Еще в 2010 году. Но несмотря на то, что графен уже используется в некоторых устройствах, пока он не так сильно изменил нашу жизнь, как многие ожидали. О том, почему это так и какие новые двумерные материалы появились вслед за графеном, N+1 вместе с коллегами из «Известий», РИА Новости и «Популярной механики» побеседовал на 60-й научной конференции МФТИ с выпускником Физтеха нобелевским лауреатом Константином Новоселовым.

Графен в повседневной жизни

N+1: Константин Сергеевич, графен был открыт уже довольно давно, и вы говорили, что сейчас можно купить устройства, в которых он используется. Действительно ли сейчас уже есть такие устройства?

Такие технологии действительно есть, но они входят в нашу жизнь постепенно . Мы считаем, что графен является уникальным материалом, но он более-менее повторяет путь всех других материалов, особенно углеродных. Так же 50 лет назад происходило с углеродными волокнами. Сначала их использовали в спортивном инвентаре и в машинах. И у графена первое применение было в композитных материалах. А сейчас графен все больше используется для решения проблемы теплоотвода - одной из серьезных проблем современной микроэлектроники. Например, в батарейках графен используется для теплоотвода и для улучшения механических свойств.

Постепенно графен начинает использоваться для все более и более технологических приложений. Сейчас вы можете купить телефон или часы с тач-падом из графена. У меня есть несколько. Я купил их в частном порядке, в магазине, никто не подарил. Одна из наших компаний работает в области печатной электроники: мы печатаем RFID метки . А бывшая Nokia пытается развивать оптические камеры для инфракрасного диапазона на основе графена.

N+1: Насколько дешевы сейчас графеновые технологии?

Все зависит от приложения. Сенсорные панели, наверно, проигрывают по цене материалам на основе оксида индия и олова (ITO - indium tin oxide). А RFID-метки - наоборот, очень дешевые по сравнению с медными или алюминиевыми.

Константин Новоселов

Евгений Пелевин / Пресс-служба МФТИ

РИА: В научной фантастике часто рассказывают про броню из графена, солнечные паруса из графена, какие-то строительные конструкции. Можно ли будет создавать в будущем конструкции из графена площадью хотя бы с телевизор?

Они есть, их уже делают.

РИА: А более масштабные?

И такие, наверно, делают. Но пленку размером с один телевизор легко сделать.

РИА: Даже в промышленных условиях?

Да, вы можете купить лист графена размером метр на метр, принципиальных проблем здесь нет. Это вопрос рынка: есть ли на это спрос.

Одна из компаний, работающих с LG, пытается использовать графен в качестве барьера для влаги. Сейчас с помощью технологии непрерывного роста они могут получать непрерывную графеновую ленту шириной 20 сантиметров. При такой технологии образующуюся ленту просто подрезают на выходе. Следующая их цель - сделать ленту шириной полметра.

РИА: Пять лет назад вы опубликовали одну из первых статей, посвященных графеновым транзисторам. Удалось ли вам создать «чистый» графеновый транзистор без добавлений каких-то примесей, или это пока нельзя реализовать?

Графеновые транзисторы существуют, но из-за того, что у графена нет запрещенной зоны, они работают не так хорошо. Поэтому мы попытались придумать, как этой проблемы избежать. Для этого мы сделали гетероструктурные транзисторы. Я думаю, что полупроводниковая промышленность заинтересована в подобных материалах, но будут ли именно они использоваться или нет - я не знаю, поскольку эта технология слишком сильно отличается от той, которая используется в традиционных транзисторах.

С другой стороны, мы опубликовали нашу статью, а буквально через полгода Samsung опубликовал в том же журнале статью об очень похожем транзисторе. Но он был на порядок проще, чем наш туннельный транзистор. Наши устройства без графена работать не будут, а с графеном они работают, и их можно сделать, но вопрос, готова ли технология к тому, чтобы это использовать.

ПМ: Из всех этих применений, которые появились за все эти годы, какое применение было на ваш взгляд самым странным (вот недавно, например, из оксида графена фильтр для виски), а какое - таким, о котором вы подумали: черт, жаль, что это сделали не мы?

Вообще у графена применений много, но пока не все они интересны. В данный момент все пытаются просто заменить другой материал графеном. Получается чуть-чуть лучше, но и только. Гораздо интереснее было бы создавать принципиально новые приборы, используя всю комбинацию уникальных свойств графена. Мы сделали, например, контактные линзы, которые могут менять фокус. Для этого нам нужен прозрачный, проводящий, гибкий и прочный материал. И это именно графен, другого такого материала нет. Поэтому мы пытаемся искать для графена такие применения, которые без него в принципе были бы невозможны. Очень легко взять графен и засунуть вместо чего-то другого, а вот придумать ему новое применение не так просто.

«Известия»: А эта технология с линзами уже выходит на промышленное производство или еще нет?

Нет, далеко еще не выходит, этим нужно заниматься. Мы все-таки ученые, мы можем показать, продемонстрировать, что это возможно. А дальше кто-то должен развивать эти технологии. Развитие технологий - это так же сложно и так же долго, как и исследования в лаборатории, если не дольше.

«Известия»: Во время своего выступления на конференции вы говорили про применение графена для военной авиации и создания стелс-технологий. Такие технологии тоже уже существуют ?

Активно над такими технологиями работают китайцы. В Китае есть институт Beijing Institute of Aeronautical Materials, который занимается всеми материалами для китайской авиации. Я с ними общаюсь, но они далеко не все мне рассказывают. Они, в частности, наши материалы проверяют на возможность использования для стелс-технологий, но при этом проверяют и свои материалы и не всегда рассказывают нам что лучше. У них есть очень хорошие разработки по сверхсплавам, которые они используют для лопаток турбин. В одну часть турбины ставятся титановые сплавы, в другую - суперсплавы. Добавление графена сильно улучшает характеристики таких сплавов. В Китае ходят слухи, что какие-то самолеты уже с ним летают. Я не знаю. Но то, что они туда добавляют графен, и свойства меняются в лучшую сторону, это правда - мы участвовали в тестировании.

Графен против нанотрубок

Графен является не единственной низкоразмерной модификацией углерода. Кроме него, существуют углеродные нанотрубки, в которых графеновый слой свернут в однослойную или многослойную трубку, фуллерены - молекулы, в которых атомы углерода располагаются по вершинам усеченного икосаэдра, - или более необычные пентаграфен или фаграфен. Подробнее о самых интересных формах углерода вы можете прочитать в нашем .

ПМ: Вы, наверняка, знаете про компанию «Оксиал» в Новосибирске, которая делает одностенные нанотрубки в каких-то огромных количествах. На своем сайте они предлагают купить сто грамм нанотрубок примерно за 50 тысяч рублей. То есть их уже научились производить довольно много и довольно дешево.

Я не уверен, что это дешево.

ПМ: По крайней мере, более-менее доступно. Вы можете объяснить читателям, чем отличается графен от углеродных нанотрубок с точки зрения их возможного применения?

Нанотрубка - это свернутый в трубку графен. Это одномерный объект, а графен - двумерный. В зависимости от применения, вам лучше использовать либо одно, либо другое. Например, если нужно сделать транзистор, то по современной технологии надо сначала получить сплошную поверхность, и потом из нее вырезать транзистор. С нанотрубками это сделать гораздо сложнее.


Структура одностенной углеродной нанотрубки

Wikimedia commons

ПМ: А можно ли сделать те же RFID метки не на графене, а на нанотрубках?

Я думаю, что это было бы гораздо дороже. И я не уверен, что оно бы так же хорошо работало. Потому что для этих меток очень важно получить низкое сопротивление. Я думаю, что с использованием графена это получается лучше. Наверное, это в принципе возможно, но будет дороже и хуже.

ПМ: Есть такая мечта (кажется, об этом говорил Обама), что очень хочется получить краску, которой можно было бы покрасить, например, дом и превратить его таким образом в солнечную батарейку.

Да, такими проектами мы как раз занимаемся.

ПМ: И что мешает создать реальную технологию?

В лаборатории это уже существует, но от лаборатории до реальных технологий нужно очень-очень долго идти. Встают вопросы цены, технологичности их нанесения и эффективности. И на каждый из этих сложных технологических вопросов нужно поставить по 10 человек, чтобы они помогали решать их в течение 2-3 лет. Давайте я вам вопрос задам. Вы представляете себе компьютер? Там есть микропроцессор. Эти микропроцессоры делаются из кремния на заводах. Представьте: на заводы приходит тоненькая пластина, там стоят разные станки, на которых выполняются разные операции. Как вы думаете, за какое время из пустой пластины будет сделан микропроцессор?

РИА: Сутки? Месяц?

Три месяца. От одного до трех месяцев. Это только для того, чтобы сделать один микропроцессор. А эту технологию еще нужно отточить, и каждый эксперимент занимает три месяца. Так что разработка технологии - это очень сложный процесс. А люди этого не понимают. Для людей современная технология - это добавить кнопку в Фейсбуке. Я ничего плохого не могу сказать про big data, но все-таки нужно понимать, что такие технологии за один день не рождаются. Это годы упорного труда.

ПМ: А вы уверены, что такие краски, если они появятся, будут именно на графене, а не на нанотрубках, например?

Они конечно, появятся, но на чем они будут работать - не знаю. Я сегодня говорил, что мы создали Институт графена, но исследовать в нем только графен - неправильно. Нам нужно двигаться куда-то дальше. Разумеется, я надеюсь, что в своей жизни смогу придумать еще какой-то материал, который будет более интересен, чем графен. Но, если честно, это вряд ли произойдет. Графен - это только шестиугольники из углерода, проще некуда. Как правило, что-то простое всегда работает. Но надежда всегда есть. Поэтому я не знаю, будут ли, например, краски сделаны из графена или из чего-то еще. Мы чему-то научились с этим материалом, графен открыл дорогу многим другим двумерным материалам. И сейчас мы в основном сфокусированы на других двумерных материалах.

Двумерные материалы

Сейчас ученые могут получать двумерные кристаллы, которые по своим электронным свойствам от графена сильно отличаются. Это могут быть полупроводники, сверхпроводники, изоляторы или ферромагнетики. Например, нитрид бора, ближайший структурный аналог графена, является изолятором. А полупроводниковые двумерные кристаллы обычно получают из халькогенидов переходных металлов (в основном, это сульфиды и селениды вольфрама и молибдена). Наиболее популярным среди них сейчас является сульфид молибдена, но существует и большое количество других соединений с разной шириной запрещенной зоны. Большая часть из них работает в ультра-фиолетовой области, поэтому наиболее перспективным материалом для будущих телекоммуникационных технологий считаются материалы на основе двумерного теллурида молибдена, который работает в той же области длин волн, что и кремниевая электроника.

ПМ: Вы можете назвать три главных конкурента графена среди этих двумерных материалов?

Они все разные, и они не конкуренты, они друг друга дополняют. Например, для солнечной батареи вам нужен материал, который хорошо поглощает солнечный свет. Графен все-таки не такой, он прозрачный. Поэтому для этого мы используем те материалы, которые хорошо поглощают солнечный свет, например, дисульфид молибдена. Я рассказывал про относительно новый материал теллурид молибдена, который мы хотим использовать в кремниевой фотонике. Такие работы уже есть, но пока это только экспериментальные работы. После них должен последовать рост в технологиях, а в технологии можно споткнуться и на ерунде. Вот, например, будет температура отличаться от нужной на 10 градусов. Чтобы получить нужный материал, нам нужно на 10 градусов больше, а на производстве - на 10 градусов меньше. И это никак не изменить.


Структура двумерного кристалла дисульфида молибдена

Wikimedia commons

РИА: Почему-то дисульфид молибдена в прессе встречается достаточно редко и не приобрел такой статус, как графен. Хотя по многим параметрам он его .

Просто графен - это все-таки уникальный материал. Он очень простой, и при этом обладает набором уникальных свойств. В случае графена с помощью очень простой модели можно получить очень красивый результат. Но как такой результат будет потом использоваться в применениях, я не знаю. Но то, что в графене очень симпатичная физика - это доказано.

РИА: В дисульфиде молибдена, получается, менее симпатичная?

Нет, там тоже есть очень красивые эксперименты, но они немножко более сложные. Например, недавно там был очень красивый эксперимент по контролированию квантового состояния экситона. Там тоже можно много чего сделать. Но это немного сложнее и менее интуитивно понятно, поэтому широкая публика об этом мало что знает.

N+1: А можно ли как-то предсказать, какой именно двумерный материал будет обладать какими-то интересными свойствами? И связаны ли свойства этого двумерного материала со свойствами трехмерного кристалла?

Они часто связаны, но определенные отличия есть. Свойства можно пытаться предсказать, но вопрос, насколько эти предсказания будут точны. Сейчас есть много проектов (по-английски это называется «material genomics»), в которых люди с помощью расчетов смотрят на какие-то материалы и пытаются предсказать их свойства. Сейчас уже существует довольно большое количество материалов, которые можно получить. И исследовать их все экспериментально очень сложно. Поэтому мы очень сильно стараемся развить теорию.

N+1: То есть какой-то однозначной связи между свойствами трехмерного кристалла и одноатомной пленки нет?

Она есть, и до какой-то степени свойства двумерных кристаллов можно предсказать, но не на сто процентов.

«Известия»: И как вы сужаете круг «подозреваемых»? Чисто теоретически? Используете ли вы какие-то алгоритмы ?

Я этим не занимаюсь, но есть люди, которые этим занимаются, и я читаю их статьи. Я думаю: «А вот здорово было бы исследовать, например, двумерные ферромагнетики. Давайте поищем, что сейчас существует, и сделаем». То есть, теоретики предсказывают, а мы выбираем из их предсказаний то, что нам интересно. Иногда мы сами выдумываем, что бы такого интересного попробовать, и пробуем более-менее наугад.

ПМ: Михаил Кацнельсон говорил, что за 50 лет теоретического изучения графена, когда самого графена еще не было, было получено теоретических знаний в 10 раз меньше, чем за пять лет после его получения. Возникает вопрос, а зачем тогда нужны физики-теоретики? Они предсказали, что графен не может существовать. Как вот вы, например, взаимодействуете с теоретиками ?

Взаимодействие экспериментаторов и теоретиков очень важно. Есть проекты, где лидируют теоретики, где они нам подсказывают эксперименты. Есть проекты, где я придумываю эксперимент, потому что мне кажется, что система должна вести себя определенным образом.

ПМ: Вы можете привести самый яркий пример вот такого эксперимента?

Это сложно. Практически все наши проекты проходят в коллаборации с теоретиками. Какие-то очень простые вычисления я и сам могу сделать, по каким-то мне приходится общаться с теоретиками, математиками. Например, проблема экситонов во всех новых двумерных материалах - довольно-таки сложная. Чтобы рассчитать все возможные переходы, мы общаемся с теоретиками.

N+1: А все эти двумерные кристаллы - это обязательно одноатомные пленки? Или это может быть двухатомный или трехатомный слой? В какой момент у такого материала теряются его уникальные двумерные свойства, и графен становится графитом?

Это всегда вопрос. Один слой ведет себя совершено не так, как два. По электронной структуре это очень здорово . А два слоя ведут себя не так, как три. При этом три слоя можно еще и составить по-разному. Можно вот так, а можно вот так (показывает на пальцах разные ориентации одного слоя относительно другого - прим. N+1) . И они себя тоже ведут по-разному. Это сложно сказать, и я не уверен, что есть смысл проводить такую градацию. В зависимости от применения иногда нужно иметь один слой, иногда два, иногда три, иногда пять. Это зависит от конкретного приложения.

Многослойные пироги

Объединив несколько одноатомных слоев разного состава в многослойные гетероструктуры, можно получить сложные функциональные устройства, состоящих из нескольких элементов, выполняющих разные функции: например, для кодирования, в качестве транзисторов или солнечных батарей. Чтобы получить такие сложные многослойные структуры, студентам из группы Константина Новоселова приходится атом за атомом с помощью вандерваальсовых пинцетов составлять нужный двумерный кристалл. В результате один слой нужного состава можно составить примерно за полдня, а на сборку некоторых сложных гетероструктур уходит до полутора недель.

Нужны атомарно плоские слои, а сила притяжения зависит от их химического состава. Между каким-то слоями взаимодействие лучше, между какими-то - хуже. Мы, в основном, работаем с таким, где сильное взаимодействие.

ПМ: А предсказать свойства такого многослойного пирога - это пока тяжелая задача?

Да, это всегда очень сложно понять. Эта система сама по себе очень сложная. Как нас учили на физтехе, всегда нужно найти малый параметр и им пренебречь. И нужно определить, каким именно параметром можно пренебречь в конкретном случае. Это наша задача, экспериментаторов. Мы пренебрегаем, и смотрим, получается ли в этом случае описать поведение системы. Если нет, то начинаем этот параметр учитывать. Это сложный итерационный процесс изучения новых материалов.

Александр Дубов

революционный материал

21 столетия .

Графен — революционный материал 21 столетия. Это самый прочный, самый легкий и
электропроводящий вариант углеродного соединения. Графен был найден Константином
Новоселовым и Андреем Геймом.

Русские ученые
были удостоены Нобелевской премии.



ПУЛЕНЕПРОБИВАЕМЫЙ ГРАФЕН ПОЗВОЛИТ СОЗДАТЬ СВЕРХМОЩНЫЙ БРОНЕЖИЛЕТ


Слои углерода в один атом толщиной могут поглощать удары, которые пробили бы даже сталь. Последние исследования показали, что чистый графен показывает себя в два раза лучше, чем ткань, которая в настоящее время используется при создании пуленепробиваемых жилетов, что делает его идеальным для создания брони для солдат и полиции.

Графен представляет собой лист одиночных атомов углерода, соединенных вместе в форме пчелиных сот. Будучи отличным проводником тепла и электричества, графен уже нашел применение в компьютерах и электронике и обещает стать чудо-материалом 21 века, заменив кремний. Помимо этого, графен невероятно прочен для своего легкого веса, что делает его идеальным материалом для бронежилетов.

ГРАФЕНОВАЯ КРАСКА В БУДУЩЕМ ИЗБАВИТ НАС ОТ КОРРОЗИИ


Поверхность из графена, одного атомного слоя углерода, может быть покрыта кислородом для создания оксида графена; эта форма графена может оказать существенное влияние на химическую, фармацевтическую и электронную промышленность, сообщает Phys.org. Если распылить такую «краску», она может обеспечить сверхпрочное нержавеющее покрытие для широкого спектра промышленных применений.

Оксид графена может быть использован для окрашивания различных поверхностей, от стекла и металла до обычных кирпичей. После простой химической обработки покрытие будет вести себя как графит в плане термической и химической стабильности, но по механическим свойствам будет приближено к графену, самому прочному материалу из известных на сегодня.

Команда во главе с доктором Рагулем Наиром и лауреатом Нобелевской премии Андреем Геймом ранее показывала, что многослойные пленки из оксида графена являются вакуумплотными в сухих условиях, но если подвергнуть их воздействию воды или ее паров, они будут выступать в качестве молекулярного сита, пропуская малые молекулы ниже определенных размеров. Эти выводы могут иметь огромные последствия для очистки воды.

Такие контрастные свойства обусловлены структурой пленок из оксида графена, которые состоят из миллионов мелких хлопьев, наложенных в случайном порядке друг на друга, но имеющих наноразмерные капилляры между собой. Молекулы воды могут размещаться в этих нанокапиллярах и пропускать небольшие атомы и молекулы.

В статье, опубликованной в Nature Communications на этой неделе, команда из Университета Манчестера показала, что можно плотно закрыть эти нанокапилляры с помощью простой химической обработки, что сделает графеновые пленки еще сильнее механически, а также полностью непроницаемыми для всего: газов, жидкостей или сильных химикатов. К примеру, исследователи показали, что посуда или медные контейнеры, покрытые графеновой краской, могут быть использованы в качестве контейнеров для сильно коррозионных кислот.

Исключительные барьерные свойства графеновой краски уже вызвали интерес у многих компаний, которые в настоящее время сотрудничают с Университетом Манчестера, разрабатывая новые защитные и антикоррозионные покрытия.

«Графеновая краска имеет все шансы стать по-настоящему революционным продуктом для промышленности, которая имеет дело с любым видом защиты от воздуха, погодных условий или агрессивных химических веществ. Сюда входят, например, медицинская электроника и атомная промышленность или даже судостроение», — рассказал Наир.

Доктор Ян Су, первый автор работы, добавляет: «Графеновую краску можно наносить практически на любой материал, независимо от того, будет это пластик, металл или даже песок. К примеру, пластиковые пленки, покрытые графеном, могут пригодиться в качестве медицинских упаковок, они улучшат срок годности при хранении, так как будут менее проницаемы для воздуха и водяных паров. Кроме того, слои графеновой краски оптически непрозрачны».

IBM ОСВАИВАЕТ ПРОЦЕСС ПРОИЗВОДСТВА ГРАФЕНОВЫХ ЧИПОВ


Несмотря на столь поразительные и удивительные характеристики и свойства, которыми обладает материал графен, до его массового производства и применения остаются еще долгие годы. Но как оказывается, это не мешает такой компании, как IBM, начать заигрывать с технологиями производства чипов на его базе. Электропроводимый наноматериал IBM использовала для постройки интегральной цепи многоканального высокочастотного передатчика.

Высокочастотный передатчик был построен из трех графеновых транзисторов, четырех дросселей, двух конденсаторов и двух резисторов. Все эти детали расположились на площади в 0,6 квадратных миллиметра. Для производства чипа IBM использовала сборочную линию для отливки 200 миллиметровых кремниевых пластин, но при этом не задействовала процесс интегрирования цепей, оставив место для графеновых транзисторов.

Сутью сборки графенового чипа явилась демонстрация всей сложности производственного процесса электрических цепей на основе графена. И тем не менее, даже несмотря на всю сложность, IBM смогла продемонстрировать возможность совместимости процесса сборки с технологиями на базе КМОП-структуры.

Для проверки работы высокочастотного чипа через него передали на частоте 4,3 ГГц цифровой сигнал с текстовым сообщением I-B-M без каких-либо искажений.

Графен является самым прочным материалом на Земле. В 300 раз прочнее стали. Лист графена площадью в один квадратный метр и толщиной, всего лишь в один атом, способен удерживать предмет массой 4 килограмма. Графен, как салфетку, можно сгибать, сворачивать, растягивать. Бумажная салфетка рвется в руках. С графеном такого не случится.

Другие формы углерода: графен, усиленный — арматурный графен , карбин, алмаз, фуллерен, углеродные нанотрубки, «вискерсы» .

Описание графена:

Графен — это двумерная аллотропная форма углерода, в которой объединённые в гексагональную кристаллическую решётку атомы образуют слой толщиной в один атом. Атомы углерода в графене соединяются между собой sp 2 -связями. Графен в буквальном смысле представляет собой материю, ткань .

Углерод имеет множество аллотропов. Некоторые из них, например, алмаз и графит , известны давно, в то время как другие открыты относительно недавно (10-15 лет назад) — фуллерены и углеродные нанотрубки . Следует отметить, что известный многие десятилетия графит представляет собой стопку листов графена, т.е. содержит несколько графеновых плоскостей.

На основе графена получены новые вещества: оксид графена, гидрид графена (называемый графан) и флюорографен (продукт реакции графена со фтором).

Графен обладает уникальными свойствами, что позволяет его использовать в различных сферах.

Свойства и преимущества графена:

— графен является самым прочным материалом на Земле. В 300 раз прочнее стали . Лист графена площадью в один квадратный метр и толщиной, всего лишь в один атом, способен удерживать предмет массой 4 килограмма. Графен, как салфетку, можно сгибать, сворачивать, растягивать. Бумажная салфетка рвется в руках. С графеном такого не случится,

благодаря двумерной структуре графена, он является очень гибким материалом, что позволит использовать его, например, для плетения нитей и других верёвочных структур. При этом тоненькая графеновая «верёвка» по прочности будет аналогична толстому и тяжёлому стальному канату,

— в определённых условиях у графена активируется ещё одна способность, которая позволяет ему «залечивать» «дырки» в своей кристаллической структуре в случае её повреждений,

графен обладает более высокой электропроводностью. Графен практически не имеет сопротивления. У графена в 70 раз мобильность электронов выше, чем у кремния . Скорость электронов в графене составляет 10 000 км/с, хотя в обычном проводнике скорость электронов порядка 100 м/с.

— обладает высокой электроемкостью. Удельная энергоемкость графена приближается к 65 кВт*ч/кг. Данный показатель в 47 раз превышает тот, который имеют столь распространенные ныне литий-ионные аккумуляторы,

обладает высокой теплопроводностью. Он в 10 раз теплопроводнее меди ,

— характерна полная оптическая прозрачность. Он поглощает всего 2,3% света,

графеновая плёнка пропускает молекулы воды и при этом задерживает все остальные, что позволяет использовать ее как фильтр для воды,

— самый легкий материал. В 6 раз легче пера,

инертность к окружающей среде,

— впитывает радиоактивные отходы.

Физические свойства графена*:

* при комнатной температуре.

Получение графена:

Основными способами получения графена считаются:

микромеханическое отшелушивание слоев графита (метод Новоселова — метод скотча). Образец графита помещали между лентами скотча и последовательно отшелушивали слои, пока не остался последний тонкий слой, состоящий из графена,

диспергирование графита в водных средах,

механическая эксфолиация;

эпитаксиальный рост в вакууме;

химическое парофазное охлаждение (CVD-процесс),

метод «выпотевания» углерода из растворов в металлах или при разложении карбидов.

Получение графена в домашних условиях:

Необходимо взять кухонный блендер мощностью не менее 400 Вт. В чашу блендера выливают 500 мл воды, добавляя в жидкость 10-25 миллилитров любого моющего вещества и 20-50 грамм толченого грифеля от карандаша. Далее блендер должен поработать от 10 минут до получаса вплоть до появления взвеси из чешуек графена. Полученный материал будет обладать высокой проводимостью, что позволит использовать его в электродах фотоэлементов. Также произведенный в бытовых условиях графен способен улучшить свойства пластика.

Применение графена:

солнечная энергетика,

водоочистка, фильтрация воды, опреснение морской воды,

электроника (ЖК-мониторы, транзисторы, микросхемы и пр.),

в аккумуляторах и источниках энергии. Графеновый аккумулятор позволяет автомобилю без подзарядки преодолевать 1000 км, время зарядки которого не более 16 секунд,

медицина. Ученые обнаружили, что графеновые чешуйки оксида графена ускоряют размножение стволовых клеток и регенерацию клеток костной ткани,

создание суперкомпозитов,

очистка воды от радиоактивных загрязнений. Оксид графена быстро удаляет радиоактивные вещества из загрязненной воды. Хлопья оксида графена быстро связываются с естественными и искусственными радиоизотопами и конденсируют их, превращая в твердые вещества. Сами хлопья растворимы в жидкости, и их легко производить в промышленных масштабах.

Аддитивная печать металлических деталей сложной фо...

Защитное покрытие для камня...

Колонизация Луны

Провода с нулевым сопротивлением для свечей зажига...

LTCC технология – технология низкотемпературной со...

Детонационный двигатель

Графен - революционный материал 21 столетия. Это самый прочный, самый легкий и электропроводящий вариант углеродного соединения.

Графен был найден Константином Новоселовым и Андреем Геймом, работающими в Университете Манчестера, за что русские ученые были удостоены Нобелевской премии. На сегодняшний день на исследование свойств графена выделено около десяти миллиардов долларов на десять лет, и ходят слухи, что он может стать отличной заменой кремнию, особенно в полупроводниковой промышленности.

Однако двухмерная структура наподобие этого углеродсодержащего материала была предсказана и для других элементов Периодической системы химических элементов и весьма необычные свойства одного из таких веществ недавно удалось изучить. А называется это вещество «синий фосфор».

Выходцы из России, работающие в Британии, Константин Новоселов и Андрей Гейм создали графен – полупрозрачный слой углерода толщиной в один атом – в 2004 году. С этого момента практически сразу и повсюду мы стали слышать хвалебные оды о самых разных удивительных свойствах материала, обладающего потенциалом изменить наш мир и найти свое применение в самых разных сферах, начиная от производства квантовых компьютеров и заканчивая производством фильтрами для получения чистой питьевой воды. Прошло 15 лет, но мир под влиянием графена так и не изменился. Почему?

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ УКРАИНЫ

Славянский Педагогический Государственный университет

КАФЕДРА ФИЗИКИ

КУРСОВАЯ РАБОТА

По теме: Графен и его свойства. Нобелевская премия 2010 года по физике

Выполнила

студентка 3-го курса,

физико-математического факультета, группа 3

Щербина И.Л.

Преподаватель

Костиков А.П

Славянск 2011г.

1. История открытия

2. Получение

3. Дефекты

4. Возможные применения

5.1 Теория

5.1.1 Кристаллическая структура

5.1.2 Зонная структура

5.1.3 Линейный закон дисперсии

5.1.4 Эффективная масса

5.1.5 Хиральность и парадокс Клейна

5.2 Эксперимент

5.2.1 Проводимость

5.2.2 Квантовый эффект Холла

6. Интересные факты

Литература


1. История открытия

Графен является двумерным кристаллом, состоящим из одиночного слоя атомов углерода, собранных в гексагональную решётку. Его теоретическое исследование началось задолго до получения реальных образцов материала, поскольку из графена можно собрать трёхмерный кристаллграфита.

Графен является базой для построения теории этого кристалла. Графит являетсяполуметаллом. Как было показано в1947 годуП. Воллесом, взонной структуреграфена также отсутствуетзапрещённая зона, причём в точках соприкосновения валентной зоны, изоны проводимостиэнергетический спектрэлектронов идыроклинеен, как функцияволнового вектора. Такого рода спектром, обладают безмассовыефотоныи ультрарелятивистские частицы, а такженейтрино. Поэтому говорят, что эффективная массаэлектронов и дырок в графене вблизи точки соприкосновения зон равна нулю. Но здесь стоит заметить, что несмотря на сходство фотонов и безмассовых носителей, в графене существует несколько существенных различий, делающих носители в графене уникальными по своей физической природе, а именно: электроны и дырки являютсяфермионами, и они заряжены. В настоящее время аналогов для этих безмассовых заряженных фермионов среди известных элементарных частиц нет.

Несмотря на такие специфические особенности, экспериментального подтверждения эти выводы не получили до2005 года, поскольку не удавалось создать графен. Кроме того, ещё раньше было доказано теоретически, что свободную идеальную двумерную плёнку получить невозможно из-за нестабильности относительно сворачивания или скручивания. Тепловые флуктуации приводят к плавлению двумерного кристалла при любой конечной температуре.

Интерес к графену появился снова после открытияуглеродных нанотрубок, поскольку вся первоначальная теория строилась на простой модели нанотрубки как развёртки цилиндра. Поэтому теория для графена в приложении к нанотрубкам хорошо проработана.

Попытки получения графена, прикреплённого к другому материалу, начались с экспериментов, использующих простойкарандаш, и продолжились с использованием атомно-силового микроскопа для механического удаления слоёв графита, но не достигли успеха. Использование графита с внедрёнными (интеркалированный графит)в межплоскостное пространство чужеродными атомами (используется для увеличения расстояния между соседними слоями и их расщепления) также не привело к результату.

В 2004 году российскими и британскими учёными была опубликована работа в журнале Science , где сообщалось о получении графена на подложке окисленного кремния. Таким образом, стабилизация двумерной плёнки достигалась благодаря наличию связи с тонким слоем диэлектрикаSiO2по аналогии с тонкими плёнками, выращенными с помощьюМПЭ. Впервые были измереныпроводимость,эффект Шубникова- де Гааза,эффект Холла для образцов, состоящих из плёнок углерода с атомарной толщиной.

Метод отшелушивания является довольно простым и гибким, поскольку позволяет работать со всеми слоистыми кристаллами, то есть теми материалами, которые представляются как слабо (по сравнению с силами в плоскости) связанные слои двумерных кристаллов. В последующей работе авторы показали, что его можно использовать для получения других двумерных кристаллов:BN,MoS2,NbSe2, Bi2Sr2CaCu2Ox.


2. Получение

Кусочки графена получают при механическом воздействии на высокоориентированный пиролитический графитиликиш-графит. Сначала плоские куски графита помещают между липкими лентами (скотч) и расщепляют раз за разом, создавая достаточно тонкие слои (среди многих плёнок могут попадаться однослойные и двуслойные, которые и представляют интерес). После отшелушивания скотч с тонкими плёнками графита прижимают к подложке окисленного кремния. При этом трудно получить плёнку определённого размера и формы в фиксированных частях подложки (горизонтальные размеры плёнок составляют обычно около 10 мкм).Найденныес помощью оптического микроскопа, (они слабо видны при толщине диэлектрика 300 нм) плёнки подготавливают для измерений. Толщину можно определить с помощью атомно-силового микроскопа (она может варьироваться в пределах 1 нм для графена) или, используякомбинационное рассеяние. Используя стандартнуюэлектронную литографиюиреактивное плазменное травление, задают форму плёнки для электрофизических измерений.

Кусочки графена также можно приготовить из графита, используя химические методы. Сначала микрокристаллы графита подвергаются действию смесисернойисолянойкислот. Графит окисляется и на краях образца появляютсякарбоксильные группыграфена. Их превращают в хлориды при помощитионилхлорида. Затем под действиемоктадециламинав растворахтетрагидрофурана,тетрахлорметанаидихлорэтанаони переходят в графеновые слои толщиной 0,54нм. Этот химический метод не единственный, и, меняя органические растворители и химикаты, можно получить нанометровые слои графита.

В статьях описан ещё один химический метод получения графена, встроенного вполимернуюматрицу. Следует упомянуть ещё два метода: радиочастотное плазмохимическое осаждение из газовой фазы (англ. PECVD ), рост при высоком давлении и температуре (англ.HPHT ) . Из этих методов только последний можно использовать для получения плёнок большой площади.

Если кристалл пиролитического графита и подложку поместить между электродами, то, можно добиться того, что кусочки графита с поверхности, среди которых могут оказаться плёнки атомарной толщины, под действием электрического поля могут перемещаться на подложку окисленного кремния. Для предотвращения пробоя (между электродами прикладывали напряжение от 1 до 13 кВ) между электродами также помещали тонкую пластинуслюды.

Существует также несколько сообщений, посвящённых получению графена, выращенного на подложкахкарбида кремнияSiC(0001). Графитовая плёнка формируется при термическом разложении поверхности подложки SiC (этот метод получения графена гораздо ближе к промышленному производству), причём качество выращенной плёнки зависит от того, какая стабилизация у кристалла:C - стабилизированная или Si - стабилизированная поверхность - в первом случае качество плёнок выше. В работах та же группа исследователей показала, что, несмотря на то, что толщина слоя графита составляет больше одного монослоя, в проводимости участвует только один слой в непосредственной близости от подложки, поскольку на границе SiC- C из-за разностиработ выходадвух материалов образуется нескомпенсированный заряд. Свойства такой плёнки оказались эквивалентны свойствам графена.


3. Дефекты

Идеальный графен состоит исключительно из шестиугольных ячеек. Присутствие пяти- и семиугольных ячеек будет приводить к различного родадефектам.

Наличие пятиугольных ячеек приводит к сворачиванию атомной плоскости в конус. Структура с 12 такими дефектами одновременно известна под названиемфуллерен. Присутствие семиугольных ячеек приводит к образованию седловидных искривлений атомной плоскости. Комбинация этих дефектов и нормальных ячеек может приводить к образованию различных форм поверхности.


4. Возможные применения

Считается, что на основе графена можно сконструировать баллистический транзистор. В марте 2006 года группа исследователей из технологического института штата Джорджии заявила, что ими был полученполевой транзисторна графене, а такжеквантово-интерференционныйприбор. Исследователи полагают, что благодаря их достижениям в скором времени появится новый класс графеновой наноэлектроники с базовой толщинойтранзисторовдо 10 нм. Данный транзистор обладает большим током утечки, то есть нельзя разделить два состояния с закрытым и открытым каналом.

Использовать напрямую графен при созданииполевого транзисторабез токов утечки не представляется возможным благодаря отсутствию запрещённой зоны в этом материале, поскольку нельзя добиться существенной разности в сопротивлении при любых приложенных напряжениях к затвору, то есть, не получается задать два состояния пригодных для двоичной логики: проводящее и непроводящее. Сначала нужно создать каким-нибудь образом запрещённую зону достаточной ширины при рабочей температуре (чтобы термически возбуждённые носители давали малый вклад в проводимость). Один из возможных способов предложен в работе. В этой статье предлагается создать тонкие полоски графена с такой шириной, чтобы благодаря квантово-размерномуэффекту ширина запрещённой зоны была достаточной для перехода в диэлектрическое состояние (закрытое состояние) прибора при комнатной температуре (28 мэВ соответствует ширине полоски 20 нм). Благодаря высокой подвижности (имеется в виду, что подвижность выше чем вкремнии, используемом вмикроэлектронике) 104см²·В−1·с−1 быстродействие такого транзистора будет заметно выше. Несмотря на то, что это устройство уже способно работать как транзистор, затвор к нему ещё не создан.

Другая область применения предложена в статьеи заключается в использовании графена в качестве очень чувствительногосенсорадля обнаружения отдельных молекул химических веществ, присоединённых к поверхности плёнки. В этой работе исследовались такие вещества, какNH3,CO,H2O,NO2. Сенсор размером 1 мкм × 1 мкм использовался для детектирования присоединения отдельных молекул NO2к графену. Принцип действия этого сенсора заключается в том, что разные молекулы могут выступать какдонорыиакцепторы, что в свою очередь ведёт к изменению сопротивления графена. В работетеоретически исследуется влияние различных примесей (использованных в отмеченном выше эксперименте) на проводимость графена. В работебыло показано, что NO2молекула является хорошим акцептором из-за своихпарамагнитныхсвойств, адиамагнитнаямолекула N2O4создаёт уровень близко к точке электронейтральности. В общем случае примеси, молекулы которых имеютмагнитный момент(неспаренный электрон), обладают более сильными легирующими свойствами.