Периодический закон Д. И. Менделеева - фундаментальный закон, устанавливающий периодическое изменение свойств химических элементов в зависимости от увеличения зарядов ядер их атомов. Открыт Д. И. Менделеевым в марте 1869 года при сопоставлении свойств всех известных в то время элементов и величин их атомных масс. Термин «периодический закон» Менделеев впервые употребил в ноябре 1870, а в октябре 1871 дал окончательную формулировку Периодического закона: «свойства простых тел, а также формы и свойства соединений элементов, а потому и свойства образуемых ими простых и сложных тел, стоят в периодической зависимости от их атомного веса».

В начале XX векас открытием строения атома было установлено, что периодичность изменения свойств элементов определяетсяне атомным весом, а зарядом ядра , равным атомному номеруи числу электронов, распределение которых поэлектронным оболочкаматомаэлемента определяет его химические свойства.

Современная формулировка Периодического закона гласит:

свойства элементов находятся в периодической зависимости от заряда их атомных ядер.

Дальнейшее развитие периодической системы связано с заполнением пустых клеток таблицы, в которые помещались всё новые и новые элементы: благородные газы, природные и искусственно полученные радиоактивные элементы. В2010 году, с синтезом117 элемента, седьмой период периодической системы был завершён. Однако проблема нижней границы таблицы Менделеева остаётся одной из важнейших в современнойтеоретической химии

Графическим (табличным) выражением периодического закона является разработанная Менделеевым периодическая система элементов.

Распространённее других являются 3 формы таблицы Менделеева: «короткая» (короткопериодная), «длинная» (длиннопериодная), «сверхдлинная».

В «сверхдлинном» варианте каждый период занимает ровно одну строчку. В «длинном» варианте лантаноиды и актиноиды вынесены из общей таблицы, делая её более компактной. В «короткой» форме записи, в дополнение к этому, четвёртый и последующие периоды занимают по 2 строчки.

Короткая форма таблицы Менделеева (табл.2) основана на параллелизме степеней окисления элементов главных и побочных подгрупп : например, максимальная степень окисления ванадия равна +5, как у фосфора и мышьяка, максимальная степень окисления хрома равна +6, как у серы и селена, и т. д.

Таблица 2.Короткая форма Периодической системы

Периодическая система элементов (короткий вариант)

Группа Период

A

A

B

B

A

A

A

A

Лантаноиды *

Актиноиды **

Для облегчения восприятия символы элементов главных и побочных подгрупп выравниваются в ячейках таблицы в разные стороны. В вышеприведённой таблице символы элементов главных подгрупп выровнены влево, а символы элементов побочных подгрупп - вправо.

Широко распространён и другой вариант выравнивания (см. вариант таблицы ниже): в первой строке каждого периода символы элементов выровнены влево, а во второй строке - вправо. Во втором и третьем периоде, которые состоят только из одной строки, используется смешанное выравнивание.

Длинный вариант (длиннопериодная форма) таблицы Менделеева утверждён Международным союзом теоретической и прикладной химии (IUPAC) в качестве основного (табл.3):

Таблица 3. Длиннопериодная форма Периодической системы

Периодическая система элементов

Группа Период

IA

IIA

VA

VIA

VIIA

VIIIA

Лантаноиды *

Актиноиды **

Названия синтезированных элементов от 113 до 118 даны по порядковому номеру (искусственно образованы из корней латинских числительных. Например, элемент с Z=115 Ununpentium можно приблизительно перевести как «одно-одно-пятый

Элементы, расположенные по возрастанию Z (H, Не, Li, Be...), образуют семь периодов.

В периодах свойства элементов закономерно изменяются при переходе от щелочных металлов к благородным газам

Вертикальные столбцы - группы элементов, сходных по свойствам

Внутри групп свойства элементов также изменяются закономерно (например, у щелочных металлов при переходе от Li к Fr возрастает химическая активность)

Свойства химического элемента (свойства его свободных атомов и свойства простого вещества) проявляют периодическую зависимость от атомных номеров химических элементов. Среди этих свойств наиболее важными, имеющими особое значение при объяснении или предсказании химического поведения элементов и образуемых ими соединений являются:

    энергия ионизации атомов;

    энергия сродства атомов к электрону;

    электроотрицательность;

    атомные (и ионные) радиусы;

    степени окисления.

    Энергия ионизации атомов - наименьшая энергия, необходимая для удаления электрона от свободного атома

Легче всего удалить электрон из атомов щелочных металлов, включающих по одному валентному электрону, труднее всего - из атомов благородных газов, обладающих замкнутой электронной оболочкой. Поэтому периодичность изменения энергии ионизации атомов характеризуется минимумами, отвечающими щелочным металлам, и максимумами, приходящимися на благородные газы.

2) Энергия сродства атомов к электрону-э нергия, выделяющаяся в процессе присоединения электрона к свободному атому.

Наибольшим сродством к электрону обладают p -элементы VII группы.

Наименьшее сродство к электрону у атомов с конфигурацией s² (Be, Mg, Zn) и s²p 6 (Ne, Ar) или с наполовину заполненными p -орбиталями (N, P, As)

3) Электроотрицательность(χ) - фундаментальное химическое свойство атома, количественная характеристика способности атома в молекуле притягивать к себе общие электронные пары .

В периодах наблюдается общая тенденция роста электроотрицательности, а в подгруппах - её падение. Наименьшая электроотрицательность у s-элементов I группы, наибольшая - у p-элементов VII группы.

4) Атомные (и ионные) радиусы.

Значения орбитальных атомных радиусов при переходе от щелочного металла к соответствующему (ближайшему) благородному газу немонотонно уменьшаются, за исключением ряда Li-Ne, особенно при появлении между щелочным металлом и благородным газом семейств переходных элементов (металлов) и лантаноидов или актиноидов. В больших периодах в семействах d- и f- элементов наблюдается менее резкое уменьшение радиусов, так как заполнение орбиталей электронами происходит в пред- предвнешнем слое.

В подгруппах элементов радиусы атомов и однотипных ионов в общем увеличиваются.

5) Степень окисления-вспомогательная условная величина для записи процессов окисления , восстановления и окислительно-восстановительных реакций

- численная величина электрического заряда , приписываемого атому в молекуле в предположении, что электронные пары, осуществляющие связь, полностью смещены в сторону более электроотрицательных атомов .

В простейшем случае в ряду элементов от щелочного металла до благородного газа высшая степень окисления возрастает от +1 (RbF) до +8 (XeО 4).

В общем случае возрастание высшей степени окисления в ряду элементов от щелочного металла до галогена или до благородного газа происходит отнюдь не монотонно, главным образом по причине проявления высоких степеней окисления переходными металлами.

Все элементы в Периодической системе условно делят на металлы и неметаллы.

В главных группах металлические свойства элементов увеличиваются, а неметаллические свойства уменьшаются с возрастанием порядкового номера элемента.

В периодах для элементов главных групп металлические свойства элементов уменьшаются, а неметаллические свойства увеличиваются с возрастанием порядкового номера элемента.

Оксидам типичных неметаллов соответствуют кислотные гидроксиды, а оксидам типичных металлов – основные гидроксиды.

Элементы главных групп, расположенные по диагональной границе (Be, Al, Ge. Sb. Pb) и примыкающие к ней, образуют амфотерные оксиды и гидроксиды .

Для оксидов элементов главных групп в Периодической системе:

Слева направо в пределах периода уменьшается основной характер, но растет кислотный характер,

Сверху вниз в пределах групп растет основной характер, но уменьшается кислотный характер.

С повышением степени окисления основной характер оксидов переходных элементов уменьшается, но одновременно растет их кислотный характер.

Еще алхимики пытались найти закон природы, на основе которого можно было бы систематизировать химические элементы. Но им недоставало надежных и подробных сведений об элементах. К середине XIX в. знаний о химических элементах стало достаточно, а число элементов возросло настолько, что в науке возникла естественная потребность в их классификации. Первые попытки классификации элементов на металлы и неметаллы оказались несостоятельными. Предшественники Д.И.Менделеева (И. В. Деберейнер, Дж. А. Ньюлендс, Л. Ю. Мейер) многое сделали для подготовки открытия периодического закона, но не смогли постичь истину. Дмитрий Иванович установил связь между массой элементов и их свойствами.

Дмитрий Иванович родился в г. Тобольске. Он был семнадцатым ребенком в семье. Закончив в родном городе гимназию, Дмитрий Иванович поступил в Санкт-Петербурге в Главный педагогический институт, после окончания которого с золотой медалью уехал на два года в научную командировку за границу. После возвращения его пригласили в Петербургский университет. Приступая к чтению лекций по химии, Менделеев не нашел ничего, что можно было бы рекомендовать студентам в качестве учебного пособия. И он решил написать новую книгу – «Основы химии».

Открытию периодического закона предшествовало 15 лет напряженной работы. 1 марта 1869 г. Дмитрий Иванович предполагал выехать из Петербурга в губернии по делам.

Периодический закон был открыт на основе характеристики атома – относительной атомной массы .

Менделеев расположил химические элементы в порядке возрастания их атомных масс и заметил, что свойства элементов повторяются через определенный промежуток – период, Дмитрий Иванович расположил периодыдруг под другом., так, чтобы сходные элементы располагались друг под другом – на одной вертикали, так была построена периодическая система элементов.

1 марта 1869г. Формулировка периодического закона Д.И. Менделеева.

Свойства простых веществ, а также формы и свойства соединений элементов находятся в периодической зависимости от величины атомных весов элементов.

К сожалению, сторонников периодического закона сначала было очень мало, даже среди русских ученых. Противников – много, особенно в Германии и Англии.
Открытие периодического закона – это блестящий образец научного предвидения: в 1870 г. Дмитрий Иванович предсказал существование трех еще неизвестных тогда элементов, которые назвал экасилицием, экаалюминием и экабором. Он сумел правильно предсказать и важнейшие свойства новых элементов. И вот через 5 лет, в 1875 г., французский ученый П.Э. Лекок де Буабодран, ничего не знавший о работах Дмитрия Ивановича, открыл новый металл, назвав его галлием. По ряду свойств и способу открытия галлий совпадал с экаалюминием, предсказанным Менделеевым. Но его вес оказался меньше предсказанного. Несмотря на это, Дмитрий Иванович послал во Францию письмо, настаивая на своем предсказании.
Ученый мир был ошеломлен тем, что предсказание Менделеевым свойств экаалюминия оказалось таким точным. С этого момента периодический закон начинает утверждаться в химии.
В 1879 г. Л. Нильсон в Швеции открыл скандий, в котором воплотился предсказанный Дмитрием Ивановичем экабор .
В 1886 г. К. Винклер в Германии открыл германий, который оказался экасилицием .

Но гениальность Дмитрия Ивановича Менделеева и его открытия - не только эти предсказания!

В четырёх местах периодической системы Д. И. Менделеев расположил элементы не в порядке возрастания атомных масс:

Ещё в конце 19 века Д.И. Менделеев писал, что, по-видимому, атом состоит из других более мелких частиц. После его смерти в 1907 г. было доказано, что атом состоит из элементарных частиц. Теория строения атома подтвердила правотуМенделеева, перестановки данных элементов не в соответствии с ростом атомных масс полностью оправданы.

Современная формулировка периодического закона.

Свойства химических элементов и их соединений находятся в периодической зависимости от величины заряда ядер их атомов, выражающейся в периодической повторяемости структуры внешней валентной электронной оболочки.
И вот спустя более 130 лет после открытия периодического закона мы можем вернуться к словам Дмитрия Ивановича, взятым в качестве девиза нашего урока: «Периодическому закону будущее не грозит разрушением, а только надстройка и развитие обещаются». Сколько химических элементов открыто на данный момент? И это далеко не предел.

Графическим изображением периодического закона является периодическая система химических элементов. Это краткий конспект всей химии элементов и их соединений.

Изменения свойств в периодической системе с ростом величины атомных весов в периоде (слева направо):

1. Металлические свойства уменьшаются

2. Неметаллические свойства возрастают

3. Свойства высших оксидов и гидроксидов изменяются от основных через амфотерные к кислотным.

4. Валентность элементов в формулах высших оксидов возрастает от I до VII , а в формулах летучих водородных соединений уменьшается от IV до I .

Основные принципы построения периодической системы.

Признак сравнения

Д.И.Менделеев

1. Как устанавливается последовательность элементов по номерам? (Что положено в основу п.с.?)

Элементы расставлены в порядке увеличения их относительных атомных масс. При этом есть исключения.

Ar – K, Co – Ni, Te – I, Th - Pa

2. Принцип объединения элементов в группы.

Качественный признак. Сходство свойств простых веществ и однотипных сложных.

3. Принцип объединения элементов в периоды.

С первых уроков химии вы использовали таблицу Д. И. Менделеева. Она наглядно демонстрирует, что все химические элементы, образующие вещества окружающего нас мира, взаимосвязаны и подчиняются общим закономерностям, т. е. представляют собой единое целое - систему химических элементов. Поэтому в современной науке таблицу Д. И. Менделеева называют Периодической системой химических элементов.

Почему «периодической», вам тоже понятно, так как общие закономерности в изменении свойств атомов, простых и сложных веществ, образованных химическими элементами, повторяются в этой системе через определённые интервалы - периоды. Некоторые из этих закономерностей, приведённые в таблице 1, вам уже известны.

Таким образом, все существующие в мире химические элементы подчиняются единому, объективно действующему в природе Периодическому закону, графическим отображением которого и является Периодическая система элементов. Этот закон и система носят имя великого русского химика Д. И. Менделеева.

Д. И. Менделеев пришёл к открытию Периодического закона, проведя сопоставление свойств и относительных атомных масс химических элементов. Для этого Д. И. Менделеев для каждого химического элемента на карточке записал: символ элемента, значение относительной атомной массы (во времена Д. И. Менделеева эту величину называли атомным весом), формулы и характер высшего оксида и гидроксида. Он расположил 63 известных к тому времени химических элемента в одну цепочку в порядке возрастания их относительных атомных масс (рис. 1) и проанализировал эту совокупность элементов, пытаясь найти в ней определённые закономерности. В результате напряжённого творческого труда он обнаружил, что в этой цепочке имеются интервалы - периоды, в которых свойства элементов и образованных ими веществ изменяются сходным образом (рис. 2).

Рис. 1.
Карточки элементов, расположенные в порядке увеличения их относительных атомных масс

Рис. 2.
Карточки элементов, расположенные в порядке периодического изменения свойств элементов и образованных ими веществ

Лабораторный опыт № 2
Моделирование построения Периодической системы Д. И. Менделеева

Смоделируйте построение Периодической системы Д. И. Менделеева. Для этого подготовьте 20 карточек размером 6 х 10 см для элементов с порядковыми номерами с 1-го по 20-й. На каждой карточке укажите следующие сведения об элементе: химический символ, название, относительную атомную массу, формулу высшего оксида, гидроксида (в скобках укажите их характер - основный, кислотный или амфотерный), формулу летучего водородного соединения (для неметаллов).

Перемешайте карточки, а затем расположите их в ряд по возрастанию относительных атомных масс элементов. Сходные элементы с 1-го по 18-й расположите друг под другом: водород над литием и калий под натрием, соответственно, кальций под магнием, гелий под неоном. Сформулируйте выявленную вами закономерность в виде закона. Обратите внимание на несоответствие относительных атомных масс аргона и калия их расположению по общности свойств элементов. Объясните причину этого явления.

Перечислим ещё раз, используя современные термины, закономерные изменения свойств, проявляемые в пределах периодов:

  • металлические свойства ослабевают;
  • неметаллические свойства усиливаются;
  • степень окисления элементов в высших оксидах увеличивается от +1 до +8;
  • степень окисления элементов в летучих водородных соединениях увеличивается от -4 до -1;
  • оксиды от основных через амфотерные сменяются кислотными;
  • гидроксиды от щелочей через амфотерные гидроксиды сменяются кислородсодержащими кислотами.

На основании этих наблюдений Д. И. Менделеев в 1869 г. сделал вывод - сформулировал Периодический закон, который с использованием современных терминов звучит так:

Систематизируя химические элементы на основе их относительных атомных масс, Д. И. Менделеев уделял большое внимание также свойствам элементов и образованных ими веществ, распределяя элементы со сходными свойствами в вертикальные столбцы - группы. Иногда в нарушение выявленной им закономерности он ставил более тяжёлые элементы перед элементами с меньшими значениями относительных атомных масс. Например, он записал в свою таблицу кобальт перед никелем, теллур - перед иодом, а когда были открыты инертные (благородные) газы, аргон - перед калием. Такой порядок расположения Д. И. Менделеев считал необходимым потому, что иначе эти элементы попали бы в группы несходных с ними по свойствам элементов. Так, в частности, щелочной металл калий попал бы в группу инертных газов, а инертный газ аргон - в группу щелочных металлов.

Д. И. Менделеев не мог объяснить эти исключения из общего правила, как и причину периодичности в изменении свойств элементов и образованных ими веществ. Однако он предвидел, что эта причина кроется в сложном строении атома. Именно научная интуиция Д. И. Менделеева позволила ему построить систему химических элементов не в порядке возрастания их относительных атомных масс, а в порядке возрастания зарядов их атомных ядер. О том, что свойства элементов определяются именно зарядами их атомных ядер, красноречиво говорит существование изотопов, с которыми вы знакомились в прошлом году (вспомните, что это такое, приведите примеры известных вам изотопов).

В соответствии с современными представлениями о строении атома основой классификации химических элементов являются заряды их атомных ядер, и современная формулировка Периодического закона такова:

Периодичность в изменении свойств элементов и их соединений объясняется периодической повторяемостью в строении внешних энергетических уровней их атомов. Именно число энергетических уровней, общее число расположенных на них электронов и число электронов на внешнем уровне отражают принятую в Периодической системе символику, т. е. раскрывают физический смысл порядкового номера элемента, номера периода и номера группы (в чём он состоит?).

Строение атома позволяет объяснить и причины изменения металлических и неметаллических свойств элементов в периодах и группах.

Следовательно, Периодический закон и Периодическая система Д. И. Менделеева обобщают сведения о химических элементах и образованных ими веществах и объясняют периодичность в изменении их свойств и причину сходства свойств элементов одной и той же группы.

Эти два важнейших значения Периодического закона и Периодической системы Д. И. Менделеева дополняет ещё одно, которое заключается в возможности прогнозировать, т. е. предсказывать, описывать свойства и указывать пути открытия новых химических элементов. Уже на этапе создания Периодической системы Д. И. Менделеев сделал ряд прогнозов о свойствах ещё не известных в то время элементов и указал пути их открытия. В созданной им таблице Д. И. Менделеев для этих элементов оставил пустые клеточки (рис. 3).

Рис. 3.
Периодическая таблица элементов, предложенная Д. И. Менделеевым

Яркими примерами прогностической силы Периодического закона явились последующие открытия элементов: в 1875 г. французом Лекоком де Буабодраном был открыт галлий, предсказанный Д. И. Менделеевым пятью годами раньше как элемент под названием «экаалюминий» (эка - следующий за); в 1879 г. шведом Л. Нильсоном был открыт «экабор» по Д. И. Менделееву; в 1886 г. немцем К. Винклером - «экасилиций» по Д. И. Менделееву (определите по таблице Д. И. Менделеева современные названия этих элементов). Насколько точен был в своих предсказаниях Д. И. Менделеев, иллюстрируют данные таблицы 2.

Таблица 2
Предсказанные и экспериментально обнаруженные свойства германия

Предсказано Д. И. Менделеевым в 1871 г.

Установлено К. Винклером в 1886 г.

Относительная атомная масса близка к 72

Относительная атомная масса 72,6

Серый тугоплавкий металл

Серый тугоплавкий металл

Плотность металла около 5,5 г/см 3

Плотность металла 5,35 г/см 3

Формула оксида Э0 2

Формула оксида Ge0 2

Плотность оксида около 4,7 г/см 3

Плотность оксида 4,7 г/см 3

Оксид будет довольно легко восстанавливаться до металла

Оксид Ge0 2 восстанавливается до металла при нагревании в струе водорода

Хлорид ЭС1 4 должен быть жидкостью с температурой кипения около 90 °С и плотностью около 1,9 г/см 3

Хлорид германия (IV) GeCl 4 представляет собой жидкость с температурой кипения 83 °С и плотностью 1,887 г/см 3

Учёные-первооткрыватели новых элементов высоко оценили открытие русского учёного: «Вряд ли может существовать более яркое доказательство справедливости учения о периодичности элементов, чем открытие до сих пор гипотетического экасилиция; оно составляет, конечно, более чем простое подтверждение смелой теории, - оно знаменует собой выдающееся расширение химического поля зрения, гигантский шаг в области познания» (К. Винклер).

Американские учёные, открывшие элемент № 101, дали ему название «менделевий» в знак признания заслуг великого русского химика Дмитрия Менделеева, который первым применил Периодическую систему элементов для предсказания свойств тогда ещё не открытых элементов.

Вы познакомились в 8 классе и будете пользоваться в этом году формой Периодической таблицы, которая называется короткопериодной. Однако в профильных классах и в высшей школе преимущественно используется другая форма - длиннопериодный вариант. Сравните их. Что общего и что различного в этих двух формах Периодической таблицы?

Новые слова и понятия

  1. Периодический закон Д. И. Менделеева.
  2. Периодическая система химических элементов Д. И. Менделеева - графическое отображение Периодического закона.
  3. Физический смысл номера элемента, номера периода и номера группы.
  4. Закономерности изменения свойств элементов в периодах и группах.
  5. Значение Периодического закона и Периодической системы химических элементов Д. И. Менделеева.

Задания для самостоятельной работы

  1. Докажите, что Периодический закон Д. И. Менделеева, как и любой другой закон природы, выполняет объясняющую, обобщающую и предсказательную функции. Приведите примеры, иллюстрирующие эти функции у других законов, известных вам из курсов химии, физики и биологии.
  2. Назовите химический элемент, в атоме которого электроны располагаются по уровням согласно ряду чисел: 2, 5. Какое простое вещество образует этот элемент? Какую формулу имеет его водородное соединение и как оно называется? Какую формулу имеет высший оксид этого элемента, каков его характер? Запишите уравнения реакций, характеризующих свойства этого оксида.
  3. Бериллий раньше относили к элементам III группы, и его относительная атомная масса считалась равной 13,5. Почему Д. И. Менделеев перенёс его во II группу и исправил атомную массу бериллия с 13,5 на 9?
  4. Напишите уравнения реакций между простым веществом, образованным химическим элементом, в атоме которого электроны распределены по энергетическим уровням согласно ряду чисел: 2, 8, 8, 2, и простыми веществами, образованными элементами № 7 и № 8 в Периодической системе. Каков тип химической связи в продуктах реакции? Какое кристаллическое строение имеют исходные простые вещества и продукты их взаимодействия?
  5. Расположите в порядке усиления металлических свойств следующие элементы: As, Sb, N, Р, Bi. Обоснуйте полученный ряд, исходя из строения атомов этих элементов.
  6. Расположите в порядке усиления неметаллических свойств следующие элементы: Si, Al, Р, S, Cl, Mg, Na. Обоснуйте полученный ряд, исходя из строения атомов этих элементов.
  7. Расположите в порядке ослабления кислотных свойств оксиды, формулы которых: SiO 2 , Р 2 O 5 , Аl 2 O 3 , Na 2 O, MgO, Сl 2 O 7 . Обоснуйте полученный ряд. Запишите формулы гидроксидов, соответствующих этим оксидам. Как изменяется их кислотный характер в предложенном вами ряду?
  8. Напишите формулы оксидов бора, бериллия и лития и расположите их в порядке возрастания основных свойств. Запишите формулы гидроксидов, соответствующих этим оксидам. Каков их химический характер?
  9. Что такое изотопы? Как открытие изотопов способствовало становлению Периодического закона?
  10. Почему заряды атомных ядер элементов в Периодической системе Д. И. Менделеева изменяются монотонно, т. е. заряд ядра каждого последующего элемента возрастает на единицу по сравнению с зарядом атомного ядра предыдущего элемента, а свойства элементов и образуемых ими веществ изменяются периодически?
  11. Приведите три формулировки Периодического закона, в которых за основу систематизации химических элементов взяты относительная атомная масса, заряд атомного ядра и строение внешних энергетических уровней в электронной оболочке атома.

Здесь читатель найдет информацию об одном из важнейших законов, когда-либо открытых человеком в научной области - периодическом законе Менделеева Дмитрия Ивановича. Вы ознакомитесь с его значением и влиянием на химию, будут рассмотрены общие положения, характеристика и детали периодического закона, история открытия и основные положения.

Что такое периодический закон

Периодический закон - это природный закон фундаментального характера, который был открыт впервые Д. И. Менделеевым еще в 1869 году, а само открытие произошло благодаря сравнению свойств некоторых химических элементов и величин массы атома, известных в те времена.

Менделеев утверждал, что, согласно его закону, простые и сложные тела и разнообразные соединения элементов зависят от их зависимости периодического типа и от веса их атома.

Периодический закон является уникальным в своем роде и это связано с тем фактом, что он не выражается математическими уравнениями в отличие от других фундаментальных законов природы и вселенной. Графически свое выражение он находит в периодической системе химических элементов.

История открытия

Открытие периодического закона произошло в 1869 году, но попытки систематизировать все известные х-кие элементы начались задолго до этого.

Первую попытку создать такую систему предпринял И. В. Деберейнер в 1829. Он классифицировал все известные ему химические элементы в триады, связанные между собой близостью половины суммы атомных масс, входящих в эту группу трех компонентов. Следом за Деберейнером предприняли попытку создать уникальную таблицу классификации элементов А. де Шанкуртуа, он назвал свою систему «земной спиралью», а после него была составлена Джоном Ньюлендсом октава Ньюлендса. В 1864 практически одновременно Уильям Олдинг и Лотар Мейер опубликовали созданные независимо друг от друга таблицы.

Периодический закон был представлен научному сообществу на обозрение восьмого марта 1869, и произошло это во время заседания Русского х-кого общества. Менделеев Дмитрий Иванович заявил при всех о своем открытии и в том же году был выпущен менделеевский учебник «Основы химии», где впервые была показана периодическая таблица, созданная им. Годом позже, в 1870, он написал статью и отдал ее на обозрение в РХО, где впервые было употреблено понятие периодического закона. В 1871 Менделеев дал исчерпывающую характеристику своего з-на в знаменитой статье периодической законности химических элементов.

Неоценимый вклад в развитие химии

Значение периодического закона невероятно велико для научного сообщества всего мира. Это связано с тем, что открытие его дало мощный толчок развитию, как химии, так и других наук о природе, например, физике и биологии. Открытой была взаимосвязь элементов с их качественными химическими и физическими характеристиками, также это позволило понять суть построения всех элементов по одному принципу и дало начало современной формулировке понятий о химических элементах, конкретизировать знания представление о веществах сложного и простого строения.

Использование периодического закона позволило решать проблему химического прогнозирования, определить причину поведения известных химических элементов. Атомная физика, а в том числе и ядерная энергетика, стали возможными вследствие этого же закона. В свою очередь, данные науки позволили расширить горизонты сущности этого закона и углубиться в его понимание.

Химические свойства элементов периодической системы

По сути, химические элементы взаимосвязаны между собой характеристиками, свойственными им в состоянии свободного как атома, так и иона, сольватированного или гидратированного, в простом веществе и форме, которую могут образовать их многочисленные соединения. Однако х-кие свойства обычно заключаются в двух явлениях: свойства, характерные для атома в свободном состоянии, и простого вещества. К такому роду свойств относится множество их видов, но самые важные это:

  1. Атомная ионизация и ее энергия, зависящая от положения элемента в таблице, его порядкового числа.
  2. Энергетическое родство атома и электрона, которая так же, как и атомная ионизация, зависит от места нахождения элемента в периодической таблице.
  3. Электроотрицательность атома, не носящая постоянное значение, а способная изменяться в зависимости от различного рода факторов.
  4. Радиусы атомов и ионов - тут, как правило, используются эмпирические данные, что связано с волновой природой электронов в состоянии движения.
  5. Атомизация простых веществ - описание возможностей элемента к реакционной способности.
  6. Степени окисления - формальная характеристика, однако фигурирующая как одна из важнейших характеристик элемента.
  7. Потенциал окисления для простых веществ - это измерение и показание потенциала вещества к действию его в водных растворах, а также уровень проявления свойств окислительно-восстановительного характера.

Периодичность элементов внутреннего и вторичного типа

Периодический закон дает понимание еще одной немаловажной составной частицы природы - внутренней и вторичной периодичности. Вышеупомянутые области изучения атомных свойств, на самом деле, гораздо сложнее, чем можно подумать. Связано это с тем фактом, что элементы s, p, d таблицы меняют свои качественные характеристики в зависимости от положения в периоде (периодичность внутреннего характера) и группе (периодичность вторичного характера). Например, внутренний процесс перехода элемента s от первой группы до восьмой к p-элементу сопровождается точками минимума и максимума на кривой линии энергии ионизированного атома. Данное явление показывает внутреннюю непостоянность периодичности изменения свойств атома по положению в периоде.

Итоги

Теперь читатель имеет четкое понимание и определение того, что являет собой периодический закон Менделеева, осознает его значение для человека и развития различных наук и имеет представление о его современных положениях и истории открытия.

ЗАНЯТИЕ 5 10-й класс (первый год обучения)

Периодический закон и система химических элементов д.И.Менделеева План

1. История открытия периодического закона и системы химических элементов Д.И.Менделеева.

2. Периодический закон в формулировке Д.И.Менделеева.

3. Современная формулировка периодического закона.

4. Значение периодического закона и системы химических элементов Д.И.Менделеева.

5. Периодическая система химических элементов – графическое отражение периодического закона. Строение периодической системы: периоды, группы, подгруппы.

6. Зависимость свойств химических элементов от строения их атомов.

1 марта (по новому стилю) 1869 г. считается датой открытия одного из важнейших законов химии – периодического закона. В середине XIX в. было известно 63 химических элемента, и возникла потребность в их классификации. Попытки такой классификации предпринимали многие ученые (У.Одлинг и Дж.А.Р.Ньюлендс, Ж.Б.А.Дюма и А.Э.Шанкуртуа, И.В.Деберейнер и Л.Ю.Мейер), но лишь Д.И.Менделееву удалось увидеть определенную закономерность, расположив элементы в порядке возрастания их атомных масс. Эта закономерность имеет периодический характер, поэтому Менделеев сформулировал открытый им закон следующим образом: свойства элементов, а также формы и свойства их соединений находятся в периодической зависимости от величины атомной массы элемента.

В системе химических элементов, предложенной Менделеевым, был ряд противоречий, которые сам автор периодического закона устранить не смог (аргон–калий, теллур–йод, кобальт–никель). Лишь в начале XX в., после открытия строения атома, был объяснен физический смысл периодического закона и появилась его современная формулировка: свойства элементов, а также формы и свойства их соединений находятся в периодической зависимости от величины заряда ядер их атомов.

Такую формулировку подтверждает и наличие изотопов, химические свойства которых одинаковы, хотя атомные массы различны.

Периодический закон – один из основных законов природы и важнейший закон химии. С открытия этого закона начинается современный этап развития химической науки. Хотя физический смысл периодического закона стал понятен только после создания теории строения атома, сама эта теория развивалась на основе периодического закона и системы химических элементов. Закон помогает ученым создавать новые химические элементы и новые соединения элементов, получать вещества с нужными свойствами. Сам Менделеев предсказал существование 12 элементов, которые в то время еще не были открыты, и определил их положение в периодической системе. Свойства трех из этих элементов он подробно описал, и при жизни ученого эти элементы были открыты («экабор» – галлий, «экаалюминий» – скандий, «экасилиций» – германий). Кроме того, периодический закон имеет большое философское значение, подтверждая наиболее общие законы развития природы.

Графическим отражением периодического закона является периодическая система химических элементов Менделеева. Существует несколько форм периодической системы (короткая, длинная, лестничная (предложена Н.Бором), спиралеобразная). В России наибольшее распространение получила короткая форма. Современная периодическая система содержит 110 открытых на сегодняшний день химических элементов, каждый из которых занимает определенное место, имеет свой порядковый номер и название. В таблице выделяют горизонтальные ряды – периоды (1–3 – малые, состоят из одного ряда; 4–6 – большие, состоят из двух рядов; 7-й период – незавершенный). Кроме периодов выделяют вертикальные ряды – группы, каждая из которых подразделяется на две подгруппы (главную – а и побочную – б). Побочные подгруппы содержат элементы только больших периодов, все они проявляют металлические свойства. Элементы одной подгруппы имеют одинаковое строение внешних электронных оболочек, что обусловливает их схожие химические свойства.

Период – это последовательность элементов (от щелочного металла до инертного газа), атомы которых имеют одинаковое число энергетических уровней, равное номеру периода.

Главная подгруппа – это вертикальный ряд элементов, атомы которых имеют одинаковое число электронов на внешнем энергетическом уровне. Это число равно номеру группы (кроме водорода и гелия).

Все элементы в периодической системе разделяются на 4 электронных семейства (s -, p -, d -, f -элементы) в зависимости от того, какой подуровень в атоме элемента заполняется последним.

Побочная подгруппа – это вертикальный ряд d -элементов, имеющих одинаковое суммарное число электронов на d -подуровне предвнешнего слоя и s -подуровне внешнего слоя. Это число обычно равно номеру группы.

Важнейшими свойствами химических элементов являются металличность и неметалличность.

Металличность – это способность атомов химического элемента отдавать электроны. Количественной характеристикой металличности является энергия ионизации.

Энергия ионизации атома – это количество энергии, которое необходимо для отрыва электрона от атома элемента, т. е. для превращения атома в катион. Чем меньше энергия ионизации, тем легче атом отдает электрон, тем сильнее металлические свойства элемента.

Неметалличность – это способность атомов химического элемента присоединять электроны. Количественной характеристикой неметалличности является сродство к электрону.

Сродство к электрону – это энергия, которая выделяется при присоединении электрона к нейтральному атому, т. е. при превращении атома в анион. Чем больше сродство к электрону, тем легче атом присоединяет электрон, тем сильнее неметаллические свойства элемента.

Универсальной характеристикой металличности и неметалличности является электроотрицательность (ЭО) элемента.

ЭО элемента характеризует способность его атомов притягивать к себе электроны, которые участвуют в образовании химических связей с другими атомами в молекуле.

Чем больше металличность, тем меньше ЭО.

Чем больше неметалличность, тем больше ЭО.

При определении значений относительной ЭО по шкале Полинга за единицу принята ЭО атома лития (ЭО(Li) = 1); самым электроотрицательным элементом является фтор (ЭО(F) = 4).

В малых периодах от щелочного металла к инертному газу:

Заряд ядер атомов увеличивается;

Число энергетических уровней не изменяется;

Число электронов на внешнем уровне увеличивается от 1 до 8;

Радиус атомов уменьшается;

Прочность связи электронов внешнего слоя с ядром увеличивается;

Энергия ионизации увеличивается;

Сродство к электрону увеличивается;

ЭО увеличивается;

Металличность элементов уменьшается;

Неметалличность элементов увеличивается.

Все d -элементы данного периода похожи по своим свойствам – все они являются металлами, имеют мало различающиеся радиусы атомов и значения ЭО, поскольку содержат одинаковое число электронов на внешнем уровне (например, в 4-м периоде – кроме Cr и Cu).

В главных подгруппах сверху вниз:

Число энергетических уровней в атоме увеличивается;

Число электронов на внешнем уровне одинаково;

Радиус атомов увеличивается;

Прочность связи электронов внешнего уровня с ядром уменьшается;

Энергия ионизации уменьшается;

Сродство к электрону уменьшается;

ЭО уменьшается;

Металличность элементов увеличивается;

Неметалличность элементов уменьшается.