Под множителем в понимают любое число, на которое заданное делится без остатка. То есть это то число, которое показывает сколько именно раз повторить в качестве слагаемого другое число, которое называют множимым. Результат таких математических исчислений называют произведением. Если множителей в примере несколько, то они нумеруются и называются, соответственно, «первый множитель», «второй» и т.д.

Понятие «множитель» существует и , где оно применяется в качестве составной части сложных формул. Так, Ланде множитель – это составная часть в формуле для расщепления уровней энергии в магнитном поле.

Высшая использует понятие «интегрирующий множитель», т.е. , после умножения на которую часть дифференциального уравнения обращается в полный дифференциал некоторой функции.

В экономической теории есть понятие дисконтирующего множителя, введенное (discounting multiplier) в качестве расчетного показателя при долгосрочных денежных операций. В частности, с его помощью определяется величина инвестируемой для получения нужной доходности через заданный отрезок времени. Это же понятие используют и страховые компании, и аудиторы в оценках перспективности , анализе затрат и инвестиционных рисков.

Из математики «множитель» позаимствован и специалистами в области линейного программирования, которые используют множители Лагранжа (Lagrange multipliers) для проверки оптимальности допустимого решения целевой функции. Обозначается он греческой буквой « » и применяется при решении теоретизированных задач на условный экстремум.

«Произведение» - еще один пример слова имеющего несколько значений или, по-научному, омонимов. Им пользуются в самых различных областях - от математики до юриспруденции.

Инструкция

В м называют результат перемножения двух или нескольких чисел или переменных между собой. Те же числа , которые умножению подвергаются, носят название множителей или сомножителей. Многие физические величины с точки зрения представляют собой произведения других физических величин. Например, мощность - произведение напряжения и силы тока, либо времени и энергии, а напряжение, в свою очередь, может быть рассчитано как произведение силы тока и сопротивления. Операцией, обратной умножению, является деление. Если произведение поделить на один из множителей, получится другой.

Иногда термин «произведение» используют в качестве синонима термина «осуществление». Например, по военному делу иногда встречается оборот «произведение выстрела». Но все же, так говорят и пишут очень редко. А вот «производить» в качестве синонима «осуществлять» употребляют значительно чаще.

В произведением называют один из видов объектов интеллектуальной собственности. Произведения охраняются так называемым авторским правом. Они делятся на три вида: произведения науки, литературы и искусства. Все они охраняются в течение одинакового срока: в течение всей жизни автора и семьдесят лет после его смерти. Право на произведение может переходить по наследству, и тогда правообладателями становятся наследники. Если в произведении имеется описание каких-либо практических действий, то воплощение этого описания на практике использованием произведения не считается (этим авторское право отличается от патентного). Зато его использованием считаются такие действия, как воспроизведение (в юридическом смысле этого слова так называют только копирование), публичные показ и исполнение, в эфир и по кабелю, создание производных произведений, перевод на другой язык, а также так называемое доведение до всеобщего сведения, то есть, говоря простым языком, выкладывание в интернет или другую телекоммуникационную сеть. В для обозначения произведения в юридическом смысле этого слова используется термин work - буквально, «работа».

Видео по теме

Источники:

  • произведение математика

– это вложения денежных средств в какой-либо бизнес с целью дальнейшего получения прибыли. Как правило, инвестор стремится получить как можно больше информации о проекте. Именно с этой целью и проводиться инвестиционная оценка .

Инвестиционная оценка представляет изучение и анализ проекта, стоимости и экономической эффективности. Данную процедуру проводят при поиске новых инвесторов, при страховании рисков, также анализ проводится в случае разработки какого-либо инвестиционного проекта. Оценка может осуществляться по нескольким факторам, например, оценивается на рынке, то есть по рыночной стоимости. Проект может оценивать новый акционер, а также лизинговая компания или банк, например, в случае кредитования. В некоторых случая к оценке инвестиций частных предприятий прибегает государство, например, когда планируется финансовая поддержка. Часто государство финансирует сельскохозяйственные предприятия. Кто же проводит анализ инвестиционного проекта? Для этого есть специальные компании, в штате которых имеются оценщики. Некоторые крупные организации трудоустраивают в штат профессионала, который постоянно проводит оценку и анализ финансового рынка, следит за стоимостью и доходностью проекта. Все данные фиксируются и предоставляются руководителю, который в дальнейшем привлекает инвесторов. Существуют показатели, по которым происходит оценка инвестиций:- индекс доходности – показывает эффективность проекта. Чтобы его вычислить необходимо реальную стоимость денежных потоков разделить на сумму всех вложенных инвестиций;- время – показывает минимальное время, через которое инвестиции будут приносить желаемый доход;- внутренняя норма доходности – показывает ставку дисконта (норму прибыли), при которой стоимость доходов от инвестиций равна сумме вложенных в проект средств;- чистый дисконтированный доход – показывает сумму ожидаемых доходов от проекта, которая приведена к начальному моменту времени.

В математической науке существует множество разновидностей чисел: натуральные, простые, положительные, отрицательные, составные и ряд других, которые узнаются постепенно с усвоением школьного курса математики. Особое внимание стоит обратить на составные числа.

Под составным числом понимается число, которое может делиться не только на единицу и саму себя, но и на ряд других делителей и . Примерами составных чисел являются, 4, 8, 24, 39 и т.д. Этот ряд можно продолжать бесконечно. Составные числа являются разновидностью натуральных.

Натуральные числа - это все без исключения числа после единицы, которые появляются сами собой при перечислении различных предметов (например, на улице 14 зданий, в 149000 и т.д.). Все натуральные числа являются целыми (т.е. те числа, которые не включают в себя то долей).

Говоря другими словами, все натуральные числа делятся на простые и . Существует основная арифметики простых чисел, смысл которой заключается в том, что любое составное число можно вычислить с помощью произведения двух простых чисел, причем единственно возможным способом. К примеру, число 21 натуральным и составным. Оно получается путем произведения тройки и семерки. 3 и 7 - это простые числа.

Простые и составные числа обладают взаимосвязанными свойствами:
- Пусть a - составное число. Тогда оно обязательно обладает как минимум одним простым делителем n, который при возведении его во вторую степень был бы меньше или равен составному числу. К примеру, число 48 делится на 3. Тройка во второй степени становится девяткой, а 9 меньше 48.
- Пусть числа a и b являются простыми. Тогда, если они будут обладать наибольшим общим делителем, который будет не превышать 1, то эти числа будут называться взаимно простым. Это, к примеру, 3 и 7, 11 и 19 и т.д.
-Произведение наибольшего общего делителя и наименьшего общего кратного двух простых чисел всегда произведению этих двух чисел.

Особняком в ряду всех простых чисел стоят 0 и 1. Единицу можно называть простым числом только потому, что оно получается путем нулевого произведения количества простых чисел.

Видео по теме

Разблокировка множителя используется при разгоне процессоров. Все платы поддерживают возможность выбора множителей, поэтому необходимо замкнуть определенные контакты на процессоре для изменения данной настройки.

Вам понадобится

  • - компьютер;
  • - навыки работы с электроникой.

Инструкция

Разберите системный блок и вытащите процессор, чтобы выполнить разблокировку множителя. Найдите на нем мостики. Посмотрите на них внимательно. Между двумя пунктами, которые необходимо соединить для того, чтобы замкнуть контакты, находится канавка. В ней можно заметить тонкое медное напыление.

Если замкнуть мостики с помощью карандаша либо припоя, то вы замкнете и медную подложку, а в результате процессор будет очень сложно вернуть к жизни. Поэтому самое главное в замыкании множителя – замкнуть мостики так, чтобы не задеть медное напыление.

Заполните канавки с помощью диэлектрика, в качестве него вы можете использовать суперклей. Делайте это предельно аккуратно, потому что клей не должен попасть на контактную площадку мостика, а канавка должна быть заполнена полностью, чтобы обеспечить лучшую изоляцию. Локализуйте канавки скотчем.

Для этого очистите поверхность подложки спиртом либо одеколоном. Наклейте две ленточки скотча, каждую шириной около сантиметра вдоль мостика. Сделать это нужно так, чтобы скотч собой контактную площадку, но не затронул канавок. Ширина щели, которая получилась в результате, не должна быть более двух миллиметров. Если мешает резиновая , срежьте ее.

Является . В этой статье мы дадим определение подобных слагаемых, разберемся, что называют приведением подобных слагаемых, рассмотрим правила, по которым выполняется это действие, и приведем примеры приведения подобных слагаемых с подробным описанием решения.

Навигация по странице.

Определение и примеры подобных слагаемых.

Разговор о подобных слагаемых возникает после знакомства с буквенными выражениями , когда возникает необходимость проведения преобразований с ними. По учебникам математики Н. Я. Виленкина определение подобных слагаемых дается в 6 классе, и оно имеет следующую формулировку:

Определение.

Подобные слагаемые – это слагаемые, которые имеют одинаковую буквенную часть.

Стоит внимательно разобраться в этом определении. Во-первых, речь идет о слагаемых, а, как известно, слагаемые являются составными элементами сумм. Значит, подобные слагаемые могут присутствовать лишь в выражениях, которые представляют собой суммы. Во-вторых, в озвученном определении подобных слагаемых присутствует незнакомое понятие «буквенная часть». Что же понимают под буквенной частью? Когда дается это определение в шестом классе, под буквенной частью понимается одна буква (переменная) или произведение нескольких букв. В-третьих, остается вопрос: «А что же это за такие слагаемые с буквенной частью»? Это слагаемые, представляющие собой произведение некоторого числа, так называемого числового коэффициента , и буквенной части.

Вот теперь можно привести примеры подобных слагаемых . Рассмотрим сумму двух слагаемых 3·a и 2·a вида 3·a+2·a . Слагаемые в этой сумме имеют одинаковую буквенную часть, которая представлена буквой a , поэтому, согласно определению эти слагаемые являются подобными. Числовыми коэффициентами указанных подобных слагаемых являются числа 3 и 2 .

Еще пример: в сумме 5·x·y 3 ·z+12·x·y 3 ·z+1 подобными являются слагаемые 5·x·y 3 ·z и 12·x·y 3 ·z с одинаковой буквенной частью x·y 3 ·z . Заметим, что в буквенной части присутствует y 3 , ее присутствие не нарушает данное выше определение буквенной части, так как она, по сути, является произведением y·y·y .

Отдельно отметим, что числовые коэффициенты 1 и −1 у подобных слагаемых часто не записываются явно. Например, в сумме 3·z 5 +z 5 −z 5 все три слагаемых 3·z 5 , z 5 и −z 5 являются подобными, они имеют одинаковую буквенную часть z 5 и коэффициенты 3 , 1 и −1 соответственно, из которых 1 и −1 явно не видны.

Исходя из этого, в сумме 5+7·x−4+2·x+y подобными слагаемыми являются не только 7·x и 2·x , но и слагаемые без буквенной части 5 и −4 .

Позже расширяется и понятие буквенной части – буквенной частью начинаю считать не только произведение букв, а произвольное буквенное выражение. К примеру, в учебнике алгебры для 8 класса авторов Ю. Н. Макарычев, Н. Г. Миндюк, К. И. Нешков, С. Б. Суворова под редакцией С. А. Теляковского приведена сумма вида , и сказано, что составляющие ее слагаемые являются подобными. Общей буквенной частью этих подобных слагаемых является выражение с корнем вида .

Аналогично, подобными слагаемыми в выражении 4·(x 2 +x−1/x)−0,5·(x 2 +x−1/x)−1 можно считать слагаемые 4·(x 2 +x−1/x) и −0,5·(x 2 +x−1/x) , так как они имеют одинаковую буквенную часть (x 2 +x−1/x) .

Обобщив всю изложенную информацию, можно дать следующее определение подобных слагаемых.

Определение.

Подобными слагаемыми называются слагаемые в буквенном выражении, имеющие одинаковую буквенную часть, а также слагаемые, не имеющие буквенной части, где под буквенной частью понимается любое буквенное выражение.

Отдельно скажем, что подобные слагаемые могут быть одинаковыми (когда равны их числовые коэффициенты), а могут быть и разными (когда их числовые коэффициенты различны).

В заключение этого пункта обсудим один очень тонкий момент. Рассмотрим выражение 2·x·y+3·y·x . Являются ли слагаемые 2·x·y и 3·y·x подобными? Этот вопрос можно формулировать и так: «одинаковы ли буквенные части x·y и y·x указанных слагаемых»? Порядок следования буквенных множителей в них различен, так что фактически они не одинаковые, следовательно, слагаемые 2·x·y и 3·y·x в свете введенного выше определения не являются подобными.

Однако достаточно часто такие слагаемые называют подобными (но для строгости лучше этого не делать). При этом руководствуются вот чем: согласно перестановка множителей в произведении не влияет на результат, поэтому исходное выражение 2·x·y+3·y·x можно переписать в виде 2·x·y+3·x·y , слагаемые которого подобны. То есть, когда говорят о подобных слагаемых 2·x·y и 3·y·x в выражении 2·x·y+3·y·x , то имеют в виду слагаемые 2·x·y и 3·x·y в преобразованном выражении вида 2·x·y+3·x·y .

Приведение подобных слагаемых, правило, примеры

Преобразование выражений, содержащих подобные слагаемые, подразумевает выполнение сложения этих слагаемых. Это действие получило особое название - приведение подобных слагаемых .

Приведение подобных слагаемых проводится в три этапа:

  • сначала проводится перестановка слагаемых так, чтобы подобные слагаемые оказались рядом друг с другом;
  • после этого выносится за скобки буквенная часть подобных слагаемых;
  • наконец, вычисляется значение числового выражения , образовавшегося в скобках.

Разберем записанные шаги на примере. Приведем подобные слагаемые в выражении 3·x·y+1+5·x·y . Во-первых, переставляем слагаемые местами так, чтобы подобные слагаемые 3·x·y и 5·x·y оказались рядом: 3·x·y+1+5·x·y=3·x·y+5·x·y+1 . Во-вторых, выносим буквенную часть за скобки, получаем выражение x·y·(3+5)+1 . В-третьих, вычисляем значение выражения, которое образовалось в скобках: x·y·(3+5)+1=x·y·8+1 . Так как числовой коэффициент принято записывать перед буквенной частью, то перенесем его на это место: x·y·8+1=8·x·y+1 . На этом приведение подобных слагаемых завершено.

Для удобства три перечисленных выше шага объединяют в правило приведения подобных слагаемых : чтобы привести подобные слагаемые, нужно сложить их коэффициенты и полученный результат умножить на буквенную часть (если она есть).

Решение предыдущего примера с использованием правила приведения подобных слагаемых будет короче. Приведем его. Коэффициентами подобных слагаемых 3·x·y и 5·x·y в выражении 3·x·y+1+5·x·y являются числа 3 и 5 , их сумма равна 8 , умножив ее на буквенную часть x·y , получаем результат приведения этих слагаемых 8·x·y . Осталось не забыть про слагаемое 1 в исходном выражении, в итоге имеем 3·x·y+1+5·x·y=8·x·y+1 .

Начальный уровень

Преобразование выражений. Подробная теория (2019)

Преобразование выражений

Часто мы слышим эту неприятную фразу: «упростите выражение». Обычно при этом перед нами какое-то страшилище типа этого:

«Да куда уж проще» - говорим мы, но такой ответ обычно не прокатывает.

Сейчас я научу тебя не бояться никаких подобных задач. Более того, в конце занятия ты сам упростишь этот пример до (всего лишь!) обычного числа (да-да, к черту эти буквы).

Но прежде чем приступить к этому занятию, тебе необходимо уметь обращаться с дробями и раскладывать многочлены на множители. Поэтому сперва, если ты этого не сделал раньше, обязательно освой темы « » и « ».

Прочитал? Если да, то теперь ты готов.

Базовые операции упрощения

Сейчас разберем основные приемы, которые используются при упрощении выражений.

Самый простой из них - это

1. Приведение подобных

Что такое подобные? Ты проходил это в 7 классе, как только впервые в математике появились буквы вместо чисел. Подобные - это слагаемые (одночлены) с одинаковой буквенной частью. Например, в сумме подобные слагаемые - это и.

Вспомнил?

Привести подобные - значит сложить несколько подобных слагаемых друг с другом и получить одно слагаемое.

А как же нам сложить друг с другом буквы? - спросишь ты.

Это очень легко понять, если представить, что буквы - это какие-то предметы. Например, буква - это стул. Тогда чему равно выражение? Два стула плюс три стула, сколько будет? Правильно, стульев: .

А теперь попробуй такое выражение: .

Чтобы не запутаться, пусть разные буквы обозначают разны предметы. Например, - это (как обычно) стул, а - это стол. Тогда:

стула стола стул столов стульев стульев столов

Числа, на которые умножаются буквы в таких слагаемых называются коэффициентами . Например, в одночлене коэффициент равен. А в он равен.

Итак, правило приведения подобных:

Примеры:

Приведите подобные:

Ответы:

2. (и подобны, так как, следовательно у этих слагаемых одинаковая буквенная часть).

2. Разложение на множители

Это обычно самая важная часть в упрощении выражений. После того как ты привел подобные, чаще всего полученное выражение нужно разложить на множители, то есть представить в виде произведения. Особенно это важно в дробях: ведь чтобы можно было сократить дробь, числитель и знаменатель должны быть представлены в виде произведения.

Подробно способы разложения выражений на множители ты проходил в теме « », поэтому здесь тебе остается только вспомнить выученное. Для этого реши несколько примеров (нужно разложить на множители):

Решения:

3. Сокращение дроби.

Ну что может быть приятнее, чем зачеркнуть часть числителя и знаменателя, и выбросить их из своей жизни?

В этом вся прелесть сокращения.

Все просто:

Если числитель и знаменатель содержат одинаковые множители, их можно сократить, то есть убрать из дроби.

Это правило вытекает из основного свойства дроби:

То есть суть операции сокращения в том, что числитель и знаменатель дроби делим на одно и то же число (или на одно и то же выражение).

Чтобы сократить дробь, нужно:

1) числитель и знаменатель разложить на множители

2) если в числителе и знаменателе есть общие множители , их можно вычеркнуть.

Принцип, я думаю, понятен?

Хочу обратить внимание на одну типичную ошибку при сокращении. Хоть эта тема и простая, но очень многие делают все неправильно, не понимая, что сократить - это значит поделить числитель и знаменатель на одно и то же число.

Никаких сокращений, если в числителе или знаменателе сумма.

Например: надо упростить.

Некоторые делают так: , что абсолютно неверно.

Еще пример: сократить.

«Самые умные» сделают так: .

Скажи мне, что здесь неверно? Казалось бы: - это множитель, значит можно сокращать.

Но нет: - это множитель только одного слагаемого в числителе, но сам числитель в целом на множители не разложен.

Вот другой пример: .

Это выражение разложено на множители, значит, можно сократить, то есть поделить числитель и знаменатель на, а потом и на:

Можно и сразу поделить на:

Чтобы не допускать подобных ошибок, запомни легкий способ, как определить, разложено ли выражение на множители:

Арифметическое действие, которое выполняется последним при подсчете значения выражения, является «главным». То есть, если ты подставишь вместо букв какие-нибудь (любые) числа, и попытаешься вычислить значение выражения, то если последним действием будет умножение - значит, у нас произведение (выражение разложено на множители). Если последним действием будет сложение или вычитание, это значит, что выражение не разложено на множители (а значит, сокращать нельзя).

Для закрепления реши самостоятельно несколько примеров :

Ответы:

1. Надеюсь, ты не бросился сразу же сокращать и? Еще не хватало «сократить» единицы типа такого:

Первым действием должно быть разложение на множители:

4. Сложение и вычитание дробей. Приведение дробей к общему знаменателю.

Сложение и вычитание обычных дробей - операция хорошо знакомая: ищем общий знаменатель, домножаем каждую дробь на недостающий множитель и складываем/вычитаем числители. Давай вспомним:

Ответы:

1. Знаменатели и - взаимно простые, то есть у них нет общих множителей. Следовательно, НОК этих чисел равен их произведению. Это и будет общий знаменатель:

2. Здесь общий знаменатель равен:

3. Здесь первым делом смешанные дроби превращаем в неправильные, а дальше - по привычной схеме:

Совсем другое дело, если дроби содержат буквы, например:

Начнем с простого:

a) Знаменатели не содержат букв

Здесь все то же, что и с обычными числовыми дробями: находим общий знаменатель, домножаем каждую дробь на недостающий множитель и складываем/вычитаем числители:

теперь в числителе можно приводить подобные, если есть, и раскладывать на множители:

Попробуй сам:

b) Знаменатели содержат буквы

Давай вспомним принцип нахождения общего знаменателя без букв:

· в первую очередь мы определяем общие множители;

· затем выписываем все общие множители по одному разу;

· и домножаем их на все остальные множители, не общие.

Чтобы определить общие множители знаменателей, сперва разложим их на простые множители:

Подчеркнем общие множители:

Теперь выпишем общие множители по одному разу и допишем к ним все необщие (не подчеркнутые) множители:

Это и есть общий знаменатель.

Вернемся к буквам. Знаменатели приводятся по точно такой же схеме:

· раскладываем знаменатели на множители;

· определяем общие (одинаковые) множители;

· выписываем все общие множители по одному разу;

· домножаем их на все остальные множители, не общие.

Итак, по порядку:

1) раскладываем знаменатели на множители:

2) определяем общие (одинаковые) множители:

3) выписываем все общие множители по одному разу и домножаем их на все остальные (неподчеркнутые) множители:

Значит, общий знаменатель здесь. Первую дробь нужно домножить на, вторую - на:

Кстати, есть одна хитрость:

Например: .

Видим в знаменателях одни и те же множители, только все с разными показателями. В общий знаменатель пойдут:

в степени

в степени

в степени

в степени.

Усложним задание:

Как сделать у дробей одинаковый знаменатель?

Давай вспомним основное свойство дроби:

Нигде не сказано, что из числителя и знаменателя дроби можно вычитать (или прибавлять) одно и то же число. Потому что это неверно!

Убедись сам: возьми любую дробь, например, и прибавь к числителю и знаменателю какое-нибудь число, например, . Что поучилось?

Итак, очередное незыблемое правило:

Когда приводишь дроби к общему знаменателю, пользуйся только операцией умножения!

Но на что же надо домножить, чтобы получить?

Вот на и домножай. А домножай на:

Выражения, которые невозможно разложить на множители будем называть «элементарными множителями». Например, - это элементарный множитель. - тоже. А вот - нет: он раскладывается на множители.

Что скажешь насчет выражения? Оно элементарное?

Нет, поскольку его можно разложить на множители:

(о разложении на множители ты уже читал в теме « »).

Так вот, элементарные множители, на которые ты раскладываешь выражение с буквами - это аналог простых множителей, на которые ты раскладываешь числа. И поступать с ними будем таким же образом.

Видим, что в обоих знаменателях есть множитель. Он пойдет в общий знаменатель в степени (помнишь, почему?).

Множитель - элементарный, и он у них не общий, значит первую дробь на него придется просто домножить:

Еще пример:

Решение:

Предже, чем в панике перемножать эти знаменатели, надо подумать, как их разложить на множители? Оба они представляют :

Отлично! Тогда:

Еще пример:

Решение:

Как обычно, разложим знаменатели на множители. В первом знаменателе просто выносим за скобки; во втором - разность квадратов:

Казалось бы, общих множителей нет. Но если присмотреться, то и так похожи… И правда:

Так и напишем:

То есть получилось так: внутри скобки мы поменяли местами слагаемые, и при этом знак перед дробью поменялся на противоположный. Возьми на заметку, так поступать придется часто.

Теперь приводим к общему знаменателю:

Усвоил? Сейчас проверим.

Задачи для самостоятельного решения:

Ответы:

Тут надо вспомнить еще одну - разность кубов:

Обрати внимание, что в знаменателе второй дроби не формула «квадрат суммы»! Квадрат суммы выглядел бы так: .

А - это так называемый неполный квадрат суммы: второе слагаемое в нем - это произведение первого и последнего, а не удвоенное их произведение. Неполный квадрат суммы - это один из множителей в разложени разности кубов:

Что делать, если дробей аж три штуки?

Да то же самое! В первую очередь сделаем так, чтобы максимальное количество множителей в знаменателях было одинаковым:

Обрати внимание: если поменять знаки внутри одной скобки, знак перед дробью меняется на противоположный. Когда меняем знаки во второй скобке, знак перед дробью снова меняется на противоположный. В результате он (знак перед дробью) не изменился.

В общий знаменатель выписавыем полностью первый знаменатель, а потом дописываем к нему все множители, которые еще не написаны, из второго, а потом из третьего (и так далее, если дробей больше). То есть получается вот так:

Хм… С дробями-то понятно что делать. Но вот как быть с двойкой?

Все просто: ты ведь умеешь складывать дроби? Значит, надо сделать так, чтобы двойка стала дробью! Вспоминаем: дробь - это операция деления (числитель делится на знаменатель, если ты вдруг забыл). И нет ничего проще, чем разделить число на. При этом само число не изменится, но превратится в дробь:

То, что нужно!

5. Умножение и деление дробей.

Ну что же, самое сложное теперь позади. А впереди у нас самое простое, но при этом самое важное:

Порядок действий

Какой порядок действий при подсчете числового выражения? Вспомни, посчитав значение такого выражения:

Посчитал?

Должно получиться.

Итак, напоминаю.

Первым делом вычисляется степень.

Вторым - умножение и деление. Если умножений и делений одновременно несколько, делать их можно в любом порядке.

И напоследок выполняем сложение и вычитание. Опять же, в любом порядке.

Но: выражение в скобках вычисляется вне очереди!

Если несколько скобок умножаются или делятся друг на друга, вычисляем сначала выражение в каждой из скобок, а потом умножаем или дели их.

А если внутри скобок есть еще одни скобки? Ну давай подумаем: внутри скобок написано какое-то выражение. А при вычислении выражения в первую очередь надо делать что? Правильно, вычислять скобки. Ну вот и разобрались: сначала вычисляем внутренние скобки, потом все остальное.

Итак, порядок действий для выражения выше такой (красным выделено текущее дествие, то есть действие, которое выполняю прямо сейчас):

Хорошо, это все просто.

Но это ведь не то же самое, что выражение с буквами?

Нет, это то же самое! Только вместо арифметических действий надо делать алгебраические, то есть действия, описанные в предыдущем разделе: приведение подобных , сложение дробей, сокращение дробей и так далее. Единственным отличием будет действие разложения многочленов на множители (его мы часто применяем при работе с дробями). Чаще всего для разложения на множители нужно применять я или просто выносить общий множитель за скобки.

Обычно наша цель - представить выражение в виде произведения или частного.

Например:

Упростим выражение.

1) Первым упрощаем выражение в скобках. Там у нас разность дробей, а наша цель - представить ее как произведение или частное. Значит, приводим дроби к общему знаменателю и складываем:

Больше это выражение упростить невозможно, все множители здесь - элементарные (ты еще помнишь, что это значит?).

2) Получаем:

Умножение дробей: что может быть проще.

3) Теперь можно и сократить:

Ну вот и все. Ничего сложного, правда?

Еще пример:

Упрости выражение.

Сначала попробуй решить сам, и уж только потом посмотри решение.

Перво-наперво определим порядок действий. Сначала выполним сложение дробей в скобках, получится вместо двух дробей одна. Потом выполним деление дробей. Ну и результат сложим с последней дробью. Схематически пронумерую действия:

Теперь покажу весть процесс, подкрашивая текущее действие красным:

Напоследок дам тебе два полезных совета:

1. Если есть подобные, их надо немедленно привести. В какой бы момент у нас ни образовались подобные, их желательно приводить сразу.

2. То же самое касается сокращения дробей: как только появляется возможность сократить, ей надо воспользоваться. Исключение составляют дроби, которые ты складываешь или вычитаешь: если у них сейчас одинаковые знаменатели, то сокращение нужно оставить на потом.

Вот тебе задачи для самостоятельного решения:

И обещанная в самом начале:

Решения (краткие):

Если ты справился хотя бы с первыми тремя примерами, то тему ты, считай, освоил.

Теперь вперед к обучению!

ПРЕОБРАЗОВАНИЕ ВЫРАЖЕНИЙ. КРАТКОЕ ИЗЛОЖЕНИЕ И ОСНОВНЫЕ ФОРМУЛЫ

Базовые операции упрощения:

  • Приведение подобных : чтобы сложить (привести) подобные слагаемые, надо сложить их коэффициенты и приписать буквенную часть.
  • Разложение на множители: вынесение общего множителя за скобки, применение и т.д.
  • Сокращение дроби : числитель и знаменатель дроби можно умножать или делить на одно и то же ненулевое число, от чего величина дроби не изменяется.
    1) числитель и знаменатель разложить на множители
    2) если в числителе и знаменателе есть общие множители , их можно вычеркнуть.

    ВАЖНО: сокращать можно только множители!

  • Сложение и вычитание дробей:
    ;
  • Умножение и деление дробей:
    ;

Сегодня на уроке мы обратимся к одному из основных понятий математики - понятию функции; более детально рассмотрим одно из свойств функции - множество ее значений.

Ход урока

Учитель. Решая задачи, мы замечаем, что подчас именно нахождение множества значений функции ставит нас в затруднительные ситуации. Почему? Казалось бы, изучая функцию с 7-го класса, мы знаем о ней достаточно много. Поэтому у нас есть все основания сделать упреждающий ход. Давайте сегодня сами «поиграем» с множеством значений функции, чтобы снять многие вопросы этой темы на предстоящем экзамене.

Множества значений элементарных функций

Учитель. Для начала необходимо повторить графики, уравнения и множества значений основных элементарных функций на всей области определения.

На экран проецируются графики функций: линейной, квадратичной, дробно-рациональной, тригонометрических, показательной и логарифмической, для каждой из них устно определяется множество значений. Обратите внимание учащихся на то, что у линейной функции E(f) = R или одно число, у дробно-линейной

Это наша азбука. Присоединив к ней наши знания о преобразованиях графиков: параллельный перенос, растяжение, сжатие, отражение, мы сможем решить задачи первой части ЕГЭ и даже чуть сложнее. Проверим это.

Самостоятельная работа

Условия задач и системы координат напечатаны для каждого ученика .

1. Найдите множество значений функции на всей области определения:

а) y = 3 sin х ;
б) y = 7 – 2 х ;
в) y = –arccos (x + 5):
г) y = | arctg x |;
д)

2. Найдите множество значений функции y = x 2 на промежутке J , если:

а) J = ;
б) J = [–1; 5).

3. Задайте функцию аналитически (уравнением), если множество ее значений:

1) E (f (x )) = (–∞ ; 2] и f (x ) - функция

а) квадратичная,
б) логарифмическая,
в) показательная;

2) E (f (x )) = R \{7}.

При обсуждении задания 2 самостоятельной работы обратите внимание учащихся на то, что, в случае монотонности и непрерывности функции y = f (x ) на заданном промежутке [a ; b ], множество ее значений - промежуток , концами которого являются значения f (a ) и f (b ).

Варианты ответов к заданию 3.

1.
а) y = –x 2 + 2 , y = –(x + 18) 2 + 2,
y = a (x x в) 2 + 2 при а < 0.

б) y = –| log 8 x | + 2,

в) y = –| 3 x – 7 | + 2, y = –5 | x | + 3.

2.
а) б)

в) y = 12 – 5x , где x ≠ 1 .

Нахождение множества значений функции с помощью производной

Учитель. В 10-м классе мы знакомились с алгоритмом нахождения экстремумов непрерывной на отрезке функции и отыскания ее множества значений, не опираясь на график функции. Вспомните, как мы это делали? (С помощью производной .) Давайте вспомним этот алгоритм.

1. Убедиться, что функция y = f (x ) определена и непрерывна на отрезке J = [a ; b ].

2. Найти значения функции на концах отрезка: f(a) и f(b).

Замечание . Если мы знаем, что функция непрерывна и монотонна на J , то можно сразу дать ответ: E (f ) = [f (a ); f (b )] или E (f ) = [f (b ); f (а )].

3. Найти производную, а затем критические точки x k J .

4. Найти значения функции в критических точках f (x k ).

5. Сравнить значения функции f (a ), f (b ) и f (x k ), выбрать наибольшее и наименьшее значения функции и дать ответ: E (f )= [f наим; f наиб ].

Задачи на применение данного алгоритма встречаются в вариантах ЕГЭ. Так, например, в 2008 году была предложена такая задача. Вам предстоит решить ее дома .

Задание С1. Найдите наибольшее значение функции

f (x ) = (0,5x + 1) 4 – 50(0,5x + 1) 2

при | x + 1| ≤ 3.

Условия домашних задач распечатаны для каждого ученика .

Нахождение множества значений сложной функции

Учитель. Основную часть нашего урока составят нестандартные задачи, содержащие сложные функции, производные от которых являются очень сложными выражениями. Да и графики этих функций нам неизвестны. Поэтому для решения мы будем использовать определение сложной функции, то есть зависимость между переменными в порядке их вложенности в данную функцию, и оценку их области значений (промежутка изменения их значений). Задачи такого вида встречаются во второй части ЕГЭ. Обратимся к примерам.

Задание 1. Для функций y = f (x ) и y = g (x ) записать сложную функцию y = f (g (x )) и найти ее множество значений:

а) f (x ) = –x 2 + 2x + 3, g (x ) = sin x ;
б) f (x ) = –x 2 + 2x + 3, g (x ) = log 7 x ;
в) g (x ) = x 2 + 1;
г)

Решение. а) Сложная функция имеет вид: y = –sin 2 x + 2sin x + 3.

Вводя промежуточный аргумент t , мы можем записать эту функцию так:

y = –t 2 + 2t + 3, где t = sin x .

У внутренней функции t = sin x аргумент принимает любые значения, а множество ее значений - отрезок [–1; 1].

Таким образом, для внешней функции y = –t 2 +2t + 3 мы узнали промежуток изменения значений ее аргумента t : t [–1; 1]. Обратимся к графику функции y = –t 2 +2t + 3.

Замечаем, что квадратичная функция при t [–1; 1] принимает наименьшее и наибольшее значения на его концах: y наим = y (–1) = 0 и y наиб = y (1) = 4. А так как эта функция непрерывна на отрезке [–1; 1], то она принимает и все значения между ними.

Ответ : y .

б) Композиция этих функций приводит нас к сложной функции которая после введения промежуточного аргумента, может быть представлена так:

y = –t 2 + 2t + 3, где t = log 7 x ,

У функции t = log 7 x

x (0; +∞ ), t (–∞ ; +∞ ).

У функции y = –t 2 + 2t + 3 (см. график) аргумент t принимает любые значения, а сама квадратичная функция принимает все значения не больше 4.

Ответ : y (–∞ ; 4].

в) Сложная функция имеет следующий вид:


Вводя промежуточный аргумент, получаем:

где t = x 2 + 1.

Так как для внутренней функции x R , а t .

Ответ : y (0; 3].

г) Композиция двух данных функций дает нам сложную функцию

которая может быть записана как

Заметим, что

Значит, при

где k Z , t [–1; 0) (0; 1].

Нарисовав график функции видим, что при этих значениях t

y (–∞ ; –4] c ;

б) на всей области определения.

Решение. Вначале исследуем данную функцию на монотонность. Функция t = arcctg x - непрерывная и убывающая на R и множество ее значений (0; π). Функция y = log 5 t определена на промежутке (0; π), непрерывна и возрастает на нем. Значит, данная сложная функция убывает на множестве R . И она, как композиция двух непрерывных функций, будет непрерывна на R .

Решим задачу «а».

Так как функция непрерывна на всей числовой оси, то она непрерывна и на любой ее части, в частности, на данном отрезке. А тогда она на этом отрезке имеет наименьшее и наибольшее значения и принимает все значения между ними:


f
(4) = log 5 arcctg 4.

Какое из полученных значений больше? Почему? И каким же будет множество значений?

Ответ:

Решим задачу «б».

Ответ: у (–∞ ; log 5 π) на всей области определения.

Задача с параметром

Теперь попробуем составить и решить несложное уравнение с параметром вида f (x ) = a , где f (x ) - та же функция, что и в задании 4.

Задание 5. Определите количество корней уравнения log 5 (arcctg x ) = а для каждого значения параметра а .

Решение. Как мы уже показали в задании 4, функция у = log 5 (arcctg x ) - убывает и непрерывна на R и принимает значения меньше log 5 π. Этих сведений достаточно, чтобы дать ответ.

Ответ: если а < log 5 π, то уравнение имеет единственный корень;

если а ≥ log 5 π, то корней нет.

Учитель. Сегодня мы рассмотрели задачи, связанные с нахождением множества значений функции. На этом пути мы открыли для себя новый метод решения уравнений и неравенств - метод оценки, поэтому нахождение множества значений функции стало средством решения задач более высокого уровня. При этом мы увидели, как конструируются такие задачи и как свойства монотонности функции облегчают их решение.

И мне хочется надеяться, что та логика, которая связала рассмотренные сегодня задачи, вас поразила или хотя бы удивила. Иначе и быть не может: восхождение на новую вершину никого не оставляет равнодушным! Мы замечаем и ценим красивые картины, скульптуры и т.д. Но и в математике есть своя красота, притягивающая и завораживающая - красота логики. Математики говорят, что красивое решение - это, как правило, правильное решение, и это не просто фраза. Теперь Вам самим предстоит находить такие решения и один из путей к ним мы указали сегодня. Удачи вам! И помните: дорогу осилит идущий!