План

1. Понятие «полезные ископаемые»

2. Генетическая классификация полезных ископаемых

3. Магматогенные, магматические, пегматитовые, постмагматические и гидротермальные месторождения

4. Экзогенные месторождения (выветривания), осадочные месторождения

5. Горючие ископаемые

6. Метаморфические и метаморфизованные месторождения

Размер полученных кристаллов зависит от того, насколько быстро магма охлаждается или как долго должен расти минерал. Породы и минералы, которые в основном образуются, называются магматитами или первичными породами. Короче говоря, на поверхности Земли образуются вулканические породы, а плутониты формируются по глубине. В плутонитах различают: жидкие магматические, пневматолитические и гидротермальные.

Основной принцип образования довольно легко объяснить, потому что, в двух словах, его можно просто объяснить тем, что жидкость затвердевает. Поскольку магма не всегда одна и та же, то есть состоит из разных минералов, минералы встречаются в разных местах. Но не только минералы определяют исходный материал, но и тепло и давление, а также внешние внешние воздействия.

Список используемой литературы


Полезные ископаемые – минеральные образования земной коры, химический состав и физические свойства которых позволяют эффективно использовать их в сфере минерального производства.

Скопление полезных ископаемых образуют месторождения, а при больших площадях распространения – районы, провинции и бассейны. Полезные ископаемые находятся в земной коре в виде скоплений различного характера (жил, штоков, пластов, россыпей и других).

Теперь для принципа вторичной формации минералов. Вторичный образовательный принцип: этот образовательный принцип также можно быстро объяснить. Принцип среднего образования на самом деле не что иное, как выветривание и осаждение. В конечном итоге от этих месторождений сильно зависит природа. Но откуда берутся эти месторождения и в чем они состоят? Уже твердые структуры, такие. Горы становятся хрупкими с течением времени. Где-то они собираются снова и образуют новые камни. Этот процесс называется седиментацией.

Теперь мы переходим к последнему образовательному принципу, принципу высшего образования. Третичный образовательный принцип: принцип высшего образования на самом деле является самым удивительным. Преобразование существующей породы создает новую. Трансформация называется в метаморфозе жаргона. Метаморфоза может возникать только тогда, когда минералы находятся либо под высоким давлением, либо на них действует высокая температура. Из этих минералов создается новый минерал, который должен обеспечивать большую устойчивость к приложенному давлению или теплу.

Полезное ископаемое – природное минеральное образование, которое используется в народном хозяйстве в естественном виде или после предварительной обработки.

Преобладают полезные ископаемые, находящихся в твердом состоянии; к жидким относятся нефть, рассолы, вода; к газообразным – природные горючие газы. Выделяют три группы полезных ископаемых: металлические, неметаллические и горючие. Металлические полезные ископаемые служат для извлечения из них металлов. Неметаллические полезные ископаемые объединяют строительные материалы (естественные и искусственные), рудоминеральное неметаллическое сырье (слюды, графит, алмазы) и химическое минеральное сырье (калийные соли, фосфаты, сера). Горючие ископаемые используются как энергетическое и металлургическое топливо; продукты их переработки служат сырьем для химической промышленности. Признаками полезных ископаемых являются: спутники рудных месторождений (для золота – кварц, для платины – хромистый железняк и ток далее); обломки, валуны и т.д., попадающиеся в ложбинах рек; горные обнажения; минеральные источники; растительность. Полезные ископаемые имеют важнейшее значение в промышленности и хозяйстве. Наибольшее значение имеют уголь, нефть, газ, руды черных и цветных металлов, алмазы, золото.

Этот новый минерал называется метаморфитом или третичным минералом. Каждый камень является результатом долгого времени творения и возникал по-разному. В зависимости от условий, при которых образуются породы, проводится различие между магматическими, метаморфическими и осадочными породами.

Магматические породы - магматиты

Определение: магматические породы - это камни, которые выходят из магмы и лавы. В то время как магма относится к горячей, жидкой скале под поверхностью земли, магма, которая достигает поверхности земли, называется лавой. Камни магмы также называют интрузивными породами, плутоническими породами или плутоническими породами. С другой стороны, существуют экструзионные породы, также известные как эффузионные породы или вулканиты, которые образуются на поверхности земли. Промежуточное положение занято группой гангрены или субвулканитов, которые возникают, когда магма поднимается, как жила в существующих породах, где она остывает и обладает такими свойствами, как плутониты и вулканиты.

Генетическая классификация месторождений полезных ископаемых.

Процессы образования месторождений полезных ископаемых, как и все геологические процессы, могут быть разделены на эндогенные (внутри рожденные), протекающие за счет внутренней тепловой энергии земного шара, и экзогенные (извне рожденные), связанные с внешней солнечной энергией, получаемой поверхностью земного шара. В отдельную группу выделяют метаморфогенные месторождения полезных ископаемых, которые образуются в результате преобразования при определенных физико-химических условиях эндогенных и экзогенных месторождений. Таким образом, обобщенная схематическая классификация месторождений полезных выглядит следующим образом.

Образование как вулканитов, так и плутонитов - это образование: лава и магма, охлажденные ниже или выше поверхности земли, минералы кристаллизуются и затвердевают в когерентную смесь, называемую породой. Другая группа пород - осадочные породы. Определение. Осадочные породы также называют отложениями породы и являются результатом осаждения и затвердевания различных породообразующих материалов, но также могут быть результатом испарения.

Составные осадочные породы выветриваются, измельчаются породы и минералы, биогенные продукты, такие как раковины различных раковин, улитки и другие организмы. Во время его формирования постоянно осаждались новые материалы, нагрузка неуклонно возрастала - и поскольку этот процесс в основном делался в воде, вода была вытеснена из отложений. Процесс седиментации сравнительно «нежный», так что очень часто можно найти множество окаменелостей в осадочных породах. Также относится к осадочным веществам. Но появление отличается от появления других осадочных пород.

Эндогенные месторождения разделяются, учитывая характер физико-химической системы, породившей руду, на три категории:

Магматические месторождения, к ним относятся месторождения, образовавшиеся при процессах дифференциации и кристаллизации магмы непосредственно во вмещающих изверженных породах.

Пегматитовые месторождения. Пегматиты и находящиеся в них полезные ископаемые принадлежат к самостоятельной группе позднемагматических образований, формирующихся в самых завершающих ступнях отвердевания интрузивных массивов и располагающихся близ их кровли. Пегматиты образуют дайкообразные, линзообразные залежи и жилы. Характерными особенностями их являются: крупные и гигантские разметы зерен минералов; особая структура и текстура; сложные минеральные ассоциации.

Метаморфические породы - Метаморфит

Короче говоря, соль растворялась в воде во время ее образования. Например, вода испарялась в отдельных лагунах или на мелководных участках и оставалась в виде выпаренной соли каменного осадка. Образование метаморфитов, камней трансформации, совершенно иное. Не имеет значения, какой камень является исходным камнем.

Метаморфоза пород захватывает магматические породы, а также метаморфические и осадочные породы. В экстремальных условиях реагенты могут стать магмой. Минералы дифференцированы в магматические, метаморфические и осадочные минералы. Магматические минералы образуются на разных стадиях охлаждения из горячих расплавов жидких пород. Происхождение магмы либо сиалическое - материал поступает из земной коры расплавленных пород, либо из симатного материала из верхней мантии. В пределах магматических минералов происходит дифференциация между вулканическими породами, которые образуются на поверхности земли и плутонитами, которые образуются во внутренней части Земли.

Постмагматические месторождения. Эти месторождения всегда возникают позже тех пород, которые их вмещают. Они образуются под воздействием остаточных магматических расплавов. Постмагматические месторождения делятся на контактово-метасоматические (скарновые) месторождения и гидротермальные. Скарновые месторождения образуются на контактах интрузивных и вмещающих (чаще всего карбонатных) пород в результате воздействия газовых и гидротермальных растворов. Среди скарнов из рудных месторождений наиболее крупные по запасам – магнетитовые месторождения железных руд. Однако в общем балансе железорудных месторождений скарновый тип имеет подчиненное значение. Гидротермальные месторождения развиты значительно шире других генетических типов эндогенных месторождений и являются очень важными в практическом отношении. Гидротермальные месторождения создаются циркулирующими под поверхностью земли горячими минерализованными газо-жидкими растворами. Скопления полезных ископаемых гидротермального генезиса возникают как вследствие отложения минеральных масс в пустотах пород, так и в связи с замещением последних.

В зависимости от скорости охлаждения скального расплава и возможностей образования свободных кристаллов магматические минералы имеют разные размеры кристаллов. Из-за тектонических и вулканических процессов в глубине Земли расплавленная порода постоянно движется.

Это связано с химическими реакциями с окружающей средой, что приводит к изменчивости более поздних минералов. Уже на пути к земной поверхности происходит ступенчатая дифференциация и кристаллизация расплавленной породы. Характерными для этой фазы являются особенно плотные минералы, такие как, например, магнитный гравий, пентландит и ильменит. Прогрессивное и суровое размагничивание расплавленной породы приводит к тому, что минералы с более высокой плотностью снова опускаются и обнаруживаются только при воздействии скальных погодных условий или тектонических или вулканических процессов.

Экзогенные месторождения полезных ископаемых возникают в результате геологических процессов, протекающих в поверхностной зоне земной коры. Среди них выделяют:

- месторождения выветривания . Выветривание – процесс механического и химического разрушения горных пород под влиянием колебаний температуры, воды, газов, в результате деятельности растительных и животных организмов. Верхняя часть земной коры, где происходят процессы выветривания, называются корой выветривания. Накопление вещества полезного ископаемого в коре выветривания происходит двумя путями. Во-первых, вследствие растворения и выноса приповерхностными водами пустых горных пород, вещество полезного ископаемого накапливается в остатке. Во-вторых, в связи с растворением этими водами ценных компонентов горных пород, их инфильтрацией и переотложением в нижней части коры выветривания.

В пегматической стадии при температурах от 600 до 700 ° С большинство минералов кристаллизуется. Скандий, иттрий, лантан или тулий. Участками формирования кристаллов являются преимущественно полости горных пород или курсы сельбигера. Причина относительно позднего времени образования этих минералов - это содержащиеся элементы, атомы которых не могут быть интегрированы из-за размера кристаллов предыдущих фаз кристаллизации.

Высокая подвижность остаточного расплава из-за высокой доли воды и углекислого газа способствует образованию кристаллов в зазорах, коридорах, трещинах и пустотах окружающей породы. Ниже температуры 400 ° С водные растворы развиваются на гидротермальной стадии из расплавов, которые обогащены тяжелыми металлами и элементами. Если эти растворы проникают в каменные полости, то возникает локальное кристаллическое образование. Соответствующие заполняются или. Из-за давления внутри земной коры растворы, богатые жидкостью, способны подниматься в горных трещинах, охлаждаться в них и кристаллизоваться на месте.

- осадочные месторождения . Образование осадочных месторождений происходит по схеме: разрушение → перенос → отложение → диагенез. Осадочные месторождения образуются в поверхностных условиях, в водной среде, при температуре до 500 С°, при низком и среднем давлении. Выделяют механические осадочные месторождения, химические осадочные месторождения и биохимические осадочные месторождения. Механические осадочные месторождения образуются за счет материала, возникшего при физическом выветривании. При переносе взвешенное вещество осаждается последовательно в зависимости от формы, размера частиц, их удельного веса, скорости и массы водного потока; этот процесс называется механической дифференциацией осадков. Среди механических осадков выделяют месторождения обломочных пород и россыпи. Химические осадочные месторождения образуются в поверхностных условиях на дне морских, озерных водоемов и болот за счет минеральных веществ, находившихся ранее в растворенном состоянии в воде. Источником для образования месторождений является морская вода, а также продукты химического выветривания горных пород и руд. Растворенные вещества отлагаются на дне водоемов в виде химических осадков путем кристаллизации из истинных растворов или коагуляции из коллоидных растворов. Биохимические осадочные месторождения возникают в результате жизнедеятельности организмов, которые концентрируют в себе большое количество тех или иных элементов. К этому генетическому типу относятся месторождения известняков, диатомитов, серы, фосфоритов и каустобиолиты.

Наличие тяжелых металлов в растворах приводит к образованию вен по этому пути. Если раствор все больше и больше проникает в окрестности земной поверхности и встречает просачивающуюся поверхностную воду, создается горячая минеральная пружина. Характерными минералами гидротермальной стадии являются, например, различные медные руды и магнитный гравий. В то время как магматические минералы считаются первичными минералами, метаморфические и осадочные минералы являются вторичными минералами, так как они являются результатом более позднего изменения первичных минералов.

Метаморфогенные месторождения. Они разделяются на:

- метаморфизованные месторождения образуются при процессах регионального и термального контактового метаморфизма за счет ранее существовавших месторождений полезных ископаемых. При этом форма, состав и строение тел полезных ископаемых приобретают метаморфические признаки, но не изменяется промышленное применение минерального сырья. К этому типу относятся месторождения металлических полезных ископаемых – железа, марганца, золота и урана, реже неметаллов – апатита, графита наждака и других.

Минералы осадочного происхождения

Осадочные минералы - это минералы, которые являются результатом выветривания горных пород или минералов, их осаждения или из насыщенных растворов, локально, автохтонных или смещенных аллохтонных - таких как карналлит, уксексит, алебастр, бура, ангидрит и галит.

Минералы и породы подвержены химическому и физическому выветриванию, как только они достигают поверхности Земли, степень которой зависит от местных климатических условий. Некоторые особенно твердые минералы характеризуются особенно высокой устойчивостью к атмосферным воздействиям. Эти минералы, отстоящие от коренных пород, транспортируются водой и ветром. Обогащение происходит в другом месте, например, в виде мыльных отложений, платины или олова.

- метаморфические месторождения возникают в процессе метаморфизма горных пород, не представляющих до этого промышленной ценности, за счет перегруппировки минерального вещества. Представлены преимущественно неметаллическими полезными ископаемыми. Известны метаморфические месторождения мраморов, кварцитов, яшм, андалузита, ставролита, графита и других.

Частично растворенные минералы достигают моря или озер и кристаллизуются при испарении. Известные эвапориты представляют собой известняковые и солевые отложения оболочки, что также может быть результатом испарения растворенных в минеральных компонентах.

Затем вновь образованный минерал имеет кристаллическую решетчатую структуру, оптимально адаптированную к измененным условиям окружающей среды. По существу, минералы расплавляются с последующим уплотнением и перекристаллизацией; с или без подачи и удаления химических элементов.

Магматогенные месторождения

Магматогенные месторождения (глубинные и эндогенные), залежи полезных ископаемых, источником минеральных веществ которых служит магма; образуются при обособлении магматических расплавов, газообразных и жидких минеральных растворов в процессе остывания и кристаллизации магмы в недрах Земли. Выделяют магматические пегматитовые, карбонативные, скарновые, гидротермальные магматогенные месторождения.

Различия встречаются в метаморфических минералах между метаморфическими и метаморфизованными минералами. А. в региональных метаморфозах. Метаморфизованные отложения характеризуются отсутствием изменения химического состава минералов. Прежде всего, условия высокого давления и температуры контактной метаморфозы требуют дренажа минералов, которые окончательно изменены.

Например, этот путь развивается и исходит из бокситов. Силлиманит, Зайфертит или Перовскит. Создавали ли они одновременно с Землей? Они были подделаны в звездах? Они происходят из кометы? Ответ более прозаичен: минералы Земли происходят от всех нас, то есть от всей жизни планеты.

Гипогенные месторождения – гипогенные месторождения, магматогенные месторождения, эндогенные (рожденные внутри) месторождения, месторождения полезных ископаемых, связанные с геохимическими процессами глубинных частей земной коры и подкорового материала. Местом их локализации служат глубинные геологические пласты.

Магматические горные породы образуются при застывании природных силикатных растворов сложного состава (магм, лав). Они слагают более 60 % объема земной коры.

Хотя верно, что в изначальной пыли, которая позже будет преобразована в Солнечную систему, было едва дюжина полезных ископаемых, в настоящее время в Земле содержится около 300 различных минералов. Хороший толчок к общему количеству минералов имел место с огромным количеством тепла и давления, которое было вызвано трением вновь образованных тектонических плит земной коры, подобно гигантской и разрушительной алхимической печи.

Но тогда эта цифра составляла около тысячи минералов. Все еще существовало растяжение до 300. И вот, около четырех миллиардов лет назад на Земле появилась жизнь. Микроскопические водоросли начали использовать солнечный свет для преобразования углекислого газа, из которого большая часть атмосферы была скомбинирована в углеводы, чтобы кормить. Процесс превращал кислород в качестве отходов.

Пластинообразные геологические тела, образовавшиеся в результате осаждения минерального вещества или остывания магмы в трещинах земной коры – это жилы. В трещинах из глубоких недр могут проникать расплавленные магматические массы, водяные пары и различные газы или горячие водные растворы. В соответствии с этим жилы разделяют на пегматитовые, пневматолитовые и гидротермальные.

Пегматитовые образуются в результате заполнения трещин минералами, которые выделились при остывании магмы, обогащенной летучими компонентами (парами воды, газами).

Пневматолитовые возникают, когда процесс минералообразования происходит из летучих соединений, выделившихся из магмы и поступающих в трещины земной коры.

Гидротермальные образуются при заполнении трещин минералами, выпавшими в осадок из горячих водных растворов.

В жилах встречается большое количество минералов. Многие из них имеют практическое значение: их используют в качестве полезных ископаемых.

В пегматитовых жилах содержится кварц, полевые шпаты, слюда, горный хрусталь, драгоценные камни(топаз, берилл, изумруд), а также минералы содержащие радиоактивные и редкоземельные элементы.

В пневматолитовых жилах содержатся, например, топаз, флюорит, вольфрамит, молибденит.

С гидротермальными жилами связаны месторождения рудных минералов: галенита, сфалерита, халькопирита, а также золота, серебра.

Магматические месторождения.

Горные породы, образованные из магмы, называются магматическими. Породы магматического происхождения слагают более 60% объема земной коры. Они весьма разнообразны по условиям залегания, строению, химическому и минералогическому составу. Магматические горные породы – не случайные смеси минералов, а закономерные их ассоциации. По генезису минералы изверженный пород можно разделить на минералы главной фазы магматической кристаллизации и эпимагматические, т.е. послемагматические. Минералы главной фазы магматической кристаллизации образуют основную массу горной породы. Строение магматических горных пород определяется условиями образования. Эффузивные горные породы образуются в условиях быстрого застывания на поверхности Земли или вблизи нее. В зависимости от скорости застывания в эффузивной породе могут присутствовать участки нераскристаллизованного магматического вещества в виде силикатного стекла. Сравнительно неглубокие магматические внедрения застывают быстрее глубоко залегающих интрузий и вследствие этого кристаллизуются в менее благоприятных условиях. Текстура магматических пород также дает указания на условия их образования. Породы, возникшие из относительно медленно застывших и активно перемещавшихся лав, сохраняю признаки в виде закономерной ориентировки удлиненных кристаллов в стекловатой массе. Магматические породы, образованного из однотипного расплава и имеющие одинаковый химический состав, в зависимости от условий застывания заметно различаются по структурно-текстурным признакам и форме залегания. В каждой группе пород выделяют интрузивные породы – глубинные и полуглубинные, эффузивные породы, подразделяемые на относительно неизменные и заметно измененные.

При образовании магматических горных пород возникают месторождения определенных полезных ископаемых. Они залегают главным образом среди изверженных горных пород и образуются в процессе дифференциации и кристаллизации магма при температуре около 800-1500С° и давлении в сотни атмосфер. Месторождения полезных ископаемых собственно магматического происхождения встречаются преимущественно в массивах ультраосновных и основных изверженных пород. Таковы месторождения хромов, минералов группы платины, сульфидов железа, никеля, меди и кобальта, титаномагнетитов, алмазов, графита, апатита, некоторых редкометалльных минералов. Типичным примером являются известные медно-никилевые месторождения Мончегорского района на Кольском полуострове. В результате разделения исходной магмы на силикатную и сульфидную в породах ультраосновного и основного составов обособились скопления сульфидов. Их крупные массы благодаря своему большому весу сконцентрированы в нижней части массива изверженных пород, внедрившихся в толщу гнейсов. Часть сульфидного расплава была отжата в трещины в верхней части массива. Такое же происхождение имеют медно-никелевые сульфидные месторождения Норильска, а в Канаде – крупнейшее месторождение Садбери. Другие месторождения магматического месторождения – месторождения хромитов на Урале, в Южной Африке, Турции и в других местах. Магматическое происхождение также имеют титано-магнетитовые месторождения Урала. Оригинальный тип магматических месторождений это трубки взрыва, заполненные раздробленной ультраосновной породой (кимберлитом), содержащей алмазы. Такие месторождения были открыты в Южной Африке, в Якутии. Магматические месторождения в изверженных породах кислого и среднего состава встречаются значительно реже. Наиболее известный пример – крупнейшее месторождение магнетитовых руд Каруна – Северная Швеция, которое рассматривают как продукт дифференциации сиенитовой магмы. В некоторых случаях граниты могут быть обогащены ценными редкометалльными минералами. Так в Северной Нигерии разрабатывают граниты, обогащенные колумбитом, цирконом и другими. С дифференциацией щелочных магм связаны месторождения апатита и некоторых редкометалльных минералов. Наиболее яркий пример – уникальное Хабинское месторождение апатитов, залегающие в массиве нефелиновых сиенитов.

Пегматитовые месторождения.

Наиболее характерным образованием магматизма являются пегматиты – крупнозернистые породы, состав которых близок к материнской интрузии, но обычно отличается повышенным содержанием летучих компонентов – фтора, лития, бериллия, воды. Разработаны оригинальные представления о пегматитах как о промежуточных образованиях между изверженными горными породами и рудными жилами. Остаточный магматогенный газовый раствор, проникая по трещинам в породу, способствует ее перекристаллизации с образованием крупнокристаллической структуры. Раствор координирует имеющиеся минералы, на место которых выпадают новые. Следовательно, пегматиты рассматриваются как перекристализованные участки материнских пород. Наиболее распространены пегматиты гранитов и гранодиоритов, хотя известны пегматиты, генетически и пространственно связанные с интрузиями щелочных, ультраосновных и основных магм. Пегматиты образуют жилы, линзовидные и неправильной формы тела. Мощность их колебания от 1 до 20-30 м, протяженность – от нескольких метров до 300-500м. Часто многие десятки и сотни этих тел группируются в большие по площади пегматитовые поля. Такие образования известны в Карелии, Юго-Восточном Забайкалье и других местах. Пегматитовые тела имеют зональное строение, причем от периферии к середине структура становится более крупной, а в центральной части имеются полости (занорыши), в которых образуются крупные кристаллы. Подавляющая часть пегматитов образовались в глубинных условиях при высоких давлениях. Характерными особенностями их являются:

а) крупные и гигантские размеры зерен минералов;

б) особая структура и текстура, выражающаяся часто в закономерном срастании минералов и зональном строении пегматитовых тел;

в) сложные минеральные ассоциации, среди которых значительное место занимают минералы с легколетучими компонентами и редкими металлами.

В пегматитах Норвегии обнаружены кристаллы ортоклаза величиной 10×10 м² и массой 100 т, а на Урале была целая каменоломня, расположенная в кристалле амазонита. Пластины слюды в пегматитах достигают величины 5-7 м, в пегматитах Волыни был обнаружен кристалл морина более 2 м. В виде гигантских кристаллов встречаются не только распространенные, но и редкие минералы. В пегматитах США встречались кристаллы берилла длинной 5,5 м, толщиной 1,2 м, массой 18 т (штат Мэн) и кристаллы сподумена длиной 12,8 м, шириной до 2 м, массой около 100 т (штат Южная Дакота). В пегматитах Бразилии был найден кристалл топаза в 117 кг и кристалл аквамарина длиной 47 см.

Постмагматические или метосамотические месторождения.

Постмагматические месторождения всегда возникают позже тех пород, которые их вмещают. Образуются под воздействием остаточных магматических расплавов. Процесс рудообразования происходит на глубинах от 300 до 4500 м от поверхности. На контактах интрузивных массивов в условиях воздействия высокой температуры и подвижных компонентов происходит глубокое преобразование вмещающих пород, сопровождающееся их перекристаллизацией и образованием серии специфических минералов. Для контактового минералообразования исключительно важное значение имеют явления метосамотоза, которые именно здесь поучают наиболее яркое выражение. Легкоподвижные компоненты, в виде газов и растворов поступающие из остывающего интрузивного массива, в результате взаимодействия с этими легко реагирующими породами образуют мощные метасоматические тела, которые называют скарнами. Минералогический состав скарнов весьма своеобразен. Преобладающие минералы в них – кальциевые гранаты (обычно андрадит, реже гроссуляр), кальциевые пироксены (диопсид); распространены также лучистые роговые обманки, кальцит, кварц, хлорит, магнетит, гематит, сульфиды и многие другие. Иногда заметно зональное строение скарнов. В непосредственной близости от интрузивного тела скарны сложены наиболее высокотемпературными минералами, магнетитом, гематитом, андрадитом. От интрузива преобладают эпидот, лучистые амфиболы, хлориты, сульфиты. Для периферических участков типичны кварц, кальцит, иногда флюорит и барит.

Со скарнами связаны многочисленные рудные месторождения меди, свинца и цинка, молибдена и вольфрама, кобальта и других металлов. Широкой известностью пользуются железорудные скарновые месторождения Урала – горы Магнитная, Благодать. Скарновым является также крупное молибденово-вольфрамовое месторождение Тырныауз на Северном Кавказе. Среди скарнов из рудных месторождений наиболее крупные по запасам – магнетитовые месторождения железных руд это Кустанайские, Уральские, Горно-Шорские и другие. Скарновые полиметаллические месторождения представлены линзами, гнездами и вкрапленностью сульфидов свинца и цинка, среди пироксен-гранатовых скарнов месторождения Далтнегорское в России и Франклин-Ферное в США. Из золоторудных месторождений Синюхинское в Горном Алтае и Натальевское в Кузнетском Алатау.

Гидротермальные месторождения.

Процессы, совершающиеся под воздействием остаточных магматических растворов, в условиях более низких температур называются гидротермальными. Гидротермальные минеральные образования, несмотря на значительно меньшую их массу по сравнению с магматическими горными породами, имеют весьма важное значение, так как с ними связано образование месторождений важнейших полезных ископаемых, главным образом руд цветных, благородных и редких металлов. Среди гидротермальных образований, формирующихся на значительной глубине, до 5 км, довольно четко различают высоко- и низкотемпературные.

Для высокотемпературной стадии глубинного гидротермального процесса характерно образование штокверков. Они представляют собой сложную систему ветвящихся трещин небольшой мощности, заполненных гидротермальными минералами. Штокверки в плане достигают 1 км и более. Глубинные высокотемпературные гидротермальные процессы образуют крупные жилы, линзы, пластообразные метасоматические залежи. Основной жильный материал – кварц. В значительном количестве встречаются турмалин, мусковит, флюорит, топаз, берилл. Среди рудных минералов типичны золото, молибден, висмутин, пирротит, пирит, гематит, вольфрамит и другие. Минеральные образования гидротермального типа сопровождаются разными рудными месторождениями. Таковы кварцево-золоторудные месторождения Урала и северо-востока России, кварцево-касситеритовые месторождения Рудных гор (в Чехии) и кварцево-турмалиново-касситеритовые и касситеритово-сульфидные месторождения Восточной Сибири, Корнуэлла в Великобритании, кварцево-молибденовые и вольфрамовые месторождения Забайкалья, кварцево-вольфрамовые месторождения Португалии, юго-востока Азии и Забайкалья. Типичным примером месторождений данного типа является кварцево-вольфрамовое Джидинское месторождение в Бурятии. Месторождение представлено системой кварцево-гюбнеритовых жил с сульфидами.

Более низкотемпературные глубинные гидротермальные образования представлены преимущественно жилами или телами неправильной формы, возникшими в процессе инфильтрационного метасоматоза. Для относительно низкотемпературных гидротермальных месторождений характерны менее интенсивные околожильные изменения, чем для высокотемпературных. Здесь в зонах околожильных изменений развиваются мелкочешуйчатые светлые слюды, кварц, хлориты, карбонаты. Типичные представители гидротермальных образований этого типа – месторождения колчеданных руд Среднего Урала, а также полиметаллических (свинцово-цинковых с примесью серебра) руд Алтая, Кавказа (Садонское месторождение) и Забайкалья. Наиболее низкотемпературными считаются сурьмяные и ртутные месторождения. Их примерами являются крупнейшее в мире месторождение киновари Альмаден (Испания) и месторождение Хайдаркен в Средней Азии. Они представлены кварцево-кальцитовыми, местами с флюоритом, жилами, содержащими одну киноварь или антимонит и киноварь. К этой группе также относится Никитовское месторождение киновари (Донбасс). Гидротермальные месторождения, сформированные на небольшой глубине (менее 1 км), но в широком температурном интервале, отличаются разнообразием минерального состава и обычно залегают среди эффузивных пород или малых интрузий. Формы рудных тел и их вещественный состав разнообразны. В высокотемпературных гидротермальных месторождениях малых глубин встречаются совместно такие минералы, как турмалин, вольфрам и касситерит, с одной стороны, и халцедон, сфалерит, галенит - с другой. Высокотемпературные гидротермальные образования малых глубин наиболее хорошо представлены олово-вольфрамово-серебрянными месторождениями Боливии. Примером может служить известное месторождение Потоси, в котором на протяжении нескольких веков добывали серебро. В этом месторождении среди рудных минералов присутствуют как высокотемпературные (касситерит, вольфрамит), так и низкотемпературные минералы сурьмы и серебра. В России к этому типу относится свинцово-оловорудное месторождение Хрустальное Приморского края, в котором руды состоят из касситерита, галенита и других сульфидов. Низкотемпературные минеральные образования этого типа формируются в настоящее время в районах активного вулканизма, осаждаясь из сольфатар, гейзеров и прочих горячих источников. Известно осаждение реальгара и аурипигмента в отложениях гейзеров Йеллоустонкого национального парка США, в отложениях сольфатар Италии, горячих источников на Камчатке.

Экзогенные месторождения – выветривания.

Экзогенные месторождения полезных ископаемых возникают в результате геологических процессов, протекающих в поверхностной зоне земной коры. Среди них выделяют месторождения выветривания и осадочные месторождения.

Процессы изменения горных пород на поверхности Земли под влиянием непосредственного влияния солнечных лучей, колебаний температуры воздуха, замерзающей в пустотах горных пород воды, кислорода, углекислоты, а также организмов населяющих поверхность Земли и самую верхнюю часть земной коры, объединяют под общим понятием «выветривание».

Выветривание – процесс механического и химического разрушения горных пород под влиянием колебаний температуры, воды, газов, в результате деятельности растительных и животных организмов.

Верхняя часть земной коры, где происходят процессы выветривания, называется корой выветривания. Процесс выветривания очень сложен и включает многочисленные частные процессы и явления – механические, физико-химические, химические и биогеохимические. Состав продуктов выветривания в значительной мере обусловлен минералогическим составом исходных горных пород. При выветривании происходит не только разрушение первичных минералов, но и возникновение еще более многочисленных новых, гипергенных. Большая часть глинистых минералов, многочисленные сульфаты, карбонаты, минералы оксидов железа, алюминия, марганца, титана и многие другие имеют гипергенное происхождение. Выветривание нельзя рассматривать только как процесс разрушения горных пород. Процесс выветривания может прерваться на любой стадии первичной минерализации и образования коры выветривания, в связи с неблагоприятным изменением физико-географических условий или под воздействием геологических событий (например, тектонитовое поднятие территории, сопровождаемое эрозией коры выветривания, или наоборот, опусканием региона и захоронение коры выветривания под осадками). Следовательно, очень древняя кора выветривания может быть неполно развитой, а геологически более молодая кора, развивавшаяся на протяжении более длительного времени, может оказаться более хорошо сформированной.

Карбонатные коры образование, которых происходило в условиях жарких аридных ландшафтов, вероятно, в переменно-влажном климате. Карбонатная кора сложена скрытокристаллическим кальцитом, масса которого плотно цементирует обломки окружающих пород. На отдельных участках эта кора представлена скоплениями конкреций, имеющих разную форму и размеры от нескольких сантиметров до 0,5 м. Карбонатные коры широко распространены в странах Ближнего Востока, в Северной Африке, Мексике, местами встречаются в Южной Европе. Реликты карбонатных кор имеются в Средней Азии, Южном Казахстане, Крыму. Гипсовая кора сложена мелкокристаллическими или шестоватыми кристаллами гипса. Текстура ее плотная или рыхлая, ноздреватая. Эта кора встречается во многих засушливых областях Азии и Северной Африки. Фрагменты гипсовой коры сохранились в некоторых районах Северной Азии и Казахстана. Особенно большую площадь она занимает на Устюрте.

С корами выветривания связаны разнообразные месторождения полезных ископаемых, в том числе весьма крупных. Известное железорудное месторождение Курской магнитной аномалии, представляет собой в верхней, наиболее богатой части древнюю, раннепалеозойскую кору выветривания магнетитсодержащих кварцитов. В мезозойской коре выветривания Южного Урала имеются крупные залежи никелевых и железных легированных руд, а также каолинита. Во многих странах известны месторождения бокситов, образовавшихся при выветривании горных пород силикатного состава. Особенно благоприятны для этого нефелиновые сиениты.

В гумидных ландшафтах обильные кислые растворы фильтруются вниз, растворяя рудные минералы. Вверху в результате окисления и гидролиза железа, которые образуют железную шляпу, как бы прикрывающую месторождения. Под железной шляпой может образоваться горизонт, из которого полностью выщелочены руды и где сохранилась лишь «сыпучка» из устойчивых минералов (кварца, барита). В зависимости от конкретных географических условий, строения месторождения и состава руд кора выветривания имеет различные горизонты. Так, для рудных месторождений Казахстана типичны горизонты богатых окисленных руд и вторичного сульфидного обогащения. На медно-колчеданных месторождениях Урала кора выветривания представлена мощной железной шляпой и горизонтом выщелачивания (сверху кварцево-баритовая, снизу колчеданная «сыпучка»), а зона вторичного обогащения слабо выражена. В резко аридных ландшафтах пустыни Атакама (Чили) кора выветривания рудных месторождений отличается мощным горизонтом сульфатов. Сравнительно молодая кора выветривания месторождений Кавказа плохо выражена. В лесных ландшафтах умеренного пояса возникают новообразования гидрогетита и псиломелана; в степных – кальцита; в пустынных – гипса.

Осадочные месторождения.

Поверхностная толща литосферы на 80% сложена осадочными горными породами (95% из них имеют морское происхождение). Они сформировались на поверхности Земли в результате накопления минеральных масс, образовавшихся в процессе разрушения существовавших горных пород. Процессы разрушения и накопления новых горных пород на поверхности Земли идут повсеместно: в пустынях, на дне морей и океанов, в речных долинах, горных областях. Условия образования накладывают существенный отпечаток на их облик. В одних случаях осадочные породы состоят из обломков разрушающихся пород, в других – из скопления органических остатков, в третьих – из кристаллических зерен, выпавших из водных растворов. Осадочные горные породы по происхождению делятся на три группы: обломочные, образовавшиеся в процессе механического накопления обломков ранее существовавших пород; химические, образовавшиеся при выпадении осадков из растворов; породы биохимического происхождения.

Механические осадочные месторождения образуются за счет минерала, возникшего при физическом выветривании. При переносе взвешенное вещество осаждается последовательно в зависимости от формы, размера частиц, их удельного веса, скорости и массы водного потока; этот процесс называется механической дифференциацией осадков. Среди механических осадков условно выделяют месторождения обломочных пород (валуны, галечники, гравий, пески, глины) и россыпи (золота, алмазов, платины и других).

Механические обломочные месторождения образуются под действием водных потоков в долинах рек, озерных и прибрежных зон морей, причем, в последнем случае они являются, обычно более крупными и качественными. Основная масса осадочного материала поступает в виде твердых частиц разного размера (обломков горных пород и минералов) и в растворенном состоянии. Для литоральной зоны участки, покрытые илистыми осадками, на небольшом расстоянии сменяются скоплениями песка, гальки и валунов. Могут образовываться обильные аккумуляции обломков раковин, в значительном количестве здесь накапливаются отмершие водоросли.

Россыпями, или россыпными месторождениями, называются скопления обломочного материала, содержащие ценные устойчивые минералы с большим удельным весом. Разрабатывают россыпи золота, касситерита, вольфрама, циркона, алмазов и других. В нашей стране широко известны россыпи месторождения золота на Южном Урале, в Сибири, на северо-востоке страны, а за границей – на Аляске, в Калифорнии (США), Восточной Австралии и многих других местах. Большая часть россыпей золота приурочена к аллювиальным отложениям. В строении россыпи выделяют плотик, пласт и торфа. Пласт – это аллювиальные отложения, содержащие россыпное золото. Плотик – основание, на котором залегает пласт. На поверхности плотика часто образуются трещины и карманы, обогащенные золотом. Торфа – условное название пустой толщи, покрывающей золотоносные отложения. Золото в россыпях присутствует в виде мелких пластинок разной формы, обычно уплощенных и сглаженных. Мировой известностью пользуются россыпи касситерита на Малаккском полуострове и островах Банка и Белитунг в Индонезии, монацита в прибрежных песках Бразилии и Индии, алмазов в Южной Африке, танталита и колумбита в Нигерии и Заире.

Химические осадочные месторождения образуются в поверхностных условиях на дне морских, озерных водоемов и болот за счет минеральных веществ, находившихся ранее в растворенном состоянии в воде. Источником для образования месторождений является морская вода, а также продукты химического выветривания горных пород и руд. Растворенные вещества отлагаются на дне водоемов в виде химических осадков путем кристаллизации из истинных растворов или коагуляции из коллоидных растворов. Для образования соляных месторождений требуется существование барров, создающих узкие заливы, через которые проходит ограниченное количество морской воды. Второе необходимое условиеприродный климат в районе залива, при котором испарение воды в заливе превышает ежегодный приток воды через барр. На месторождениях солей рудные тела представлены пластовыми залежами, а в складчатых областях антиклинальными, синклинальными складками и соляными куполами. Минеральный состав залежей – гипс, ангидрид, калийные, магнезиальные соли, бораты. Попутно с солями извлекаются и соединения редких металлов: цезия, рубидия и других. В России наиболее крупные месторождения – в Иркутской области (Усолье), в Забайкалье и в Якутии. Месторождения химических осадков из коллоидных растворов образуют скопления руд железа, марганца, алюминия и других. Морские месторождения геосинклинального типа залегают среди известняков и имеют форму пластов. К этому типу относятся отдельные месторождения Северного Урала, Боксонское в Красноярском крае, некоторые месторождения Салаирского кряжа и другие. Озерные и долинные месторождения бокситов расположены на платформах и образованы в небольших континентальных озерах. Линзовидные и неправильные по форме залежи боксидов залегают среди песчано-глинистых отложений.

Биохимические осадочные месторождения возникают в результате жизнедеятельности организмов, которые концентрируют в себе большое количество тех или иных элементов. К этому генетическому типу относятся месторождения известняков, диатомитов, фосфоритов и каустобиолитов. Органогенные известняки образуются при накоплении и уплотнении скелетов морских животных. Осадочные месторождения серы образуются при восстановлении сульфатов биохимическим путем. Месторождения фосфоритов – за счет больших скоплений фосфатных (отмерших) организмов. Осадочные морские месторождения фосфоритов по условиям образования делятся на платформенное и геосинклинальное. Платформенные месторождения, в образовании которых организмы играют основную роль, занимают значительные площади, но отличаются небольшой мощностью. Геосинклинальные месторождения фосфорита, в образовании которых решающую роль играли процессы осадочной химической дифференциации, имеет пластовую форму, сложные условия залегания.

Месторождением называется естественное скопление полезного ископаемого в земной коре, по количеству, качеству и условиям залегания пригодное для промышленного освоения .
- природное минеральное образование земной коры неорганического и органического происхождения. которое может быть с достаточным экономическим эффектом использовано в сфере материального производства.

Каменный уголь - твердое горючее полезное ископаемое растительного (частично животного) происхождения, содержащее некоторое количество минеральных примесей; в земной коре залегает пластами.
Угольным пластом принято называть геологическое тело, сложенное однородной осадочной породой, ограниченное двумя приблизительно параллельными поверхностями и занимающее значительную площадь. (или залежь угля иной формы) имеет три измерения: длину, ширину и толщину которые называют соответственно его простиранием, падением и мощностью. Кроме того, различают линию простирания, линию и угол падения пласта.

Линией простирания называют линию, образующуюся при пересечении поверхности (кровли млн почвы) пласта с горизонтальной плоскостью (АБ, рис. 1.1, а).
Простирание пласта (залежи) определяется направления линии простирания.

Азимут - угол между плоскостью магнитного меридиана в заданной точке, лежащей в пределах месторождения, и вертикальной плоскостью, проходящей через данную точку и линию простирания (рис. 1.2). Азимут отсчитывается от магнитного меридиана по часовой стрелке.
Падение пласта или его наклон к горизонтальной плоскости измеряется углом падения а, образованным линией падения и ее проекцией на эту плоскость (см. рис. 1.1, а).
Все пласты в период своего образования залегали в земной коре более или менее горизонтально. Затем под действием тектонических процессов они собирались в складки, крылья которых располагались под любыми углами падения (от 0 до 90°) и даже были опрокинуты, т. е. заняли такое положение, при котором породы, образовавшиеся ранее, оказались расположенными выше пород более позднего происхождения.
Положение пласта (залежь угля ) в толще пород определяется элементами залегания в данной точке с координатами х, у, г (простиранием, азимутом), падением (углом падения) и мощностью пласта , а также глубиной залегания, т. е. расстоянием по вертикали от земной поверхности до кровли пласта (змоалежи).
По углу падения пласты в соответствии с ПТЭ (Правила технической эксплуатации угольных и сланцевых шахт) делят на четыре группы: пологие с углом падения до 18°, наклонные- от 18 до 35°; крутонаклонные - от 35 до 55° и крутые - от 55 до 90°.
Выше и ниже угольного пласта залегают вмещающие горные породы. Толща пород, залегающих над пластом полезного ископаемого, называется кровлей пласта, а залегающая под пластом - почвой пласта.
Расстояние между почвой и кровлей пласта по нормали называется мощностью пласта m (см. рис. 1.1, б). По мощности пласты разделяют на четыре группы: весьма тонкие мощностью до 0,7 м; тонкие - от 0,71 до 1,2 м; средней мощности - от 1,21 до 3,5 м и мощные - свыше 3,5 м.
Различают пласты простого и сложного строения. Пласт простого строения состоит из полезного ископаемого (см. рис.1.1, б).
В пласте сложного строения уголь разделяется на отдельные слои (пачки) прослойками породы (см. рис. 1.1, в). Пласты сложного строения имеют полную и полезную мощность. Мощность пласта вместе с находящимися в нем прослойками породы называют полной мощностью. Полезная мощность пласта равна его полной мощности, за вычетом суммы мощностей всех прослойков породы. Суммарную мощность пачек полезного ископаемого и прослойков породы, фактически вынимаемых при разработке, называют вынимаемой мощностью пласта .
Часть пласта, выходящую на земную поверхность или находящуюся неглубоко от нее под наносами, называют выходом пласта или хвостом его. Пласт на выходах на большую или меньшую глубину обычно является некондиционным вследствие ухудшения качества угля из-за его окисления. Несколько пластов каменного угля, залегающих в определенной толще вмещающих пород, составляют свиту.