Д.Ю. Пущаровский, Ю.М. Пущаровский (МГУ им. М.В. Ломоносова)

Состав и строение глубинных оболочек Земли в последние десятилетия продолжают оставаться одной из наиболее интригующих проблем современной геологии. Число прямых данных о веществе глубинных зон весьма ограниченно. В этом плане особое место занимает минеральный агрегат из кимберлитовой трубки Лесото (Южная Африка), который рассматривается как представитель мантийных пород, залегающих на глубине ~250 км. Керн, поднятый из самой глубокой в мире скважины, пробуренной на Кольском полуострове и достигшей отметки 12 262 м, существенно расширил научные представления о глубинных горизонтах земной коры - тонкой приповерхностной пленке земного шара. Вместе с тем новейшие данные геофизики и экспериментов, связанных с исследованием структурных превращений минералов, уже сейчас позволяют смоделировать многие особенности строения, состава и процессов, происходящих в глубинах Земли, знание которых способствует решению таких ключевых проблем современного естествознания, как формирование и эволюция планеты, динамика земной коры и мантии, источники минеральных ресурсов, оценка риска захоронения опасных отходов на больших глубинах, энергетические ресурсы Земли и др.

Лэй - профессор наук о Земле в Университете Калифорнии, Санта-Крус, где он также является директором Института геофизики и физики планет. Его специальность - изучение землетрясений и структуры внутреннего пространства Земли. Самые глубокие скважины проходят всего несколько километров в Землю. Моя шахта - самое глубокое место, где человек может попасть на Землю, и, хотя это довольно невероятно там, даже находясь глубоко в золотой руднике, нет большой информации о том, что Земля находится на сотни или тысячи километров ниже поверхности.

Элиза на глубине около 5 км в золотой руднике к югу от Йоханнесбурга, Южная Африка. Поскольку мы не можем попасть в центр Земли, мы должны полагаться на косвенные наблюдения за материалами интерьера. Эти наблюдения в основном происходят из сейсмических волн. Когда происходит землетрясение, энергия излучается из места землетрясения в волнах которые проходят через Землю и достигают сейсмометров на некотором расстоянии от источника. Скорость этих волн через Землю контролируется свойствами материала, который проходят волны.

Сейсмическая модель строения Земли

Широко известная модель внутреннего строения Земли (деление ее на ядро, мантию и земную кору) разработана сейсмологами Г. Джеффрисом и Б. Гутенбергом еще в первой половине XX века. Решающим фактором при этом оказалось обнаружение резкого снижения скорости прохождения сейсмических волн внутри земного шара на глубине 2900 км при радиусе планеты 6371 км. Скорость прохождения продольных сейсмических волн непосредственно над указанным рубежом равна 13,6 км/с, а под ним - 8,1 км/с. Это и есть граница мантии и ядра .

Измеряя время, которое требуется для получения различных волн от землетрясение к данному сейсмометру, ученые могут оттолкнуть, какими должны были быть свойства материала вдоль пути волны. Прохладное историческое примечание: основные границы интерьера Земли были обнаружены сейсмологами.

Из-за внезапного скачка скорости волны он смог сделать вывод о том, что на этой глубине должно быть изменение состава в породах. Граница между земной корой и мантией обычно известна как «Мохо», так как большинству ученых было трудно найти специальные символы, необходимые для правильного написания фамилии Мохоровича.

Соответственно радиус ядра составляет 3471 км. Верхней границей мантии служит сейсмический раздел Мохоровичича (Мохо , М), выделенный югославским сейсмологом А. Мохоровичичем (1857-1936) еще в 1909 году. Он отделяет земную кору от мантии. На этом рубеже скорости продольных волн, прошедших через земную кору, скачкообразно увеличиваются с 6,7-7,6 до 7,9-8,2 км/с, однако происходит это на разных глубинных уровнях. Под континентами глубина раздела М (то есть подошвы земной коры) составляет первые десятки километров, причем под некоторыми горными сооружениями (Памир, Анды) может достигать 60 км, тогда как под океанскими впадинами, включая и толщу воды, глубина равна лишь 10-12 км. Вообще же земная кора в этой схеме вырисовывается как тонкая скорлупа, в то время как мантия распространяется в глубину на 45% земного радиуса.

Сейсмические волны не являются единственным способом, с помощью которого ученые пытаются выяснить свойства внутренней части Земли. Некоторые геофизики пытаются имитировать условия на глубине Земли путем нагревания и сжимания вероятных комплексов минералов, чтобы увидеть, как они ведут себя под сильным давлением и температурой режимы нижней мантии и ядра. Один из способов это делается в ячейке с алмазной наковальней. Посмотрите фотографии одного из них ниже. Геохимическая теория также предсказывает состав мантии и ядра.

Метеориты дают нам информацию о составе ранней солнечной системы, и многие из них были датированы более старыми, чем самые старые земные породы на Земле. Углеродистые хондриты, как и на фотографии ниже, представляют собой особый класс метеоритов. Геологи считают, что они представляют собой состав всей Земли. Итак, анализируя элементы, содержащиеся в одном из этих метеоритов, мы должны иметь возможность отбросить состав нашей планеты. Метеориты говорят нам, что на Земле должно быть намного больше железа и никеля, чем то, что мы наблюдали в земной коре.

Но в середине XX века в науку вошли представления о более дробном глубинном строении Земли. На основании новых сейсмологических данных оказалось возможным разделить ядро на внутреннее и внешнее, а мантию - на нижнюю и верхнюю (рис. 1). Эта модель, получившая широкое распространение, используется и в настоящее время. Начало ей положил австралийский сейсмолог К.Е. Буллен, предложивший в начале 40-х годов схему разделения Земли на зоны, которые обозначил буквами: А - земная кора, В - зона в интервале глубин 33-413 км, С - зона 413-984 км, D - зона 984-2898 км, Д - 2898-4982 км, F - 4982-5121 км, G - 5121-6371 км (центр Земли). Эти зоны отличаются сейсмическими характеристиками. Позднее зону D он разделил на зоны D" (984-2700 км) и D" (2700-2900 км). В настоящее время эта схема значительно видоизменена и лишь слой D" широко используется в литературе. Его главная характеристика - уменьшение градиентов сейсмических скоростей по сравнению с вышележащей областью мантии.

Оно не может входить в мантию, потому что скорости сейсмических волн не достаточно быстры, и мы не наблюдаем железа и никеля, выходящих из вулканов, которые, по-видимому, имеют источник глубокой мантии. Поэтому недостающее железо и никель должны быть в ядре.

Альенде, Мексика, углеродистый хондрит. Этот хондрит содержит хондры. Альенде, как и многие углеродистые хондриты, содержит включенные в кальций-алюминиевые включения. Считается, что они предшествуют хондрелам не менее 2 миллионов лет. Этот образец составляет ~ 11 см слева направо.

Чтение и обсуждение

Кинг Вождение машины Земли? . Когда вы их прочтете, подумайте о следующих вопросах для обсуждения.

  • Каковы наилучшие предположения о давлении и температуре в центре Земли?
  • Как ученые пришли к этим оценкам?
  • Что означает «сейсмическая анизотропия»?
Вы будете оценивать качество вашего участия. Подробности о том, как это присвоение будет оцениваться. Согласно теории тектоники плит, земная кора и верхняя мантия разбиты на движущиеся пластины. Литосферные плиты - сплошная порода. Есть несколько очень больших пластин, каждая из которых состоит из океанических и континентальных частей.

Рис. 1. Схема глубинного строения Земли

Тем больше проводится сейсмологических исследований, тем больше появляется сейсмических границ. Глобальными принято считать границы 410, 520, 670, 2900 км, где увеличение скоростей сейсмических волн особенно заметно. Наряду с ними выделяются промежуточные границы: 60, 80, 220, 330, 710, 900, 1050, 2640 км . Дополнительно имеются указания геофизиков на существование границ 800, 1200-1300, 1700, 1900-2000 км. Н.И. Павленковой недавно в качестве глобальной выделена граница 100, отвечающая нижнему уровню разделения верхней мантии на блоки. Промежуточные границы имеют разное пространственное распространение, что свидетельствует о латеральной изменчивости физических свойств мантии, от которых они и зависят. Глобальные границы представляют иную категорию явлений. Они отвечают глобальным изменениям мантийной среды по радиусу Земли.

Глубинный слой планеты Земля

Есть дюжина или более мелкие плиты. Пластины имеют толщину около 80 километров, они медленны, движутся со скоростью от сантиметров до десятков сантиметров в год. Они скользят вдоль верхнего слоя мантии, называемого астеносферой, который состоит из скалы, которая является жидкоподобным.

Геологи выделили три основных внутренних подразделения Земли, основанных на поведении сейсмических волн и лабораторных экспериментах. Самый внешний слой - это кора. В основе корки лежит второй слой, мантия. Он содержит самую большую часть Земли. Подобно коре, он также состоит из силикатных минералов. Самая внутренняя часть Земли - это ядро. Он состоит из металлических элементов, прежде всего железа и никеля. Ядро подразделяется на две части. Внешнее ядро ​​представляет собой жидкий металл, а внутренний сердечник твердый.

Отмеченные глобальные сейсмические границы используются при построении геологических и геодинамических моделей, в то время как промежуточные в этом смысле пока внимания почти не привлекали. Между тем различия в масштабах и интенсивности их проявления создают эмпирическую основу для гипотез, касающихся явлений и процессов в глубинах планеты.

Вулканы и землетрясения помогают определить границы между плитами. Вулканы формируются в основном на сходящихся и расходящихся границах пластин, где образуется много магмы. Землетрясения происходят во всех трех типах границ. Поскольку пластины жесткие, они, как правило, склеиваются, хотя они постоянно движутся. Когда прочность горных пород на границе плиты превышена, они быстро движутся, «догоняя» остальную часть плиты. Мы чувствуем этот выброс энергии как землетрясение.

Многие данные свидетельствуют о том, что пластины движутся. Однако менее понятно, почему пластинки движутся. Существуют две основные научные идеи для объяснения движения пластин: силы тяжести и конвекции. Все объекты на Земле и на Земле тянутся к ее центру силой тяжести. Это может влиять на пластины при сходящихся границах пластин в областях, называемых зонами субдукции, где одна пластина погружается в мантию. Это показано на рисунке слева. Некоторые данные свидетельствуют о том, что гравитация вытягивает тонущую пластину.

Ниже рассмотрим, каким образом геофизические рубежи соотносятся с полученными в последнее время результатами структурных изменений минералов под влиянием высоких давлений и температур, значения которых соответствуют условиям земных глубин.

Проблема состава, структуры и минеральных ассоциаций глубинных земных оболочек или геосфер, конечно, еще далека от окончательного решения, однако новые экспериментальные результаты и идеи существенно расширяют и детализируют соответствующие представления.

Остальная часть тарелки тянется вдоль нее. Это физически похоже на медленное нажатие листа бумаги со стола; он в конце концов сгибается и скользит, потянув за остальную бумагу за ним. Другая причина движения пластины связана с конвекционными токами в верхней части мантии. Конвекция - это тепловая циркуляция жидкости. Внутренняя часть Земли намного горячее, чем ее поверхность. Таким образом, тепло перемещается изнутри к поверхности. В мантии тепло от более глубокого на Земле заставляет циркулирующую надземную мантию.

Мантия может циркулировать, потому что она содержит небольшую магму; это очень жаркая, толстая жидкость. Конвекционные потоки мантии движутся очень, очень медленно. Вполне возможно, что по мере того, как мантия конвективно, она тащит вышележащие пластины вместе с ней. Там, где конвективные токи собраны вместе, присутствует граница сходящихся пластин. Там, где они раздвигаются, образуется расходящаяся граница плиты. Эта картина изображает конвекцию всей мантии, но некоторые ученые считают, что более вероятно, что только верхняя часть мантии конвекции.

Согласно современным взглядам, в составе мантии преобладает сравнительно небольшая группа химических элементов: Si, Mg, Fe, Al, Ca и О. Предлагаемые модели состава геосфер в первую очередь основываются на различии соотношений указанных элементов (вариации Mg/(Mg + Fe) = 0,8-0,9; (Mg + Fe)/Si = 1,2Р1,9), а также на различиях в содержании Al и некоторых других более редких для глубинных пород элементов. В соответствии с химическим и минералогическим составом эти модели получили свои названия: пиролитовая (главные минералы - оливин, пироксены и гранат в отношении 4: 2: 1), пиклогитовая (главные минералы - пироксен и гранат, а доля оливина снижается до 40%) и эклогитовая, в которой наряду с характерной для эклогитов пироксен-гранатовой ассоциацией присутствуют и некоторые более редкие минералы, в частности Al-содержащий кианит Al2SiO5 (до 10 вес. %). Однако все эти петрологические модели относятся прежде всего к породам верхней мантии , простирающейся до глубин ~670 км. В отношении валового состава более глубоких геосфер лишь допускается, что отношение оксидов двухвалентных элементов (МО) к кремнезему (МО/SiO2) ~ 2, оказываясь ближе к оливину (Mg, Fe)2SiO4, чем к пироксену (Mg, Fe)SiO3, а среди минералов преобладают перовскитовые фазы (Mg, Fe)SiO3 с различными структурными искажениями, магнезиовюстит (Mg, Fe)O со структурой типа NaCl и некоторые другие фазы в значительно меньших количествах.

Конвекция и гравитация способствуют перемещению пластин. Граница между пластиковой мантией и внешней, хрупкой, называемой литосферой, не совпадает с границей между земной корой и земной мантией, а скорее проходит внутри мантии. Литосфера включает в себя не только хрупкую земную кору, но и самые первые, также хрупкие, области мантии. Эта область называется астеносферой или потому, что она характеризуется чрезвычайно низкими скоростями сейсмических волн, как зона с низкой скоростью.

Состав мантии

Конвекция мантии - это хаотический процесс, который управляет континентальным дрейфом. Движения континентов и мантии частично развязаны, потому что из-за жесткости земной коры земная пластина может двигаться только как целое. Таким образом, континентальный дрейф является лишь размытым изображением движений на верхнем пределе мантии. Конвекция мантии еще не определена детально. Существует несколько теорий, согласно которым мантия подразделяется на разные уровни отдельной конвекции.

Все предложенные модели весьма обобщенные и гипотетичные. Пиролитовая модель верхней мантии с преобладанием оливина предполагает ее значительно большую близость по химическому составу со всей более глубокой мантией. Наоборот, пиклогитовая модель предполагает существование определенного химического контраста между верхней и остальной мантиями. Более частная эклогитовая модель допускает присутствие в верхней мантии отдельных эклогитовых линз и блоков.

Плюмы - это восходящие потоки горячего материала из мантии Земли, которые движутся, как колонна, к поверхности земли. Однако, согласно последним данным, предполагается, что они возникают или находятся чуть ниже зоны перехода мантии и пересекают пластиковую мантию, а затем распространяются грибовидными под литосферой в районе разлома Гутенберга.

Мантия Земли, мантия, составляет наибольшую долю земли около 84% по объему и 68% по массе. Он в основном разделен на верхний и нижний слой. Его химический состав является силикатным. В аккреции земли из солнечной туманности можно выделить две модели. В случае однородной аккреции сердечник Земли отделяется от мантии дифференциацией от однородной исходной земли. Освобожденная энергия гравитации была настолько велика, что мантия, вероятно, полностью расплавилась. Часть этого количества тепла по-прежнему доступна сегодня.

Большой интерес представляет попытка согласовать структурно-минералогические и геофизические данные, относящиеся к верхней мантии. Уже около 20 лет допускается, что увеличение скоростей сейсмических волн на глубине ~410 км преимущественно связано со структурной перестройкой оливина a-(Mg, Fe)2SiO4 в вадслеит b-(Mg, Fe)2SiO4, сопровождающейся образованием более плотной фазы с большими значениями коэффициентов упругости. Согласно геофизическим данным, на таких глубинах в недрах Земли скорости сейсмических волн возрастают на 3-5%, тогда как структурная перестройка оливина в вадслеит (в соответствии со значениями их модулей упругости) должна сопровождаться увеличением скоростей сейсмических волн примерно на 13%. Вместе с тем результаты экспериментальных исследований оливина и смеси оливин-пироксен при высоких температурах и давлениях выявили полное совпадение рассчитанного и экспериментального увеличения скоростей сейсмических волн в интервале глубин 200-400 км. Поскольку оливин обладает примерно такой же упругостью, как и высокоплотные моноклинные пироксены, эти данные должны были бы указывать на отсутствие в составе нижележащей зоны граната, обладающего высокой упругостью, присутствие которого в мантии неизбежно вызвало бы более значительное увеличение скоростей сейсмических волн. Однако эти представления о безгранатовой мантии вступали в противоречие с петрологическими моделями ее состава.

Мантия Земли: состав

В гетерогенных моделях аккреции, которые больше не нравятся многим ученым, богатая железом мантия сначала конденсируется из солнечной туманности, а затем в силикатную мантию. За этим последовало около 4, 46 миллиарда, а затем дифференцировано в результате постоянной вулканической активности, земной коры из мантии. Удаление базальтовых субплантов из перидотитовой мантии вытесняет несовместимые элементы из мантии в кору. Части оболочки, в частности верхний слой, поэтому истощают эти элементы. Является ли верхняя мантия когда-либо однородной, не определен, но ее нынешняя неоднородность не может быть и речи.

Таблица 1. Минеральный состав пиролита (по Л. Лиу, 1979)


Так появилась идея о том, что скачок в скоростях сейсмических волн на глубине 410 км связан в основном со структурной перестройкой пироксен-гранат внутри обогащенных Na частей верхней мантии. Такая модель предполагает почти полное отсутствие конвекции в верхней мантии, что противоречит современным геодинамическим представлениям. Преодоление этих противоречий можно связать с недавно предложенной более полной моделью верхней мантии , допускающей вхождение атомов железа и водорода в структуру вадслеита.

Геохимия современных вулканических пород ясно показывает химические неоднородности верхней мантии. Таким образом, большинство базальтов среднего океанского хребта приходят из мантийных доменов, которые истощены несовместимыми элементами. Согласно современным сейсмическим и петрологическим аспектам структура мантии структурирована следующим образом: зона - литосфера, макс. Толщина 70 км, в которую встроены континенты. Литосфера состоит из около 10 так называемых пластин, которые образуются на океанической гряде и снова разрушаются в зонах субдукции.

Рис. 2. Изменение объемных про- порций минералов пиролита при возрастании давлений (глуби- ны), по М. Акаоги (1997). Условные обозначения минералов: Ol - оливин, Gar - гранат, Cpx - моноклинные пироксены, Opx - ромбические пироксены, MS - "модифицирован- ная шпинель", или вадслеит (b-(Mg, Fe)2SiO4), Sp - шпинель, Mj - меджорит Mg3(Fe, Al, Si)2(SiO4)3, Mw - магнезиовюстит (Mg, Fe)O, Mg-Pv -Mg-перовскит, Cа-Pv-Cа- перовс- кит, X - предпо- лагаемые Al-содер- жащие фазы со структурами типа ильменита, Cа-феррита и/или голландита

В то время как полиморфный переход оливина в вадслеит не сопровождается изменением химического состава, в присутствии граната возникает реакция, приводящая к образованию вадслеита, обогащенного Fe по сравнению с исходным оливином. Более того, вадслеит может содержать значительно больше по сравнению с оливином атомов водорода. Участие атомов Fe и Н в структуре вадслеита приводит к уменьшению ее жесткости и соответственно уменьшению скоростей распространения сейсмических волн, проходящих сквозь этот минерал.

Кроме того, образование обогащенного Fe вадслеита предполагает вовлечение в соответствующую реакцию большего количества оливина, что должно сопровождаться изменением химического состава пород вблизи раздела 410. Идеи об этих трансформациях подтверждаются современными глобальносейсмическими данными. В целом минералогический состав этой части верхней мантии представляется более или менее ясным. Если говорить о пиролитовой минеральной ассоциации (табл. 1), то ее преобразование вплоть до глубин ~800 км исследовано достаточно детально и в обобщенном виде представлено на рис. 2. При этом глобальной сейсмической границе на глубине 520 км соответствует перестройка вадслеита b-(Mg, Fe)2SiO4 в рингвудит - g-модификацию (Mg, Fe)2SiO4 со структурой шпинели. Трансформация пироксен (Mg, Fe)SiO3 гранат Mg3(Fe, Al, Si)2Si3O12 осуществляется в верхней мантии в более широком интервале глубин. Таким образом, вся относительно гомогенная оболочка в интервале 400-600 км верхней мантии в основном содержит фазы со структурными типами граната и шпинели.

Все предложенные в настоящее время модели состава мантийных пород допускают содержание в них Al2O3 в количестве ~4 вес. %, которое также влияет на специфику структурных превращений. При этом отмечается, что в отдельных областях неоднородной по составу верхней мантии Al может быть сосредоточен в таких минералах, как корунд Al2O3 или кианит Al2SiO5 , который при давлениях и температурах, cответствующих глубинам ~450 км, трансформируется в корунд и стишовит - модификацию SiO2, структура которой содержит каркас из SiO6 октаэдров. Оба этих минерала сохраняются не только в низах верхней мантии, но и глубже.

Важнейший компонент химического состава зоны 400-670 км - вода, содержание которой, по некоторым оценкам, составляет ~0,1 вес. % и присутствие которой в первую очередь связывают с Mg-силикатами . Количество запасенной в этой оболочке воды столь значительно, что на поверхности Земли оно составило бы слой мощностью 800 м.

Состав мантии ниже границы 670 км

Проведенные в последние два-три десятилетия исследования структурных переходов минералов с использованием рентгеновских камер высокого давления позволили смоделировать некоторые особенности состава и структуры геосфер глубже границы 670 км. В этих экспериментах исследуемый кристалл помещается между двумя алмазными пирамидами (наковальнями) , при сжатии которых создаются давления, соизмеримые с давлениями внутри мантии и земного ядра. Тем не менее в отношении этой части мантии, на долю которой приходится более половины всех недр Земли, по-прежнему остается много вопросов. В настоящее время большинство исследователей согласны с идеей о том, что вся эта глубинная (нижняя в традиционном понимании) мантия в основном состоит из перовскитоподобной фазы (Mg,Fe)SiO3, на долю которой приходится около 70% ее объема (40% объема всей Земли), и магнезиовюстита (Mg, Fe)O (~20 %). Оставшиеся 10% составляют стишовит и оксидные фазы, содержащие Ca, Na, K, Al и Fe, кристаллизация которых допускается в структурных типах ильменита-корунда (твердый раствор (Mg, Fe)SiO3-Al2O3), кубического перовскита (CaSiO3) и Са-феррита (NaAlSiO4). Образование этих соединений связано с различными структурными трансформациями минералов верхней мантии . При этом одна из основных минеральных фаз относительно гомогенной оболочки, лежащей в интервале глубин 410-670 км, - шпинелеподобный рингвудит трансформируется в ассоциацию (Mg, Fe)-перовскита и Mg-вюстита на рубеже 670 км, где давление составляет ~24 ГПа. Другой важнейший компонент переходной зоны - представитель семейства граната пироп Mg3Al2Si3O12 испытывает превращение с образованием ромбического перовскита (Mg, Fe)SiO3 и твердого раствора корунда-ильменита (Mg, Fe)SiO3 - Al2O3 при несколько больших давлениях. С этим переходом связывают изменение скоростей сейсмических волн на рубеже 850-900 км, соответствующем одной из промежуточных сейсмических границ. Трансформация Са-граната андрадита при меньших давлениях ~21 ГПа приводит к образованию еще одного упомянутого выше важного компонента нижней мантии - кубического Са-перовскита CaSiO3 . Полярное отношение между основными минералами этой зоны (Mg,Fe)- перовскитом (Mg,Fe)SiO3 и Mg-вюститом (Mg, Fe)O варьирует в достаточно широких пределах и на глубине ~1170 км при давлении ~29 ГПа и температурах 2000-2800 0С меняется от 2: 1 до 3: 1.

Исключительная стабильность MgSiO3 со структурой типа ромбического перовскита в широком диапазоне давлений, соответствующих глубинам низов мантии, позволяет считать его одним из главных компонентов этой геосферы. Основанием для этого заключения послужили эксперименты, в ходе которых образцы Mg-перовскита MgSiO3 были подвергнуты давлению, в 1,3 млн раз превышающему атмосферное, и одновременно на образец, помещенный между алмазными наковальнями, воздействовали лазерным лучом с температурой около 2000 0С.

Таким образом смоделировали условия, существующие на глубинах ~2800 км, то есть вблизи нижней границы нижней мантии. Оказалось, что ни во время, ни после эксперимента минерал не изменил свои структуру и состав. Таким образом, Л. Лиу, а также Е. Ниттл и Е. Жанлоз пришли к выводу, согласно которому стабильность Mg-перовскита позволяет рассматривать его как наиболее распространенный минерал на Земле, составляющий, по-видимому, почти половину ее массы.

Не меньшей устойчивостью отличается и вюстит FexO, состав которого в условиях нижней мантии характеризуется значением стехиометри- ческого коэффициента х < 0,98, что означает одновременное присутствие в его составе Fe2+ и Fe3+. При этом, согласно экспериментальным данным, температура плавления вюстита на границе нижней мантии и слоя D", по данным Р. Болера (1996), оценивается в ~5000 K, что намного выше 3800 0С, предполагаемой для этого уровня (при средних температурах мантии ~2500 0С в основании нижней мантии допускается повышение температуры приблизительно на 1300 0С). Таким образом, вюстит должен сохраниться на этом рубеже в твердом состоянии, а признание фазового контраста между твердой нижней мантией и жидким внешним ядром требует более гибкого подхода и уж во всяком случае не означает четко очерченной границы между ними.

Следует отметить, что в преобладающих на больших глубинах перовскитоподобных фазах может содержаться весьма ограниченное количество Fe, а повышенные концентрации Fe среди минералов глубинной ассоциации характерны лишь для магнезиовюстита. При этом для магнезиовюстита доказана возможность перехода под воздействием высоких давлений части содержащегося в нем двухвалентного железа в трехвалентное, остающееся в структуре минерала, с одновременным выделением соответствующего количества нейтрального железа. На основе этих данных сотрудники геофизической лаборатории Иститута Карнеги Х. Мао, П. Белл и Т. Яги выдвинули новые идеи о дифференциации вещества в глубинах Земли. На первом этапе благодаря гравитационной неустойчивости магнезиовюстит погружается на глубину, где под воздействием давления из него выделяется некоторая часть железа в нейтральной форме. Остаточный магнезиовюстит, характеризую- щийся более низкой плотностью, поднимается в верхние слои, где вновь смешивается с перовскитоподобными фазами. Контакт с ними сопровождается восстановлением стехиометрии (то есть целочисленного отношения элементов в химической формуле) магнезиовюстита и приводит к возможности повторения описанного процесса. Новые данные позволяют несколько расширить набор вероятных для глубокой мантии химических элементов. Например, обоснованная Н. Росс (1997) устойчивость магнезита при давлениях, соответствующих глубинам ~900 км, указывает на возможное присутствие углерода в ее составе.

Выделение отдельных промежуточных сейсмических границ, расположенных ниже рубежа 670, коррелирует с данными о структурных трансформациях мантийных минералов , формы которых могут быть весьма разнообразными. Иллюстрацией изменения многих свойств различных кристаллов при высоких значениях физико-химических параметров, соответствующих глубинной мантии, может служить, согласно Р. Жанлозу и Р. Хейзену, зафиксированная в ходе экспериментов при давлениях 70 гигапаскалей (ГПа) (~1700 км) перестройка ионноковалентных связей вюстита в связи с металлическим типом межатомных взаимодействий. Рубеж 1200 может соответствовать предсказанной на основе теоретических квантово-механических расчетов и впоследствии смоделированной при давлении ~45 ГПа и температуре ~2000 0С перестройке SiO2 со структурой стишовита в структурный тип CaCl2 (ромбический аналог рутила TiO2), а 2000 км - его последующему преобразованию в фазу со структурой, промежуточной между a-PbO2 и ZrO2 , характеризующуюся более плотной упаковкой кремнийкислородных октаэдров (данные Л.С. Дубровинского с соавторами). Также начиная с этих глубин (~2000 км) при давлениях 80-90 ГПа допускается распад перовскитоподобного MgSiO3, сопровождающийся возрастанием содержания периклаза MgO и свободного кремнезема. При несколько большем давлении (~96 ГПа) и температуре 800 0С установлено проявление политипии у FeO, связанное с образованием структурных фрагментов типа никелина NiAs, чередующихся с антиникелиновыми доменами, в которых атомы Fe расположены в позициях атомов As, а атомы О - в позициях атомов Ni. Вблизи границы D" происходит трансформация Al2O3 со структурой корунда в фазу со структурой Rh2O3, экспериментально смоделированная при давлениях ~100 ГПа, то есть на глубине ~2200-2300 км. " использованием метода мессбауэровской спектроскопии при таком же давлении обоснован переход из высокоспинового (HS) в низкоспиновое состояние (LS) атомов Fe в структуре магнезиовюстита, то есть изменение их электронной структуры. В связи с этим следует подчеркнуть, что структура вюстита FeО при высоком давлении характеризуется нестехиометрией состава, дефектами атомной упаковки, политипией, а также изменением магнитного упорядочения, связанного с изменением электронной структуры (HS => LS - переход) атомов Fe. Отмеченные особенности позволяют рассматривать вюстит как один из наиболее сложных минералов с необычными свойствами, определяющими специфику обогащенных им глубинных зон Земли вблизи границы D".

Рис. 3. Тетрагональная струк- тура Fe7S-возможного компо- нента внутреннего (твердого) ядра, по Д.М. Шерману (1997)

Сейсмологические измерения указывают на то, что и внутреннее (твердое) и внешнее (жидкое) ядра Земли характеризуются меньшей плотностью по сравнению со значением, получаемым на основе модели ядра, состоящего только из металлического железа при тех же физико-химических параметрах. Это уменьшение плотности большинство исследователей связывают с присутствием в ядре таких элементов, как Si, O, S и даже О, образующих сплавы с железом. Среди фаз, вероятных для таких "фаустовских" физико-химических условий (давления ~250 ГПа и температуры 4000-6500 0С), называются Fe3S с хорошо известным структурным типом Cu3Au и Fe7S , структура которого изображена на рис. 3. Другой предполагаемой в ядре фазой является b-Fe, структура которой характеризуется четырехслойной плотнейшей упаковкой атомов Fe. Температура плавления этой фазы оценивается в 5000 0С при давлении 360 ГПа. Присутствие водорода в ядре долгое время вызывало дискуссию из-за его низкой растворимости в железе при атмосферном давлении. Однако недавние экспериме- нты (данные Дж. Бэддинга, Х. Мао и Р. Хэмли (1992)) позволили установить, что гидрид железа FeH может сформироваться при высоких температурах и давлениях и оказывается устойчив при давлениях, превышающих 62 ГПа, что соответствует глубинам ~1600 км. В этой связи присутствие значительных количеств (до 40 мол. %) водорода в ядре вполне допустимо и снижает его плотность до значений, согласующихся с данными сейсмологии.

Можно прогнозировать, что новые данные о структурных изменениях минеральных фаз на больших глубинах позволят найти адекватную интерпретацию и другим важнейшим геофизическим границам, фиксируемым в недрах Земли. Общее заключение таково, что на таких глобальных сейсмических рубежах, как 410 и 670 км, происходят значительные изменения в минеральном составе мантийных пород . Минеральные преобразования отмечаются также и на глубинах ~850, 1200, 1700, 2000 и 2200-2300 км, то есть в пределах нижней мантии. Это весьма важное обстоятельство, позволяющее отказаться от представления об ее однородной структуре.

К 80-м годам XX века сейсмологические исследования методами продольных и поперечных сейсмических волн, способных проникать через весь объем Земли, а потому названных объемными в отличие от поверхностных, распределяющихся лишь по ее поверхности, оказались уже настолько существенными, что позволили составлять карты сейсмических аномалий для разных уровней планеты. Фундаментальные работы в этой области выполнены американским сейсмологом А. Дзевонски и его коллегами .

На рис. 4 приведены образцы подобных карт из серии, опубликованной в 1994 году, хотя первые публикации появились на 10 лет раньше. В работе приведены 12 карт для глубинных срезов Земли в интервале от 50 до 2850 км, то есть практически охватывающих всю мантию. На этих интереснейших картах легко видеть, что сейсмическая картина на различных уровнях глубины разная. Это видно по площадям и контурам распространения сейсмоаномальных ареалов , особенностям переходов между ними и вообще по общему облику карт. Отдельные из них отличаются большой пестротой и контрастностью в распределении областей с различными скоростями сейсмических волн (рис. 5), тогда как на других видны более сглаженные и простые соотношения между ними.

В том же, 1994 году вышла в свет аналогичная работа японских геофизиков . В ней приведены 14 карт для уровней от 78 до 2900 км. На обеих сериях карт ясно видна тихоокеанская неоднородность, которая хоть и меняется в очертаниях, но прослеживается вплоть до земного ядра. За пределами этой крупной неоднородности сейсмическая картина усложняется, значительно меняясь при переходе от одного уровня к другому. Но, сколь бы значительно ни было различие этих карт, между отдельными из них просматриваются черты сходства. Они выражаются в некотором подобии в размещении в пространстве положительных и отрицательных сейсмоаномалий и в конечном счете в общих особенностях глубинной сейсмоструктуры. Это позволяет группировать такие карты, что дает возможность выделять внутримантийные оболочки разного сейсмического облика. И такая работа была выполнена . На основе анализа карт японских геофизиков оказалось возможным предложить существенно более дробную структуру мантии Земли , показанную на рис. 5, по сравнению с традиционной моделью земных оболочек.

Принципиально новыми являются два положения:

Как же соотносятся предлагаемые границы глубинных геосфер с ранее обособленными сейсмологами сейсмическими рубежами? Сопоставление показывает, что нижняя граница средней мантии коррелирует с рубежом 1700, глобальная значимость которого подчеркнута в работе . Ее верхняя граница примерно соответствует рубежам 800-900. Это касается верхней мантии, то здесь расхождений нет: ее нижняя граница представлена рубежом 670, а верхняя - рубежом Мохоровичича. Особо обратим внимание на неопределенность верхней границы нижней мантии. В процессе дальнейших исследований, возможно, окажется, что намеченные недавно сейсмические рубежи 1900 и 2000 позволят внести коррективы в ее мощность. Таким образом, результаты сопоставления свидетельствуют о правомерности предлагаемой новой модели структуры мантии.

Заключение

Исследование глубинного строения Земли относится к наиболее крупным и актуальным направлениям геологических наук. Новая стратификация мантии Земли позволяет значительно менее схематично, чем прежде, подойти к сложной проблеме глубинной геодинамики. Различие в сейсмических характеристиках земных оболочек (геосфер), отражающих различие в их физических свойствах и минеральном составе, создает возможности для моделирования геодинамических процессов в каждой из них в отдельности. Геосферы в этом смысле, как теперь совершенно ясно, обладают известной автономностью. Однако эта исключительно важная тема лежит за рамками данной статьи. От дальнейшего развития сейсмотомографии, как и некоторых других геофизических исследований, а также изучения минерального и химического состава глубин будут зависеть существенно более обоснованные построения в отношении состава, структуры, геодинамики и эволюции Земли в целом.

Список литературы

Geotimes. 1994. Vol. 39, N 6. P. 13-15.

Ross A. The Earths Mantle Remodelled // Nature. 1997. Vol. 385, N 6616. P. 490.

Thompson A.B. Water in the EarthХs Upper Mantle // Nature. 1992. Vol. 358, N 6384. P. 295-302.

Пущаровский Д.Ю. Глубинные минералы Земли // Природа. 1980. N 11. С. 119-120.

Su W., Woodward R.L., Dziewonski A.M. Degree 12 Model of Shear Velocity Heterogeneity in the Mantle // J. Geophys. Res. 1994. Vol. 99, N B4. P. 6945-6980.

J. Geol. Soc. Japan. 1994. Vol. 100, N 1. P. VI-VII.

Пущаровский Ю.М. Сейсмотомография и структура мантии: Тектонический ракурс // Доклады АН. 1996. Т. 351, N 6. С. 805-809.

Состав глубинных оболочек Земли продолжает оставаться одним из самых интригующих вопросов современной науки, и тем не менее еще в начале ХХ века сейсмологами Бено Гутенбергом и Г. Джеферсоном была разработана модель внутреннего устройства нашей планеты, согласно которой Земля состоит из следующих слоев:

Ядро;
- мантия;
- земная кора.

Современный взгляд на внутреннее устройство планеты

В середине прошлого века на основании последних на то время сейсмологических данных ученые пришли к выводу, что глубинные оболочки имеют более сложное устройство. Тогда же сейсмологи выяснили, что земное ядро разделяется на внутреннее и внешнее, а мантия состоит из двух слоев: верхнего и нижнего.

Внешняя оболочка земли

Земная кора - это не только самый верхний, самый тонкий, но и самый хорошо изученный из всех слоев земной поверхности. Его толщина (мощность) достигает максимальной отметки под горами (порядка 70 км) и минимальной - под водами мирового океана (5-10 км), средняя мощность земной коры под равнинами колеблется от 35 до 40 км. Переход от земной коры к мантии называют границей Мохоровича или Мохо.

Стоит также отметить, что земная кора совместно с верхней частью мантии образуют каменную оболочку Земли - литосферу, толщина которой колеблется от 50 до 200 км.

Следом за литосферой располагается астеносфера - размягченный жидкий слой с повышенной вязкостью. В дополнение ко всему, именно эту составляющую земной поверхности называют источником вулканизма, так как в ней располагаются очаги магмы, изливающейся в земную кору и на поверхность.

В науке принято выделять несколько видов земной коры

Материковая или континентальная распространяется в пределах границ материков и шельфов, состоит из базальтового, гранитно-гейсового и осадочного слоев. Переход гранитно-гейсового слоя в базальтовый называют границей Конрада.



Океаническая также состоит из трех частей: тяжелого базальтового, пласта базальтовых лав и плотных осадочных пород и слоя рыхлых осадочных пород.

Субматериковая кора - переходный тип, располагается на периферии внутренних и а также под островными дугами.

Субокеаническая кора сходна по своему строению с океанической, особенно хорошо развита на территории глубоководных частей морей и на больших глубинах океанических желобов.

Серединная геосфера



Мантия составляет порядка 83% от всего объема планеты, со всех сторон окружающая земное ядро.В свою очередь, разделяется на два слоя: твердый (кристаллический) и мягкий (магма).

Глубинный слой планеты Земля

Является самым малоизученным Достоверных сведений о нем очень мало, с полной уверенностью можно сказать лишь то, что его диаметр составляет около 7 тысяч километров. Считается, что в состав земного ядра входит сплав никеля и железа. Стоит также отметить, что внешнее ядро планеты имеет большую толщину и находится в жидком в то время как внутреннее - меньше по толщине и тверже по консистенции. От мантии земное ядро отделяет так называемая граница Гуттенберга.