Преобразование графиков.

Словесное описание функции.

Графический способ.

Графический способ задания функции является наиболее наглядным и часто применяется в технике. В математическом анализе графический способ задания функций используется в качестве иллюстрации.

Графиком функции f называют множество всех точек (x;y) координатной плоскости, где y=f(x), а x «пробегает» всю область определения данной функции.

Подмножество координатной плоскости является графиком какой-либо функции, если оно имеет не более одной общей точки с любой прямой, параллельной оси Оу.

Пример. Является ли графиками функций фигуры, изображенные ниже?

Преимуществом графического задания является его наглядность. Сразу видно, как ведёт себя функция, где возрастает, где убывает. По графику сразу можно узнать некоторые важные характеристики функции.

Вообще, аналитический и графический способы задания функции идут рука об руку. Работа с формулой помогает построить график. А график частенько подсказывает решения, которые в формуле и не заметишь.

Почти любой ученик знает три способа задания функции, которые мы только что рассмотрели.

Попытаемся ответить на вопрос: "А существуют ли другие способы задания функции?"

Такой способ есть.

Функцию можно вполне однозначно задать словами.

Например, функцию у=2х можно задать следующим словесным описанием: каждому действительному значению аргумента х ставится в соответствие его удвоенное значение. Правило установлено, функция задана.

Более того, словесно можно задать функцию, которую формулой задать крайне затруднительно, а то и невозможно.

Например: каждому значению натурального аргумента х ставится в соответствие сумма цифр, из которых состоит значение х. Например, если х=3, то у=3. Если х=257, то у=2+5+7=14. И так далее. Формулой это записать проблематично. А вот табличку легко составить.

Способ словесного описания - достаточно редко используемый способ. Но иногда встречается.

Если есть закон однозначного соответствия между х и у - значит, есть функция. Какой закон, в какой форме он выражен - формулой, табличкой, графиком, словами – сути дела не меняет.

Рассмотрим функции, области определения которых симметричны относительно начала координат, т.е. для любого х из области определения число (-х ) также принадлежит области определения. Среди таких функций выделяют четные и нечетные .

Определение. Функция f называется четной , если для любого х из ее области определения

Пример. Рассмотрим функцию

Она является четной. Проверим это.



Для любого х выполнены равенства

Таким образом, у нас выполняются оба условия, значит функция четная. Ниже представлен график этой функции.

Определение. Функция f называется нечетной , если для любого х из ее области определения

Пример. Рассмотрим функцию

Она является нечетной. Проверим это.

Область определения вся числовая ось, а значит, она симметрична относительно точки (0;0).

Для любого х выполнены равенства

Таким образом, у нас выполняются оба условия, значит функция нечетная. Ниже представлен график этой функции.

Графики, изображенные на первом и третьем рисунках симметричны относительно оси ординат, а графики, изображенные на втором и четвертом рисункам симметричны относительно начала координат.

Какие из функций, графики которых изображены на рисунках являются четными, а какие нечетными?

четной , если при всех \(x\) из ее области определения верно: \(f(-x)=f(x)\) .

График четной функции симметричен относительно оси \(y\) :

Пример: функция \(f(x)=x^2+\cos x\) является четной, т.к. \(f(-x)=(-x)^2+\cos{(-x)}=x^2+\cos x=f(x)\) .

\(\blacktriangleright\) Функция \(f(x)\) называется нечетной , если при всех \(x\) из ее области определения верно: \(f(-x)=-f(x)\) .

График нечетной функции симметричен относительно начала координат:

Пример: функция \(f(x)=x^3+x\) является нечетной, т.к. \(f(-x)=(-x)^3+(-x)=-x^3-x=-(x^3+x)=-f(x)\) .

\(\blacktriangleright\) Функции, не являющиеся ни четными, ни нечетными, называются функциями общего вида. Такую функцию можно всегда единственным образом представить в виде суммы четной и нечетной функции.

Например, функция \(f(x)=x^2-x\) является суммой четной функции \(f_1=x^2\) и нечетной \(f_2=-x\) .

\(\blacktriangleright\) Некоторые свойства:

1) Произведение и частное двух функций одинаковой четности - четная функция.

2) Произведение и частное двух функций разной четности - нечетная функция.

3) Сумма и разность четных функций - четная функция.

4) Сумма и разность нечетных функций - нечетная функция.

5) Если \(f(x)\) - четная функция, то уравнение \(f(x)=c \ (c\in \mathbb{R}\) ) имеет единственный корень тогда и только когда, когда \(x=0\) .

6) Если \(f(x)\) - четная или нечетная функция, и уравнение \(f(x)=0\) имеет корень \(x=b\) , то это уравнение обязательно будет иметь второй корень \(x=-b\) .

\(\blacktriangleright\) Функция \(f(x)\) называется периодической на \(X\) , если для некоторого числа \(T\ne 0\) выполнено \(f(x)=f(x+T)\) , где \(x, x+T\in X\) . Наименьшее \(T\) , для которого выполнено данное равенство, называется главным (основным) периодом функции.

У периодической функции любое число вида \(nT\) , где \(n\in \mathbb{Z}\) также будет являться периодом.

Пример: любая тригонометрическая функция является периодической;
у функций \(f(x)=\sin x\) и \(f(x)=\cos x\) главный период равен \(2\pi\) , у функций \(f(x)=\mathrm{tg}\,x\) и \(f(x)=\mathrm{ctg}\,x\) главный период равен \(\pi\) .

Для того, чтобы построить график периодической функции, можно построить ее график на любом отрезке длиной \(T\) (главный период); тогда график всей функции достраивается сдвигом построенной части на целое число периодов вправо и влево:

\(\blacktriangleright\) Область определения \(D(f)\) функции \(f(x)\) - это множество, состоящее из всех значений аргумента \(x\) , при которых функция имеет смысл (определена).

Пример: у функции \(f(x)=\sqrt x+1\) область определения: \(x\in

Задание 1 #6364

Уровень задания: Равен ЕГЭ

При каких значениях параметра \(a\) уравнение

имеет единственное решение?

Заметим, что так как \(x^2\) и \(\cos x\) - четные функции, то если уравнение будет иметь корень \(x_0\) , оно также будет иметь и корень \(-x_0\) .
Действительно, пусть \(x_0\) – корень, то есть равенство \(2x_0^2+a\mathrm{tg}\,(\cos x_0)+a^2=0\) верно. Подставим \(-x_0\) : \(2 (-x_0)^2+a\mathrm{tg}\,(\cos(-x_0))+a^2=2x_0^2+a\mathrm{tg}\,(\cos x_0)+a^2=0\) .

Таким образом, если \(x_0\ne 0\) , то уравнение уже будет иметь как минимум два корня. Следовательно, \(x_0=0\) . Тогда:

Мы получили два значения параметра \(a\) . Заметим, что мы использовали то, что \(x=0\) точно является корнем исходного уравнения. Но мы нигде не использовали то, что он единственный. Следовательно, нужно подставить получившиеся значения параметра \(a\) в исходное уравнение и проверить, при каких именно \(a\) корень \(x=0\) действительно будет единственным.

1) Если \(a=0\) , то уравнение примет вид \(2x^2=0\) . Очевидно, что это уравнение имеет лишь один корень \(x=0\) . Следовательно, значение \(a=0\) нам подходит.

2) Если \(a=-\mathrm{tg}\,1\) , то уравнение примет вид \ Перепишем уравнение в виде \ Так как \(-1\leqslant \cos x\leqslant 1\) , то \(-\mathrm{tg}\,1\leqslant \mathrm{tg}\,(\cos x)\leqslant \mathrm{tg}\,1\) . Следовательно, значения правой части уравнения (*) принадлежат отрезку \([-\mathrm{tg}^2\,1; \mathrm{tg}^2\,1]\) .

Так как \(x^2\geqslant 0\) , то левая часть уравнения (*) больше или равна \(0+ \mathrm{tg}^2\,1\) .

Таким образом, равенство (*) может выполняться только тогда, когда обе части уравнения равны \(\mathrm{tg}^2\,1\) . А это значит, что \[\begin{cases} 2x^2+\mathrm{tg}^2\,1=\mathrm{tg}^2\,1 \\ \mathrm{tg}\,1\cdot \mathrm{tg}\,(\cos x)=\mathrm{tg}^2\,1 \end{cases} \quad\Leftrightarrow\quad \begin{cases} x=0\\ \mathrm{tg}\,(\cos x)=\mathrm{tg}\,1 \end{cases}\quad\Leftrightarrow\quad x=0\] Следовательно, значение \(a=-\mathrm{tg}\,1\) нам подходит.

Ответ:

\(a\in \{-\mathrm{tg}\,1;0\}\)

Задание 2 #3923

Уровень задания: Равен ЕГЭ

Найдите все значения параметра \(a\) , при каждом из которых график функции \

симметричен относительно начала координат.

Если график функции симметричен относительно начала координат, то такая функция является нечетной, то есть выполнено \(f(-x)=-f(x)\) для любого \(x\) из области определения функции. Таким образом, требуется найти те значения параметра, при которых выполнено \(f(-x)=-f(x).\)

\[\begin{aligned} &3\mathrm{tg}\,\left(-\dfrac{ax}5\right)+2\sin \dfrac{8\pi a+3x}4= -\left(3\mathrm{tg}\,\left(\dfrac{ax}5\right)+2\sin \dfrac{8\pi a-3x}4\right)\quad \Rightarrow\quad -3\mathrm{tg}\,\dfrac{ax}5+2\sin \dfrac{8\pi a+3x}4= -\left(3\mathrm{tg}\,\left(\dfrac{ax}5\right)+2\sin \dfrac{8\pi a-3x}4\right) \quad \Rightarrow\\ \Rightarrow\quad &\sin \dfrac{8\pi a+3x}4+\sin \dfrac{8\pi a-3x}4=0 \quad \Rightarrow \quad2\sin \dfrac12\left(\dfrac{8\pi a+3x}4+\dfrac{8\pi a-3x}4\right)\cdot \cos \dfrac12 \left(\dfrac{8\pi a+3x}4-\dfrac{8\pi a-3x}4\right)=0 \quad \Rightarrow\quad \sin (2\pi a)\cdot \cos \frac34 x=0 \end{aligned}\]

Последнее уравнение должно быть выполнено для всех \(x\) из области определения \(f(x)\) , следовательно, \(\sin(2\pi a)=0 \Rightarrow a=\dfrac n2, n\in\mathbb{Z}\) .

Ответ:

\(\dfrac n2, n\in\mathbb{Z}\)

Задание 3 #3069

Уровень задания: Равен ЕГЭ

Найдите все значения параметра \(a\) , при каждом из которых уравнение \ имеет 4 решения, где \(f\) – четная периодическая с периодом \(T=\dfrac{16}3\) функция, определенная на всей числовой прямой, причем \(f(x)=ax^2\) при \(0\leqslant x\leqslant \dfrac83.\)

(Задача от подписчиков)

Так как \(f(x)\) – четная функция, то ее график симметричен относительно оси ординат, следовательно, при \(-\dfrac83\leqslant x\leqslant 0\) \(f(x)=ax^2\) . Таким образом, при \(-\dfrac83\leqslant x\leqslant \dfrac83\) , а это отрезок длиной \(\dfrac{16}3\) , функция \(f(x)=ax^2\) .

1) Пусть \(a>0\) . Тогда график функции \(f(x)\) будет выглядеть следующим образом:


Тогда для того, чтобы уравнение имело 4 решения, нужно, чтобы график \(g(x)=|a+2|\cdot \sqrtx\) проходил через точку \(A\) :


Следовательно, \[\dfrac{64}9a=|a+2|\cdot \sqrt8 \quad\Leftrightarrow\quad \left[\begin{gathered}\begin{aligned} &9(a+2)=32a\\ &9(a+2)=-32a \end{aligned} \end{gathered}\right. \quad\Leftrightarrow\quad \left[\begin{gathered}\begin{aligned} &a=\dfrac{18}{23}\\ &a=-\dfrac{18}{41} \end{aligned} \end{gathered}\right.\] Так как \(a>0\) , то подходит \(a=\dfrac{18}{23}\) .

2) Пусть \(a<0\) . Тогда картинка окажется симметричной относительно начала координат:


Нужно, чтобы график \(g(x)\) прошел через точку \(B\) : \[\dfrac{64}9a=|a+2|\cdot \sqrt{-8} \quad\Leftrightarrow\quad \left[\begin{gathered}\begin{aligned} &a=\dfrac{18}{23}\\ &a=-\dfrac{18}{41} \end{aligned} \end{gathered}\right.\] Так как \(a<0\) , то подходит \(a=-\dfrac{18}{41}\) .

3) Случай, когда \(a=0\) , не подходит, так как тогда \(f(x)=0\) при всех \(x\) , \(g(x)=2\sqrtx\) и уравнение будет иметь только 1 корень.

Ответ:

\(a\in \left\{-\dfrac{18}{41};\dfrac{18}{23}\right\}\)

Задание 4 #3072

Уровень задания: Равен ЕГЭ

Найдите все значения \(a\) , при каждом из которых уравнение \

имеет хотя бы один корень.

(Задача от подписчиков)

Перепишем уравнение в виде \ и рассмотрим две функции: \(g(x)=7\sqrt{2x^2+49}\) и \(f(x)=3|x-7a|-6|x|-a^2+7a\) .
Функция \(g(x)\) является четной, имеет точку минимума \(x=0\) (причем \(g(0)=49\) ).
Функция \(f(x)\) при \(x>0\) является убывающей, а при \(x<0\) – возрастающей, следовательно, \(x=0\) – точка максимума.
Действительно, при \(x>0\) второй модуль раскроется положительно (\(|x|=x\) ), следовательно, вне зависимости от того, как раскроется первый модуль, \(f(x)\) будет равно \(kx+A\) , где \(A\) – выражение от \(a\) , а \(k\) равно либо \(-9\) , либо \(-3\) . При \(x<0\) наоборот: второй модуль раскроется отрицательно и \(f(x)=kx+A\) , где \(k\) равно либо \(3\) , либо \(9\) .
Найдем значение \(f\) в точке максимума: \

Для того, чтобы уравнение имело хотя бы одно решение, нужно, чтобы графики функций \(f\) и \(g\) имели хотя бы одну точку пересечения. Следовательно, нужно: \ \\]

Ответ:

\(a\in \{-7\}\cup\)

Задание 5 #3912

Уровень задания: Равен ЕГЭ

Найдите все значения параметра \(a\) , при каждом из которых уравнение \

имеет шесть различных решений.

Сделаем замену \((\sqrt2)^{x^3-3x^2+4}=t\) , \(t>0\) . Тогда уравнение примет вид \ Будем постепенно выписывать условия, при которых исходное уравнение будет иметь шесть решений.
Заметим, что квадратное уравнение \((*)\) может максимум иметь два решения. Любое кубическое уравнение \(Ax^3+Bx^2+Cx+D=0\) может иметь не более трех решений. Следовательно, если уравнение \((*)\) имеет два различных решения (положительных!, так как \(t\) должно быть больше нуля) \(t_1\) и \(t_2\) , то, сделав обратную замену, мы получим: \[\left[\begin{gathered}\begin{aligned} &(\sqrt2)^{x^3-3x^2+4}=t_1\\ &(\sqrt2)^{x^3-3x^2+4}=t_2\end{aligned}\end{gathered}\right.\] Так как любое положительное число можно представить как \(\sqrt2\) в какой-то степени, например, \(t_1=(\sqrt2)^{\log_{\sqrt2} t_1}\) , то первое уравнение совокупности перепишется в виде \ Как мы уже говорили, любое кубическое уравнение имеет не более трех решений, следовательно, каждое уравнение из совокупности будет иметь не более трех решений. А значит и вся совокупность будет иметь не более шести решений.
Значит, чтобы исходное уравнение имело шесть решений, квадратное уравнение \((*)\) должно иметь два различных решения, а каждое полученное кубическое уравнение (из совокупности) должно иметь три различных решения (причем ни одно решение одного уравнения не должно совпадать с каким-либо решением второго!)
Очевидно, что если квадратное уравнение \((*)\) будет иметь одно решение, то мы никак не получим шесть решений у исходного уравнения.

Таким образом, план решения становится ясен. Давайте по пунктам выпишем условия, которые должны выполняться.

1) Чтобы уравнение \((*)\) имело два различных решения, его дискриминант должен быть положительным: \

2) Также нужно, чтобы оба корня были положительными (так как \(t>0\) ). Если произведение двух корней положительное и сумма их положительная, то и сами корни будут положительными. Следовательно, нужно: \[\begin{cases} 12-a>0\\-(a-10)>0\end{cases}\quad\Leftrightarrow\quad a<10\]

Таким образом, мы уже обеспечили себе два различных положительных корня \(t_1\) и \(t_2\) .

3) Давайте посмотрим на такое уравнение \ При каких \(t\) оно будет иметь три различных решения?
Рассмотрим функцию \(f(x)=x^3-3x^2+4\) .
Можно разложить на множители: \ Следовательно, ее нули: \(x=-1;2\) .
Если найти производную \(f"(x)=3x^2-6x\) , то мы получим две точки экстремума \(x_{max}=0, x_{min}=2\) .
Следовательно, график выглядит так:


Мы видим, что любая горизонтальная прямая \(y=k\) , где \(0\(x^3-3x^2+4=\log_{\sqrt2} t\) имело три различных решения, нужно, чтобы \(0<\log_ {\sqrt2}t<4\) .
Таким образом, нужно: \[\begin{cases} 0<\log_{\sqrt2}t_1<4\\ 0<\log_{\sqrt2}t_2<4\end{cases}\qquad (**)\] Давайте также сразу заметим, что если числа \(t_1\) и \(t_2\) различны, то и числа \(\log_{\sqrt2}t_1\) и \(\log_{\sqrt2}t_2\) будут различны, значит, и уравнения \(x^3-3x^2+4=\log_{\sqrt2} t_1\) и \(x^3-3x^2+4=\log_{\sqrt2} t_2\) будут иметь несовпадающие между собой корни.
Систему \((**)\) можно переписать так: \[\begin{cases} 1

Таким образом, мы определили, что оба корня уравнения \((*)\) должны лежать в интервале \((1;4)\) . Как записать это условие?
В явном виде выписывать корни мы не будем.
Рассмотрим функцию \(g(t)=t^2+(a-10)t+12-a\) . Ее график – парабола с ветвями вверх, которая имеет две точки пересечения с осью абсцисс (это условие мы записали в пункте 1)). Как должен выглядеть ее график, чтобы точки пересечения с осью абсцисс были в интервале \((1;4)\) ? Так:


Во-первых, значения \(g(1)\) и \(g(4)\) функции в точках \(1\) и \(4\) должны быть положительными, во-вторых, вершина параболы \(t_0\) должна также находиться в интервале \((1;4)\) . Следовательно, можно записать систему: \[\begin{cases} 1+a-10+12-a>0\\ 4^2+(a-10)\cdot 4+12-a>0\\ 1<\dfrac{-(a-10)}2<4\end{cases}\quad\Leftrightarrow\quad 4\(a\) всегда имеет как минимум один корень \(x=0\) . Значит, для выполнения условия задачи нужно, чтобы уравнение \

имело четыре различных корня, отличных от нуля, представляющих вместе с \(x=0\) арифметическую прогрессию.

Заметим, что функция \(y=25x^4+25(a-1)x^2-4(a-7)\) является четной, значит, если \(x_0\) является корнем уравнения \((*)\) , то и \(-x_0\) будет являться его корнем. Тогда необходимо, чтобы корнями этого уравнения были упорядоченные по возрастанию числа: \(-2d, -d, d, 2d\) (тогда \(d>0\) ). Именно тогда данные пять чисел будут образовывать арифметическую прогрессию (с разностью \(d\) ).

Чтобы этими корнями являлись числа \(-2d, -d, d, 2d\) , нужно, чтобы числа \(d^{\,2}, 4d^{\,2}\) являлись корнями уравнения \(25t^2+25(a-1)t-4(a-7)=0\) . Тогда по теореме Виета:

Перепишем уравнение в виде \ и рассмотрим две функции: \(g(x)=20a-a^2-2^{x^2+2}\) и \(f(x)=13|x|-2|5x+12a|\) .
Функция \(g(x)\) имеет точку максимума \(x=0\) (причем \(g_{\text{верш}}=g(0)=-a^2+20a-4\) ):
\(g"(x)=-2^{x^2+2}\cdot \ln 2\cdot 2x\) . Ноль производной: \(x=0\) . При \(x<0\) имеем: \(g">0\) , при \(x>0\) : \(g"<0\) .
Функция \(f(x)\) при \(x>0\) является возрастающей, а при \(x<0\) – убывающей, следовательно, \(x=0\) – точка минимума.
Действительно, при \(x>0\) первый модуль раскроется положительно (\(|x|=x\) ), следовательно, вне зависимости от того, как раскроется второй модуль, \(f(x)\) будет равно \(kx+A\) , где \(A\) – выражение от \(a\) , а \(k\) равно либо \(13-10=3\) , либо \(13+10=23\) . При \(x<0\) наоборот: первый модуль раскроется отрицательно и \(f(x)=kx+A\) , где \(k\) равно либо \(-3\) , либо \(-23\) .
Найдем значение \(f\) в точке минимума: \

Для того, чтобы уравнение имело хотя бы одно решение, нужно, чтобы графики функций \(f\) и \(g\) имели хотя бы одну точку пересечения. Следовательно, нужно: \ Решая данную совокупность систем, получим ответ: \\]

Ответ:

\(a\in \{-2\}\cup\)

Четная функция.

Четной называется функция, знак которой не меняется при изменении знака x .

x выполняется равенство f (–x ) = f (x ). Знак x не влияет на знак y .

График четной функции симметричен относительно оси координат (рис.1).

Примеры четной функции:

y = cos x

y = x 2

y = –x 2

y = x 4

y = x 6

y = x 2 + x

Пояснение:
Возьмем функцию y = x 2 или y = –x 2 .
При любом значении x функция положительная. Знак x не влияет на знак y . График симметричен относительно оси координат. Это четная функция.

Нечетная функция.

Нечетной называется функция, знак которой меняется при изменении знака x .

Говоря иначе, для любого значения x выполняется равенство f (–x ) = –f (x ).

График нечетной функции симметричен относительно начала координат (рис.2).

Примеры нечетной функции:

y = sin x

y = x 3

y = –x 3

Пояснение:

Возьмем функцию y = –x 3 .
Все значения у в ней будут со знаком минус. То есть знак x влияет на знак y . Если независимая переменная – положительное число, то и функция положительная, если независимая переменная – отрицательное число, то и функция отрицательная: f (–x ) = –f (x ).
График функции симметричен относительно начала координат. Это нечетная функция.

Свойства четной и нечетной функций:

ПРИМЕЧАНИЕ:

Не все функции являются четными или нечетными. Есть функции, которые не подчиняются такой градации. К примеру, функция корня у = √х не относится ни к четным, ни к нечетным функциям (рис.3). При перечислении свойств подобных функций следует давать соответствующее описание: ни четна, ни нечетна.

Периодические функции.

Как вы знаете, периодичность – это повторяемость определенных процессов с определенным интервалом. Функции, описывающие эти процессы, называют периодическими функциями . То есть это функции, в чьих графиках есть элементы, повторяющиеся с определенными числовыми интервалами.

Графики четной и нечетной функции обладают следующими особенностями:

Если функция является четной, то ее график симметричен относительно оси ординат. Если функция является нечетной, то ее график симметричен относительно начала координат.

Пример. Построить график функции \(y=\left|x \right|\).

Решение. Рассмотрим функцию: \(f\left(x \right)=\left|x \right|\) и подставим вместо \(x \) противоположное \(-x \). В результате не сложных преобразований получим: $$f\left(-x \right)=\left|-x \right|=\left|x \right|=f\left(x \right)$$ Другими словами, если аргумент заменить на противоположный по знаку, функция не изменится.

Значит эта функция - четная, а ее график будет симметричен относительно оси ординат (вертикальной оси). График этой функции приведен на рисунке слева. Это означает что при построении графика, можно строить только половину, а вторую часть (левее вертикальной оси рисовать уже симметрично правой части). Определив симметричность функции перед началом построения ее графика, можно намного упростить процесс построения или исследования функции. Если сложно выполнять проверку в общем виде, можно поступить проще: подставить в уравнение одинаковые значения разных знаков. Например -5 и 5. Если значения функции получатся одинаковыми, то можно надеяться что функция будет четной. С математической точки зрения такой подход не совсем правильный, но с практической - удобный. Чтобы увеличить достоверность результата можно подставить несколько пар таких противоположных значений.


Пример. Построить график функции \(y=x\left|x \right|\).

Решение. Выполним проверку так же как в предыдущем примере: $$f\left(-x \right)=x\left|-x \right|=-x\left|x \right|=-f\left(x \right)$$ Это означает, что исходная функция является нечетной (знак функции поменялся на противоположный).

Вывод: функция симметрична относительно начала координат. Можно строить только одн половину, а вторую рисовать симметрично. Такую симметрию рисовать сложнее. Это означает, что вы смотрите на график с другой строны листа да еще и перевернув вверх ногами. А можно еще так: берем нарисованную часть и вращаем ее вокруг начала координат на 180 градусов против часовой стрелки.


Пример. Построить график функции \(y=x^3+x^2\).

Решение. Выполним такую же проверку на смену знака, как и в предыдущих двух примерах. $$f\left(-x \right)=\left(-x \right)^3+\left(-x \right)^2=-x^2+x^2$$ В результате получим, что: $$f\left(-x \right)\not=f\left(x \right),f\left(-x \right)\not=-f\left(x \right)$$ А это означает, что функция не является ни четной, ни нечетной.

Вывод: функция не симметрична ни относительно начала координат ни относительно центра системы координат. Это произошло потому, что она представляет собой сумму двух функций: четной и не четной. Такая же ситуация будет если вычитать две разные функции. А вот умножение или деление приведет к другому результату. Например, произведение четной и нечетной функций дает нечетную. Или частное двух нечетных приводит к четной функции.