1) Область определения функции и область значений функции .

    Область определения функции - это множество всех допустимых действительных значений аргумента x (переменной x ), при которых функция y = f(x) определена. Область значений функции - это множество всех действительных значений y , которые принимает функция.

    В элементарной математике изучаются функции только на множестве действительных чисел.

    2) Нули функции .

    Нуль функции – такое значение аргумента, при котором значение функции равно нулю.

    3) Промежутки знакопостоянства функции .

    Промежутки знакопостоянства функции – такие множества значений аргумента, на которых значения функции только положительны или только отрицательны.

    4) Монотонность функции .

    Возрастающая функция (в некотором промежутке) - функция, у которой большему значению аргумента из этого промежутка соответствует большее значение функции.

    Убывающая функция (в некотором промежутке) - функция, у которой большему значению аргумента из этого промежутка соответствует меньшее значение функции.

    5) Четность (нечетность) функции .

    Четная функция - функция, у которой область определения симметрична относительно начала координат и для любого х из области определения выполняется равенство f(-x) = f(x) . График четной функции симметричен относительно оси ординат.

    Нечетная функция - функция, у которой область определения симметрична относительно начала координат и для любого х из области определения справедливо равенство f(-x) = - f(x ). График нечетной функции симметричен относительно начала координат.

    6) Ограниченная и неограниченная функции .

    Функция называется ограниченной, если существует такое положительное число M, что |f(x)| ≤ M для всех значений x . Если такого числа не существует, то функция - неограниченная.

    7) Периодическость функции .

    Функция f(x) - периодическая, если существует такое отличное от нуля число T, что для любого x из области определения функции имеет место: f(x+T) = f(x). Такое наименьшее число называется периодом функции. Все тригонометрические функции являются периодическими. (Тригонометрические формулы).

    19. Основные элементарные функции, их свойства и графики. Применение функ-ций в экономике.

Основные элементарные функции. Их свойства и графики

1. Линейная функция.

Линейной функцией называется функция вида , где х - переменная, а и b - действительные числа.

Число а называют угловым коэффициентом прямой, он равен тангенсу угла наклона этой прямой к положительному направлению оси абсцисс. Графиком линейной функции является прямая линия. Она определяется двумя точками.

Свойства линейной функции

1. Область определения - множество всех действительных чисел: Д(y)=R

2. Множество значений - множество всех действительных чисел: Е(у)=R

3. Функция принимает нулевое значение при или.

4. Функция возрастает (убывает) на всей области определения.

5. Линейная функция непрерывная на всей области определения, дифференцируемая и .

2. Квадратичная функция.

Функция вида , где х - переменная, коэффициенты а, b, с - действительные числа, называетсяквадратичной.


Дата: 20.11.2014

Что такое производная?

Таблица производных.

Производная - одно из главных понятий высшей математики. В этом уроке мы познакомимся с этим понятием. Именно познакомимся, без строгих математических формулировок и доказательств.

Это знакомство позволит:

Понимать суть несложных заданий с производной;

Успешно решать эти самые несложные задания;

Подготовиться к более серьёзным урокам по производной.

Сначала - приятный сюрприз.)

Строгое определение производной основано на теории пределов и штука достаточно сложная. Это огорчает. Но практическое применение производной, как правило, не требует таких обширных и глубоких знаний!

Для успешного выполнения большинства заданий в школе и ВУЗе достаточно знать всего несколько терминов - чтобы понять задание, и всего несколько правил - чтобы его решить. И всё. Это радует.

Приступим к знакомству?)

Термины и обозначения.

В элементарной математике много всяких математических операций. Сложение, вычитание умножение, возведение в степень, логарифмирование и т.д. Если к этим операциям добавить ещё одну, элементарная математика становится высшей. Эта новая операция называется дифференцирование. Определение и смысл этой операции будут рассмотрены в отдельных уроках.

Здесь же важно понять, что дифференцирование - это просто математическая операция над функцией. Берём любую функцию и, по определённым правилам, преобразовываем её. В результате получится новая функция. Вот эта новая функция и называется: производная.

Дифференцирование - действие над функцией.

Производная - результат этого действия.

Так же, как, например, сумма - результат сложения. Или частное - результат деления.

Зная термины, можно, как минимум, понимать задания.) Формулировки бывают такие: найти производную функции; взять производную; продифференцировать функцию; вычислить производную и т.п. Это всё одно и то же. Разумеется, бывают и более сложные задания, где нахождение производной (дифференцирование) будет всего лишь одним из шагов решения задания.

Обозначается производная с помощью штришка вверху справа над функцией. Вот так: y" или f"(x) или S"(t) и так далее.

Читается игрек штрих, эф штрих от икс, эс штрих от тэ, ну вы поняли...)

Штрих также может обозначать производную конкретной функции, например: (2х+3)" , (x 3 )" , (sinx)" и т.д. Часто производная обозначается с помощью дифференциалов, но такое обозначение в этом уроке мы рассматривать не будем.

Предположим, что понимать задания мы научились. Осталось всего ничего - научиться их решать.) Напомню ещё раз: нахождение производной - это преобразование функции по определённым правилам. Этих правил, на удивление, совсем немного.

Чтобы найти производную функции, надо знать всего три вещи. Три кита, на которых стоит всё дифференцирование. Вот они эти три кита:

1. Таблица производных (формулы дифференцирования).

3. Производная сложной функции.

Начнём по порядку. В этом уроке рассмотрим таблицу производных.

Таблица производных.

В мире - бесконечное множество функций. Среди этого множества есть функции, которые наиболее важны для практического применения. Эти функции сидят во всех законах природы. Из этих функций, как из кирпичиков, можно сконструировать все остальные. Этот класс функций называется элементарные функции. Именно эти функции и изучаются в школе - линейная, квадратичная, гипербола и т.п.

Дифференцирование функций "с нуля", т.е. исходя из определения производной и теории пределов - штука достаточно трудоёмкая. А математики - тоже люди, да-да!) Вот и упростили себе (и нам) жизнь. Они вычислили производные элементарных функций до нас. Получилась таблица производных, где всё уже готово.)

Вот она, эта табличка для самых популярных функций. Слева - элементарная функция, справа - её производная.

Функция
y
Производная функции y
y"
1 C (постоянная величина) C" = 0
2 x x" = 1
3 x n (n - любое число) (x n)" = nx n-1
x 2 (n = 2) (x 2)" = 2x
4 sin x (sin x)" = cosx
cos x (cos x)" = - sin x
tg x
ctg x
5 arcsin x
arccos x
arctg x
arcctg x
4 a x
e x
5 log a x
ln x (a = e )

Рекомендую обратить внимание на третью группу функций в этой таблице производных. Производная степенной функции - одна из самых употребительных формул, если только не самая употребительная! Намёк понятен?) Да, таблицу производных желательно знать наизусть. Кстати, это не так трудно, как может показаться. Попробуйте решать побольше примеров, таблица сама и запомнится!)

Найти табличное значение производной, как вы понимаете, задание не самое трудное. Поэтому очень часто в подобных заданиях встречаются дополнительные фишки. Либо в формулировке задания, либо в исходной функции, которой в таблице - вроде и нету...

Рассмотрим несколько примеров:

1. Найти производную функции y = x 3

Такой функции в таблице нет. Но есть производная степенной функции в общем виде (третья группа). В нашем случае n=3. Вот и подставляем тройку вместо n и аккуратно записываем результат:

(x 3) " = 3·x 3-1 = 3x 2

Вот и все дела.

Ответ: y" = 3x 2

2. Найти значение производной функции y = sinx в точке х = 0.

Это задание означает, что надо сначала найти производную от синуса, а затем подставить значение х = 0 в эту самую производную. Именно в таком порядке! А то, бывает, сразу подставляют ноль в исходную функцию... Нас же просят найти не значение исходной функции, а значение её производной. Производная, напомню - это уже новая функция.

По табличке находим синус и соответствующую производную:

y" = (sin x)" = cosx

Подставляем ноль в производную:

y"(0) = cos 0 = 1

Это и будет ответ.

3. Продифференцировать функцию:

Что, внушает?) Такой функции в таблице производных и близко нет.

Напомню, что продифференцировать функцию - это просто найти производную этой функции. Если забыть элементарную тригонометрию, искать производную нашей функции достаточно хлопотно. Таблица не помогает...

Но если увидеть, что наша функция - это косинус двойного угла , то всё сразу налаживается!

Да-да! Запомните, что преобразование исходной функции до дифференцирования вполне допускается! И, случается, здорово облегчает жизнь. По формуле косинуса двойного угла:

Т.е. наша хитрая функция есть не что иное, как y = cosx . А это - табличная функция. Сразу получаем:

Ответ: y" = - sin x .

Пример для продвинутых выпускников и студентов:

4. Найти производную функции:

Такой функции в таблице производных нет, разумеется. Но если вспомнить элементарную математику, действия со степенями... То вполне можно упростить эту функцию. Вот так:

А икс в степени одна десятая - это уже табличная функция! Третья группа, n=1/10. Прямо по формуле и записываем:

Вот и всё. Это будет ответ.

Надеюсь, что с первым китом дифференцирования - таблицей производных - всё ясно. Осталось разобраться с двумя оставшимися китами. В следующем уроке освоим правила дифференцирования.

Свойства функций играют важную роль при их изучении. Они позволяют делать определенные выводы о функциях. Изучение данной темы крайне важно для обучающихся, особенно старших классов. Это связано с тем,что задания по данной теме довольно часто встречаются в КИМ государственной итоговой аттестации.

Видеоурок по теме «Свойства функции» разработан автором для облегчения работы учителя и его подготовки к урокам. Если использовать данный материал на уроках, то появится больше свободного времени, которое можно посвятить индивидуальному обучению или другим направлениям обучения математики в школе.

Длительность урока составляет 8:23 минут. Примерно столько же времени требуется учителю, чтобы объяснить материал на уроке, который длится 40-45 минут. При этому учитель успеет актуализировать знания обучающихся, повторить необходимый материал, просмотреть видеоурок, а затем еще и закрепить материал.

Рассмотрение материала начинается непосредственно с первого свойства, которое называется монотонность. Это понятие подробно расписывается на математическом языке, что способствует развитию математической грамотности обучающихся, а также словесно поясняется каждая запись на экране. Далее автор демонстрирует на рисунке, как выглядит монотонная функция для случаев возрастания и убывания. После этого дается определение монотонной функции. Здесь же дается правило для запоминания, которое связано с монотонностью функции. Далее предлагается рассмотреть эту теорию на примере. На рисунке изображен график, на экране последовательно выделяются промежутки возрастания и убывания. Показана и математическая запись этих промежутков.

Согласно условию другого примера, необходимо исследовать функцию на монотонность. Чтобы определить монотонность функции, автор воспользовался определением возрастающей и убывающей функции. В результате получается, что функция убывает на всей области определения.

Затем на экране демонстрируются примеры возрастающих функций на всей области определения.

Далее внимание обучающихся обращается ко второму свойству, которое называется ограниченностью. Рассмотрение этого свойства строится по аналогии с первым свойством. Рассматривается понятие ограниченности, все это иллюстрируется на рисунке, как ограниченность снизу, так и ограниченность сверху. Затем на экране появляется пример ограниченной функции.

Важными понятиями в пункте ограниченность являются наибольшее и наименьшее значение функции. В качестве иллюстрации показан рисунок и идет подробное описание этих понятий.

После примера рассматривается третье свойство, которое называется выпуклостью. Это понятие иллюстрируется с помощью рисунка. На данном свойстве автор не останавливается так же подробно, как на предыдущих. Он сразу переходит к четвертому свойству - непрерывности. Здесь вводится понятие непрерывной функции. После этого демонстрируется это свойство на рисунке с подробными пояснениями.

Далее рассматривается свойство четности и нечетности. И тут же объясняется, когда функция четная и нечетная. Объяснения сопровождаются иллюстрациями и подробными описаниями. Это показано на примерах двух функций.

И, наконец, рассматривается шестое свойство - периодичность. На нем автор не останавливается, отмечая, что примеры периодичных функций будут изучены в дальнейшем на уроках алгебры.

ТЕКСТОВАЯ РАСШИФРОВКА:

Первое свойство, которое мы рассмотрим -монотонность.

Внимание: во всех определениях рассматривается числовое множество икс большое - подмножество области определения функции.

Функция игрек равно эф от икс возрастает на множестве икс большое, которое является подмножеством области определения и если для любых икс первое из множества икс большое и икс второе из множества икс большое таких,что икс второе больше икс первого выполняется неравенство эф от икс второе больше эф от икс первое. Другими словами - большему значению аргумента соответствует большее значение функции.

Функция игрек равно эф от икс убывает на промежутке икс большое которое является подмножеством областиопределения и если для любых икс первое из множества икс большое и икс второе из множества икс большое таких,что икс второе больше икс первого выполняется неравенство эф от икс второе меньше эф от икс первое. Другими словами - большему значению аргумента соответствует меньшее значение функции.

Функция игрек равно эф от икс называется монотонной на множестве икс большое, если она на этом промежутке или убывает или возрастает.

Запомни: если функция определена и непрерывна в концах интервала возрастания или убывания, то эти точки включаются в промежуток возрастания или убывания.

Например, функция, график которой изображен на рисунке, на промежутках

от минус бесконечности до минус пяти и от трех до плюс бесконечностивозрастает, а на промежутке от минус пяти до трех убывает. Пример. Исследовать функцию на монотонность: игрек равен шесть минус два икс.

Введем обозначение: эф от икс равен шесть минус два икс.

Если икс первое меньше икс второе, то используя свойства числовых неравенств, имеем

Значит, заданная функция убывает на всей числовой прямой.

Существуют функции, являющиеся возрастающими на всей области определения, например, игрек равен ка икс плюс вэ при ка больше нуля, игрек равен икс в кубе.

Второе свойство - ограниченность.

Если все значения функции игрек равно эф от икс на множестве икс большое больше некоторого числа эм малое, то функцию игрек равно эф от икс называют ограниченной снизу на множестве икс большое из области определения.

Если все значения функции игрек равно эф от икс на множестве икс большое меньше некоторого числа эм большое, то функцию игрек равно эф от икс называют ограниченной сверху на множестве икс большое из области определения.

Запомни: если функция ограничена и сверху и снизу на всей области определения, то ее называют ограниченной.

По графику функции легко можно определить ее ограниченность.

Наибольшее значение функции обозначают игрек с индексом наибольшее. .

Игрик является наибольшим если:

Во -первых, существует точка икс нулевое из множества икс большое такая, что эф от икс нулевое равно эм большое;

Во - вторых,для любого значения икс из множества икс большое выполняется неравенство эф от икс меньше или равно эф от икс нулевое, то число эм большое называют наибольшим значением функции игрек равно эф от икс на множестве икс большое из области определения функции.

Наименьшее значение функции обозначают игрек с индексом наименьшее

Во -первых, существует точка икс нулевое из множества икс большое такая, что эф от икс нулевое равно эм;

Во - вторых,для любого значения икс из множества икс большое выполняется неравенство эф от икс больше или равно эф от икс нулевое,то число эм называют наименьшим значением функции игрек равно эф от икс на множестве икс большое из области определения функции

Полезно запомнить:

Если у функции существует наименьшее значение., то она ограничена снизу.

Если у функции существует наибольшее значение, то она ограничена сверху.

Рассмотрим пример. Найти наименьшее значение функции

Функция, график которой изображен на рисунке, ограничена снизу, наименьшее значение функции равно нулю, а наибольшего не существует, функция сверху неограниченна.

Третье свойство: выпуклость вверх, выпуклость вниз.

Если,соединить любые две точки графика функции с абсциссами из икс большое отрезком и соответствующая часть графика будет лежать ниже проведенного отрезка, то такая функция выпукла вниз на промежутке икс большое из области определения.

Если,соединить любые две точки графика функции с абсциссами из икс большое отрезком и соответствующая часть графика будет лежать выше проведенного отрезка, то такая функция выпукла вверх на промежутке икс большое из области определения.

четвертое свойство: непрерывность.

Функция называется непрерывной на промежутке, если она определена на этом промежутке и непрерывна в каждой точке этого промежутка.

Непрерывность функции на промежутке Х означает, что график функции на всей области определения сплошной, т.е. не имеет проколов и скачков.

пятое свойство: четность, нечетность.

Если область определения функции -симметричное множество и для любого х из области определения функции выполняется равенство f(-х)= f(х), то такая функция четная.

График четной функции симметричен относительно оси ординат.

Если область определения функции -симметричное множество и для любого х из области определения функции выполняется равенство f(-х)= -f(х), то такая функция нечетная.

График нечетной функции симметричен относительно начала координат.

Так же существуют функции, которые не являются ни четными, ни нечетными

шестое свойство: периодичность

примеры периодических функций будем рассматривать в дальнейшем

Если существует такое отличное от нуля число тэ большое, что для любого икс из области определения функции верно равенство эф от икс плюс тэ большое равно эф от икс и равно эф от икс минус тэ большое, то функция игрек равно эф от икс -периодическая. Число тэ большое - период функции игрек равно эф от икс

все тригонометрические функции периодические.

Решать физические задачи или примеры по математике совершенно невозможно без знаний о производной и методах ее вычисления. Производная - одно из важнейших понятий математического анализа. Этой фундаментальной теме мы и решили посвятить сегодняшнюю статью. Что такое производная, каков ее физический и геометрический смысл, как посчитать производную функции? Все эти вопросы можно объединить в один: как понять производную?

Геометрический и физический смысл производной

Пусть есть функция f(x) , заданная в некотором интервале (a, b) . Точки х и х0 принадлежат этому интервалу. При изменении х меняется и сама функция. Изменение аргумента – разность его значений х-х0 . Эта разность записывается как дельта икс и называется приращением аргумента. Изменением или приращением функции называется разность значений функции в двух точках. Определение производной:

Производная функции в точке – предел отношения приращения функции в данной точке к приращению аргумента, когда последнее стремится к нулю.

Иначе это можно записать так:

Какой смысл в нахождении такого предела? А вот какой:

производная от функции в точке равна тангенсу угла между осью OX и касательной к графику функции в данной точке.


Физический смысл производной: производная пути по времени равна скорости прямолинейного движения.

Действительно, еще со школьных времен всем известно, что скорость – это частное пути x=f(t) и времени t . Средняя скорость за некоторый промежуток времени:

Чтобы узнать скорость движения в момент времени t0 нужно вычислить предел:

Правило первое: выносим константу

Константу можно вынести за знак производной. Более того - это нужно делать. При решении примеров по математике возьмите за правило - если можете упростить выражение, обязательно упрощайте .

Пример. Вычислим производную:

Правило второе: производная суммы функций

Производная суммы двух функций равна сумме производных этих функций. То же самое справедливо и для производной разности функций.

Не будем приводить доказательство этой теоремы, а лучше рассмотрим практический пример.

Найти производную функции:

Правило третье: производная произведения функций

Производная произведения двух дифференцируемых функций вычисляется по формуле:

Пример: найти производную функции:

Решение:

Здесь важно сказать о вычислении производных сложных функций. Производная сложной функции равна произведению производной этой функции по промежуточному аргументу на производную промежуточного аргумента по независимой переменной.

В вышеуказанном примере мы встречаем выражение:

В данном случае промежуточный аргумент – 8х в пятой степени. Для того, чтобы вычислить производную такого выражения сначала считаем производную внешней функции по промежуточному аргументу, а потом умножаем на производную непосредственно самого промежуточного аргумента по независимой переменной.

Правило четвертое: производная частного двух функций

Формула для определения производной от частного двух функций:

Мы постарались рассказать о производных для чайников с нуля. Эта тема не так проста, как кажется, поэтому предупреждаем: в примерах часто встречаются ловушки, так что будьте внимательны при вычислении производных.

С любым вопросом по этой и другим темам вы можете обратиться в студенческий сервис . За короткий срок мы поможем решить самую сложную контрольную и разобраться с заданиями, даже если вы никогда раньше не занимались вычислением производных.

Приведены график и основные свойства экспоненты (е в степени х): область определения, множество значений, основные формулы, производная, интеграл, разложение в степенной ряд, действия с комплексными числами.

Определение

Частные значения

Пусть y(x) = e x . Тогда
.

Экспонента обладает свойствами показательной функции с основанием степени е > 1 .

Область определения, множество значений

Экспонента y(x) = e x определена для всех x .
Ее область определения:
- ∞ < x + ∞ .
Ее множество значений:
0 < y < + ∞ .

Экстремумы, возрастание, убывание

Экспонента является монотонно возрастающей функцией, поэтому экстремумов не имеет. Основные ее свойства представлены в таблице.

Обратная функция

Обратной для экспоненты является натуральный логарифм .
;
.

Производная экспоненты

Производная е в степени х равна е в степени х :
.
Производная n-го порядка:
.
Вывод формул > > >

Интеграл

Комплексные числа

Действия с комплексными числами осуществляются при помощи формулы Эйлера :
,
где есть мнимая единица:
.

Выражения через гиперболические функции

; ;
.

Выражения через тригонометрические функции

; ;
;
.

Разложение в степенной ряд

Использованная литература:
И.Н. Бронштейн, К.А. Семендяев, Справочник по математике для инженеров и учащихся втузов, «Лань», 2009.