на углеводородные радикалы.

В зависимости от природы радикала амины могут быть алифатическими и ароматическими .

В зависимости от числа замещенных на радикалы атомов водорода различают:

Первичные амины с общей формулой: R-NН 2

Вторичные - с общей формулой: R 1 -NН-R 2

Третичные - с общей формулой:

В частном случае у вторичных, а также третичных аминов радикалы могут быть и одинаковыми.

Первичные амины можно также рассматривать как производные углеводородов (алканов), в которых один атом водорода замещен на аминогруппу -NН 2 . Состав предельных первичных аминов выражается формулой С n Н 2 n +3 N.

Аминокислоты содержат две функциональные группы, соединенные с углеводородным радикалом: аминогруппу -NН 2 , и карбоксил -СООН.

Состав предельных аминокислот, содержащих одну аминогруппу и один карбоксил, выражается формулой С n Н 2 n +1 NO 2 .

Известны и другие важные органические соединения, которые имеют несколько разных или одинаковых функциональных групп, длинные линейные цепи, связанные с бензольными кольцами. В таких случаях строгое определение принадлежности вещества к какому-то определенному классу невозможно. Эти соединения часто выделяют в специфические группы веществ: углеводы, белки, нуклеиновые кислоты, антибиотики, алкалоиды и др.

Для названия органических соединений используют 2 номенклатуры — рациональную и систематическую (ИЮПАК) и тривиальные названия.

Составление названий по номенклатуре ИЮПАК

1) Основу названия соединения составляет корень слова, обозначающий предельный углеводород с тем же числом атомов, что и главная цепь.

2) К корню добавляют суффикс, характеризующий степень насыщенности:

Ан (предельный, нет кратных связей);
-ен (при наличии двойной связи);
-ин (при наличии тройной связи).

Если кратных связей несколько, то в суффиксе указывается число таких связей (-диен, -триен и т.д.), а после суффикса обязательно указывается цифрами положение кратной связи, например:
СН 3 –СН 2 –СН=СН 2 СН 3 –СН=СН–СН 3
бутен-1 бутен-2

СН 2 =СН–СН=СН 2
бутадиен-1,3

Такие группы как нитро-, галогены, углеводородные радикалы, не входящие в главную цепь выносятся в приставку. При этом они перечисляются по алфавиту. Положение заместителя указывается цифрой перед приставкой.

Порядок составления названия следующий:

1. Найти самую длинную цепь атомов С.

2. Последовательно пронумеровать атомы углерода главной цепи, начиная с ближайшего к разветвлению конца.

3. Название алкана складывается из названий боковых радикалов, перечисленных в алфавитном порядке с указанием положения в главной цепи, и названия главной цепи.

Номенклатура некоторых органических веществ (тривиальная и международная)