Индукция есть метод получения общего утверждения из частных наблюдений. В случае, когда математическое утверждение касается конечного числа объектов, его можно доказать, проверяя для каждого объекта. Например, утверждение: «Каждое двузначное чётное число является суммой двух простых чисел,» – следует из серии равенств, которые вполне реально установить:

10=5+5 12=5+7 14=7+7 16=5+11 . . . 92=3+89 94=5+89 96=7+89 98=19+79.

Метод доказательства, при котором проверяется утверждение для конечного числа случаев, исчерпывающих все возможности, называют полной индукцией. Этот метод применим сравнительно редко, поскольку математические утверждения касаются, как правило, не конечных, а бесконечных множеств объектов. Например, доказанное выше полной индукцией утверждение о четных двузначных числах является лишь частным случаем теоремы: «Любое четное число является суммой двух простых чисел». Эта теорема до сих пор ни доказана, ни опровергнута.

Математическая индукция – метод доказательства некоторого утверждения для любого натурального n основанный на принципе математической индукции: «Если утверждение верно для n=1 и из справедливости его для n=k вытекает справедливость этого утверждения для n=k+1, то оно верно для всех n». Способ доказательства методом математической индукции заключается в следующем:

1) база индукции: доказывают или непосредственно проверяют справедливость утверждения для n=1 (иногда n=0 или n=n 0);

2) индукционный шаг (переход): предполагают справедливость утверждения для некоторого натурального n=k и, исходя из этого предположения, доказывают справедливость утверждения для n=k+1.

Задачи с решениями

1. Доказать, что при любом натуральном n число 3 2n+1 +2 n+2 делится на 7.

Обозначим А(n)=3 2n+1 +2 n+2 .

База индукции. Если n=1, то А(1)=3 3 +2 3 =35 и, очевидно, делится на 7.

Предположение индукции. Пусть А(k) делится на 7.

Индукционный переход. Докажем, что А(k+1) делится на 7, то есть справедливость утверждения задачи при n=k.

А(k+1)=3 2(k+1)+1 +2 (k+1)+2 =3 2k+1 ·3 2 +2 k+2 ·2 1 =3 2k+1 ·9+2 k+2 ·2=

3 2k+1 ·9+2 k+2 ·(9–7)=(3 2k+1 +2 k+2)·9–7·2 k+2 =9·А(k)–7·2 k+2 .

Последнее число делится на 7, так как представляет собой разность двух целых чисел, делящихся на 7. Следовательно, 3 2n+1 +2 n+2 делится на 7 при любом натуральном n.

2. Доказать, что при любом натуральном n число 2 3 n +1 делится на 3 n+1 и не делится на 3 n+2 .

Введём обозначение: а i =2 3 i +1.

При n=1 имеем, а 1 =2 3 +1=9. Итак, а 1 делится на 3 2 и не делится на 3 3 .

Пусть при n=k число а k делится на 3 k+1 и не делится на 3 k+2 , то есть а k =2 3 k +1=3 k+1 ·m, где m не делится на 3. Тогда

а k+1 =2 3 k+1 +1=(2 3 k) 3 +1=(2 3 k +1)(2 3 k ·2 –2 3 k +1)=3 k+1 ·m·((2 3 k +1) 2 –3·2 3 k)=3 k+1 ·m·((3 k+1 ·m) 2 –3·2 3 k)=

3 k+2 ·m·(3 2k+1 ·m 2 –2 3 k).

Очевидно, что а k+1 делится на 3 k+2 и не делится на 3 k+3 .

Следовательно, утверждение доказано для любого натурального n.

3. Известно, что х+1/x – целое число. Доказать, что х n +1/х n – так же целое число при любом целом n.

Введём обозначение: а i =х i +1/х i и сразу отметим, что а i =а –i , поэтому дальше будем вести речь о натуральных индексах.

Заметим: а 1 – целое число по условию; а 2 – целое, так как а 2 =(а 1) 2 –2; а 0 =2.

Предположим, что а k целое при любом натуральном k не превосходящем n. Тогда а 1 ·а n – целое число, но а 1 ·а n =а n+1 +а n–1 и а n+1 =а 1 ·а n –а n–1 . Однако, а n–1 , согласно индукционному предположению, – целое. Значит, целым является и а n+1 . Следовательно, х n +1/х n – целое число при любом целом n, что и требовалось доказать.

4. Доказать, что при любом натуральном n большем 1 справедливо двойное неравенство

5. Доказать, что при натуральном n > 1 и |х|

(1–x) n +(1+x) n

При n=2 неравенство верно. Действительно,

(1–x) 2 +(1+x) 2 = 2+2·х 2

Если неравенство верно при n=k, то при n=k+1 имеем

(1–x) k+1 +(1+x) k+1

Неравенство доказано для любого натурального n > 1.

6. На плоскости дано n окружностей. Доказать, что при любом расположении этих окружностей образуемую ими карту можно правильно раскрасить двумя красками.

Воспользуемся методом математической индукции.

При n=1 утверждение очевидно.

Предположим, что утверждение справедливо для любой карты, образованной n окружностями, и пусть на плоскости задано n+1 окружностей. Удалив одну из этих окружностей, мы получим карту, которую в силу сделанного предположения можно правильно раскрасить двумя красками (смотрите первый рисунок из приведённых ниже).

Восстановим затем отброшенную окружность и по одну сторону от нее, например внутри, изменим цвет каждой области на противоположный (смотрите второй рисунок). Легко видеть, что при этом мы получим карту, правильную раскрашенную двумя красками, но только теперь уже при n+1 окружностях, что и требовалось доказать.

7. Выпуклый многоугольник будем называть «красивым», если выполняются следующие условия:

1) каждая его вершина окрашена в один из трёх цветов;

2) любые две соседние вершины окрашены в разные цвета;

3) в каждый из трёх цветов окрашена, по крайней мере, одна вершина многоугольника.

Доказать, что любой красивый n-угольник можно разрезать не пересекающимися диагоналями на «красивые» треугольники.

Воспользуемся методом математической индукции.

База индукции. При наименьшем из возможных n=3 утверждение задачи очевидно: вершины «красивого» треугольника окрашены в три разных цвета и никакие разрезы не нужны.

Предположение индукции. Допустим, что утверждение задачи верно для любого «красивого» n-угольника.

Индукционный шаг. Рассмотрим произвольный «красивый» (n+1)-угольник и докажем, используя предположение индукции, что его можно разрезать некоторыми диагоналями на «красивые» треугольники. Обозначим через А 1 , А 2 , А 3 , … А n , А n+1 – последовательные вершины (n+1)-угольника. Если в какой-либо из трёх цветов окрашена лишь одна вершина (n+1)-угольника, то, соединив эту вершину диагоналями со всеми не соседними с ней вершинами, получим необходимое разбиение (n+1)-угольника на «красивые» треугольники.

Если в каждый из трёх цветов окрашены не менее двух вершин (n+1)-угольника, то обозначим цифрой 1 цвет вершины А 1 , а цифрой 2 цвет вершины А 2 . Пусть k – такой наименьший номер, что вершина А k окрашена в третий цвет. Понятно, что k > 2. Отсечём от (n+1)-угольника диагональю А k–2 А k треугольник А k–2 А k–1 А k . В соответствии с выбором числа k все вершины этого треугольника окрашены в три разных цвета, то есть этот треугольник «красивый». Выпуклый n-угольник А 1 А 2 … А k–2 А k А k+1 … А n+1 , который остался, также, в силу индуктивного предположения, будет «красивым», а значит разбивается на «красивые» треугольники, что и требовалось доказать.

8. Доказать, что в выпуклом n-угольнике нельзя выбрать больше n диагоналей так, чтобы любые две из них имели общую точку.

Проведём доказательство методом математической индукции.

Докажем более общее утверждение: в выпуклом n-угольнике нельзя выбрать больше n сторон и диагоналей так, чтобы любые две из них имели общую точку. При n = 3 утверждение очевидно. Допустим, что это утверждение верно для произвольного n-угольника и, используя это, докажем его справедливость для произвольного (n+1)-угольника.

Допустим, что для (n+1)-угольника это утверждение неверно. Если из каждой вершины (n+1)-угольника выходит не больше двух выбранных сторон или диагоналей, то всего их выбрано не больше чем n+1. Поэтому из некоторой вершины А выходит хотя бы три выбранных стороны или диагонали AB, AC, AD. Пусть АС лежит между АВ и AD. Поскольку любая сторона или диагональ, которая выходит из точки С и отличная от СА, не может одновременно пересекать АВ и AD, то из точки С выходит только одна выбранная диагональ СА.

Отбросив точку С вместе с диагональю СА, получим выпуклый n-угольник, в котором выбрано больше n сторон и диагоналей, любые две из которых имеют общую точку. Таким образом, приходим к противоречию с предположением, что утверждение верно для произвольного выпуклого n-угольника.

Итак, для (n+1)-угольника утверждение верно. В соответствии с принципом математической индукции утверждение верно для любого выпуклого n-угольника.

9. В плоскости проведено n прямых, из которых никакие две не параллельны и никакие три не проходят через одну точку. На сколько частей разбивают плоскость эти прямые.

С помощью элементарных рисунков легко убедится в том, что одна прямая разбивает плоскость на 2 части, две прямые – на 4 части, три прямые – на 7 частей, четыре прямые – на 11 частей.

Обозначим через N(n) число частей, на которые n прямых разбивают плоскость. Можно заметить, что

N(2)=N(1)+2=2+2,

N(3)=N(2)+3=2+2+3,

N(4)=N(3)+4=2+2+3+4.

Естественно предположить, что

N(n)=N(n–1)+n=2+2+3+4+5+…+n,

или, как легко установить, воспользовавшись формулой суммы n первых членов арифметической прогрессии,

N(n)=1+n(n+1)/2.

Докажем справедливость этой формулы методом математической индукции.

Для n=1 формула уже проверена.

Сделав предположение индукции, рассмотрим k+1 прямых, удовлетворяющих условию задачи. Выделим из них произвольным образом k прямых. По предположению индукции они разобьют плоскость на 1+ k(k+1)/2 частей. Оставшаяся (k+1)-я прямая разобьётся выделенными k прямыми на k+1 частей и, следовательно, пройдёт по (k+1)-й части, на которые плоскость уже была разбита, и каждую из этих частей разделит на 2 части, то есть добавится ещё k+1 часть. Итак,

N(k+1)=N(k)+k+1=1+ k(k+1)/2+k+1=1+(k+1)(k+2)/2,

что и требовалось доказать.

10. В выражении х 1:х 2: … :х n для указания порядка действий расставляются скобки и результат записывается в виде дроби:

(при этом каждая из букв х 1 , х 2 , … , х n стоит либо в числителе дроби, либо в знаменателе). Сколько различных выражения можно таким образом получить при всевозможных способах расстановки скобок?

Прежде всего ясно, что в полученной дроби х 1 будет стоять в числителе. Почти столь же очевидно, что х 2 окажется в знаменателе при любой расстановке скобок (знак деления, стоящий перед х 2 , относится либо к самому х 2 , либо к какому-либо выражению, содержащему х 2 в числителе).

Можно предположить, что все остальные буквы х 3 , х 4 , … , х n могут располагаться в числителе или знаменателе совершенно произвольным образом. Отсюда следует, что всего можно получить 2 n–2 дробей: каждая из n–2 букв х 3 , х 4 , … , х n может оказаться независимо от остальных в числителе или знаменателе.

Докажем это утверждение по индукции.

При n=3 можно получить 2 дроби:

так что утверждение справедливо.

Предположим, что оно справедливо при n=k и докажем его для n=k+1.

Пусть выражение х 1:х 2: … :х k после некоторой расстановки скобок записывается в виде некоторой дроби Q. Если в это выражение вместо х k подставить х k:х k+1 , то х k окажется там же, где и было в дроби Q, а х k+1 будет стоять не там, где стояло х k (если х k было в знаменателе, то х k+1 окажется в числителе и наоборот).

Теперь докажем, что можно добавить х k+1 туда же, где стоит х k . В дроби Q после расстановки скобок обязательно будет выражение вида q:х k , где q – буква х k–1 или некоторое выражение в скобках. Заменив q:х k выражением (q:х k):х k+1 =q:(х k ·х k+1), мы получим, очевидно, ту же самую дробь Q, где вместо х k стоит х k ·х k+1 .

Таким образом, количество всевозможных дробей в случае n=k+1 в 2 раза больше чем в случае n=k и равно 2 k–2 ·2=2 (k+1)–2 . Тем самым утверждение доказано.

Ответ: 2 n–2 дробей.

Задачи без решений

1. Доказать, что при любом натуральном n:

а) число 5 n –3 n +2n делится на 4;

б) число n 3 +11n делится на 6;

в) число 7 n +3n–1 делится на 9;

г) число 6 2n +19 n –2 n+1 делится на 17;

д) число 7 n+1 +8 2n–1 делится на 19;

е) число 2 2n–1 –9n 2 +21n–14 делится на 27.

2. Докажите, что (n+1)·(n+2)· … ·(n+n) = 2 n ·1·3·5·…·(2n–1).

3. Доказать неравенство |sin nx| n|sin x| для любого натурального n.

4. Найдите натуральные числа a, b, c, которые не делятся на 10 и такие, что при любом натуральном n числа a n + b n и c n имеют одинаковые две последние цифры.

5. Доказать, что если n точек не лежат на одной прямой, то среди прямых, которые их соединяют, не менее чем n различных.

Ковалентная связь осуществляется за счёт обобществления электронов, принадлежащих обоим участвующим во взаимодействии атомам. Электроотрицательности неметаллов достаточно велики, поэтому передачи электронов не происходит.

Электроны, находящиеся на перекрывающихся электронных орбиталях, поступают в общее пользование. При этом создаётся ситуация, при которой внешние электронные уровни атомов оказываются заполненными, то есть образуется 8-ми или 2-х электронная внешняя оболочка.

Состояние, при котором электронная оболочка заполнена полностью, характеризуется наименьшей энергией, а соответственно, и максимальной устойчивостью.

Механизмов образования два:

  1. донорно-акцепторный;
  2. обменный.

В первом случае один из атомов предоставляет свою пару электронов, а второй - свободную электронную орбиталь.

Во втором - в общую пару приходит по одному электрону от каждого участника взаимодействия.

В зависимости от того, к какому типу относятся - атомному или молекулярному, соединения с подобным видом связи могут значительно различаться по физико-химическим характеристикам.

Молекулярные вещества чаще всего газы, жидкость или твёрдые вещества с низкими температурами плавления и кипения, неэлектропроводные, обладающие малой прочностью. К ним можно отнести: водород (H 2), кислород (O 2), азот (N 2), хлор (Cl 2), бром (Br 2), ромбическую серу (S 8), белый фосфор (P 4) и другие простые вещества; диоксид углерода (CO 2), диоксид серы (SO 2), оксид азота V (N 2 O 5), воду (H 2 O), хлороводород (HCl), фтороводород (HF), аммиак (NH 3), метан (CH 4), этиловый спирт (C 2 H 5 OH), органические полимеры и другие.

Вещества атомные существуют в виде прочных кристаллов, имеющих высокие температуры кипения и плавления, не растворимы в воде и прочих растворителях, многие не проводят электрический ток. Как пример можно привести алмаз, который обладает исключительной прочностью. Это объясняется тем, что алмаз представляет собой кристалл, состоящий из атомов углерода, соединённых ковалентными связями. В алмазе нет отдельных молекул. Также атомным строением обладают такие вещества, как графит, кремний (Si), диоксид кремния (SiO 2), карбид кремния (SiC) и другие.

Ковалентные связи могут быть не только одинарными (как в молекуле хлора Cl2), но также двойные, как в молекуле кислорода О2, или тройные, как, например, в молекуле азота N2. При этом тройные имеют большую энергию и более прочны, чем двойные и одинарные.

Ковалентная связь может быть образована как между двумя атомами одного элемента (неполярная), так и между атомами различных химических элементов (полярная).

Указать формулу соединения с ковалентной полярной связью не представляет труда, если сравнить значения электроотрицательностей, входящих в состав молекул атомов. Отсутствие разницы в электроотрицательности определит неполярность. Если же разница есть, то молекула будет полярна.

Не пропустите: механизм образования , конкретные примеры.

Ковалентная неполярная химическая связь

Характерна для простых веществ неметаллов . Электроны принадлежат атомам в равной степени, и смещения электронной плотности не происходит.

Примером могут служить следующие молекулы:

H2, O2, О3, N2, F2, Cl2.

Исключением являются инертные газы . Их внешний энергетический уровень заполнен полностью, и образование молекул им энергетически не выгодно, в связи с чем они существуют в виде отдельных атомов.

Также примером веществ с неполярной ковалентной связью будет, например, РН3. Несмотря на то, что вещество состоит из различных элементов, значения электроотрицательностей элементов фактически не различаются, а значит, смещения электронной пары происходить не будет.

Ковалентная полярная химическая связь

Рассматривая ковалентную полярную связь, примеров можно привести множество: HCl, H2O, H2S, NH3, CH4, CO2, SO3, CCl4, SiO2, СО.

образуется между атомами неметаллов с различной электроотрицательностью. При этом ядро элемента с большей электроотрицательностью притягивает общие электроны ближе к себе.

Схема образования ковалентной полярной связи

В зависимости от механизма образования общими могут становиться электроны одного из атомов или обоих .

На картинке наглядно представлено взаимодействие в молекуле соляной кислоты.

Пара электронов принадлежит и одному атому, и второму, у обоих, таким образом, внешние уровни заполнены. Но более электроотрицательный хлор притягивает пару электронов чуть ближе к себе (при этом она остаётся общей). Разница в электроотрицательности недостаточно большая, чтобы пара электронов перешла к одному из атомов полностью. В результате возникает частичный отрицательный заряд у хлора и частичный положительный у водорода. Молекула HCl является полярной молекулой.

Физико-химические свойства связи

Связь можно охарактеризовать следующими свойствами : направленность, полярность, поляризуемость и насыщаемость.

Ковалентная химическая связь возникает между атомами с близкими или равными значениями электроотрицательностей. Предположим, что хлор и водород стремятся отнять электроны и принять структуру ближайшего благородного газа, значит ни один из них не отдаст электрон другому. Каким же способом они все таки соединяются? Все просто – они поделятся друг с другом, образуется общая электронная пара.

Теперь рассмотрим отличительные черты ковалентной связи.

В отличие от ионных соединений, молекулы ковалентных соединений удерживаются вместе за счет «межмолекулярных сил», которые намного слабее химических связей. В связи с этим, ковалентной связи характерна насыщаемость – образование ограниченного числа связей.

Известно, что атомные орбитали ориентированы в пространстве определенным образом, поэтому при образовании связи, перекрывание электронных облаков происходит в определенном направлении. Т.е. реализуется такое свойство ковалентной связи как направленность.

Если ковалентная связь в молекуле образована одинаковыми атомами или атомами с равной электроотрицательностью, то такая связь не имеет полярности, т.е электронная плотность распределяется симметрично. Называется она неполярной ковалентной связью (H 2 , Cl 2 , O 2 ). Связи могут быть как одинарными, так и двойными, тройными.

Если электроотрицательности атомов различаются, то при их соединении электронная плотность распределяется между атомами неравномерно и образуется ковалентная полярная связь (HCl, H 2 O, CO), кратность которой также может быть различной. При образовании данного типа связи, более электроотрицательный атом приобретает частичный отрицательный заряд, а атом с меньшей электроотрицательностью – частичный положительный заряд (δ- и δ+). Образуется электрический диполь, в котором заряды, противоположные по знаку, расположены на неком расстоянии друг от друга. В качестве меры полярности связи используют дипольный момент:

Полярность соединения тем более выражена, чем больше дипольный момент. Молекулы будут иметь неполярный характер, если дипольный момент равен нулю.

В связи с вышеперечисленными особенностями, можно заключить, что ковалентные соединения летучи, имеют низкие температуры плавления и кипения. Электрический ток не может проходить через эти соединения, следовательно, они плохие проводники и хорошие изоляторы. При подводе тепла, многие соединения с ковалентной связью, загораются. В большей части это углеводороды, а также оксиды, сульфиды, галогениды неметаллов и переходных металлов.

Категории ,

Атомы большинства элементов не суще­ствуют отдельно, так как могут взаимодействовать между собой. При этом взаимодействии образуются более сложные части­цы.

Природа химической связи состоит в действии электростатических сил, которые являются силами взаимодействия между электричес­кими зарядами. Такие заряды имеют электроны и ядра атомов.

Электроны, расположенные на внешних электронных уровнях (валентные электроны) находясь дальше всех от ядра, слабее всего с ним взаимодействуют, а значит способны отрываться от ядра. Именно они отвечают за связывание атомов друг с другом.

Типы взаимодействия в химии

Типы химической связи можно представить в виде следующей таблицы:

Характеристика ионной связи

Химическое взаимодействие, которое образуется из-за притяжения ионов , имеющих разные заряды, называется ионным. Такое происходит, если связываемые атомы имеют существенную разницу в электроотрицательности (то есть способности притягивать электроны) и электронная пара переходит к более электроотрицательному элементу. Результатом такого перехода электронов от одного атома к другому является образование заряженных частиц - ионов. Между ними и возникает притяжение.

Наименьшими показателями электроотрицательности обладают типичные металлы , а наибольшими - типичные неметаллы. Ионы, таким образом, образуются при взаимодействии между типичными металлами и типичными неметаллами.

Атомы металла становятся положительно заряженными ионами (катионами), отдавая электроны внешних электронных уровней, а неметаллы принимают электроны, превращаясь таким образом в отрицательно заряженные ионы (анионы).

Атомы переходят в более устойчивое энергетическое состояние, завершая свои электронные конфигурации.

Ионная связь ненаправленная и не насыщаемая, так как электростатическое взаимодействие происходит во все стороны, соответственно ион может притягивать ионы противоположного знака во всех направлениях.

Расположение ионов таково, что вокруг каждого находится определённое число противоположно заряженных ионов. Понятие «молекула» для ионных соединений смысла не имеет .

Примеры образования

Образование связи в хлориде натрия (nacl) обусловлено передачей электрона от атома Na к атому Cl с образованием соответствующих ионов:

Na 0 - 1 е = Na + (катион)

Cl 0 + 1 е = Cl — (анион)

В хлориде натрия вокруг катионов натрия расположено шесть анионов хлора, а вокруг каждого иона хлора — шесть ионов натрия.

При образовании взаимодействия между атомами в сульфиде бария происходят следующие процессы:

Ba 0 - 2 е = Ba 2+

S 0 + 2 е = S 2-

Ва отдаёт свои два электрона сере в результате чего образуются анионы серы S 2- и катионы бария Ba 2+ .

Металлическая химическая связь

Число электронов внешних энергетических уровней металлов невелико, они легко отрываются от ядра. В результате такого отрыва образуются ионы металла и свобод­ные электроны. Эти электроны называются «электронным газом». Электроны свободно перемещаются по объёму металла и постоянно связываются и отрываются от атомов.

Строение вещества металла таково: кристаллическая решётка является остовом вещества, а между её узлами электроны могут свободно перемещаться.

Можно привести следующие примеры:

Mg - 2е <-> Mg 2+

Cs - e <-> Cs +

Ca - 2e <-> Ca 2+

Fe - 3e <-> Fe 3+

Ковалентная: полярная и неполярная

Наиболее распространённым видом химического взаимодействия является ковалентная связь. Значения электроотрицательности элементов, вступающих во взаимодействие, отличаются не резко, в связи с этим происходит только смещение общей электронной пары к более электроотрицательному атому.

Ковалентное взаимодействие может образовываться по обменному механизму или по донорно-акцепторному.

Обменный механизм реализуется, если у каждого из атомов есть неспаренные электроны на внешних электронных уровнях и перекрывание атомных орбиталей приводит к возникновению пары электронов, принадлежащей уже обоим атомам. Когда же у одного из атомов есть пара электронов на внешнем электронном уровне, а у другого — свободная орбиталь, то при перекрывании атомных орбиталей происходит обобществление электронной пары и взаимодействие по донорно-акцепторному механизму.

Ковалентные разделяются по кратности на:

  • простые или одинарные;
  • двойные;
  • тройные.

Двойные обеспечивают обобществление сразу двух пар электронов, а тройные — трёх.

По распределению электронной плотности (полярности) между связываемыми атомами ковалентная связь делится на:

  • неполярную;
  • полярную.

Неполярную связь образуют одинаковые атомы, а полярную - разные по электроотрицательности.

Взаимодействие близких по электроотрицательности атомов называют неполярной связью. Общая пара электронов в такой молекуле не притянута ни к одному из атомов, а принадлежит в равной мере обоим.

Взаимодействие различающихся по электроотрицательности элементов приводит к образованию полярных связей. Общие электронные пары при таком типе взаимодействия притягиваются более электроотрицательным элементом, но полностью к нему не переходят (то есть образования ионов не происходит). В результате такого смещения электронной плотности на атомах появляются частичные заряды: на более электроотрицательном — отрицательный заряд, а на менее — положительный.

Свойства и характеристика ковалентности

Основные характеристики ковалентной связи:

  • Длина определяется расстоянием между ядрами взаимодействующих атомов.
  • Полярность определяется смещением электронного облака к одному из атомов.
  • Направленность - свойство образовывать ориентированные в пространстве связи и, соответственно, молекулы, имеющие определённые геометрические формы.
  • Насыщаемость определяется способностью образовывать ограниченное число связей.
  • Поляризуемость определяется способностью изменять полярность под действием внешнего электрического поля.
  • Энергия необходимая для разрушения связи, определяющая её прочность.

Примером ковалентного неполярного взаимодействия могут быть молекулы водорода (H2) , хлора (Cl2), кислорода (O2), азота (N2) и многие другие.

H· + ·H → H-H молекула имеет одинарную неполярную связь,

O: + :O → O=O молекула имеет двойную неполярную,

Ṅ: + Ṅ: → N≡N молекула имеет тройную неполярную.

В качестве примеров ковалентной связи химических элементов можно привести молекулы углекислого (CO2) и угарного (CO) газа, сероводорода (H2S), соляной кислоты (HCL), воды (H2O), метана (CH4) , оксида серы (SO2) и многих других.

В молекуле CO2 взаимосвязь между углеродом и атомами кислорода ковалентная полярная, так как более электроотрицательный водород притягивает к себе электронную плотность. Кислород имеет два неспаренных электрона на внешнем уровне, а углерод может предоставить для образования взаимодействия четыре валентных электрона. В результате образуются двойные связи и молекула выглядит так: O=C=O.

Для того чтобы определиться с типом связи в той или иной молекуле, достаточно рассмотреть составляющие её атомы. Простые вещества металлы образуют металлическую, металлы с неметаллами — ионную, простые вещества неметаллы — ковалентную неполярную, а молекулы, состоящие из разных неметаллов, образуются посредством ковалентной полярной связью.

План лекции:

1. Понятие ковалентной связи.

2. Электроотрицательность.

3. Полярная и неполярная ковалентная связь.

Ковалентная связь образуется за счёт общих электронных пар, возникающих в оболочках связываемых атомов.

Она может быть образована атомами одного итого же элемента и тогда она неполярная; например, такая ковалентная связь существует в молекулах одноэлементных газов H 2 , O 2 , N 2 , Cl 2 и др.

Ковалентная связь может быть образована атомами разных элементов, сходных по химическому характеру, и тогда она полярная; например, такая ковалентная связь существует в молекулах H 2 O, NF 3 , CO 2 .

Неоходимо ввести понятие электроотрицательность.

Электроотрицательность – это способность атомов химического элемента оттягивать к себе общие электронные пары, участвующие в образовании химической связи.


ряд электроотрицательностей

Элементы с большей электроотрицательностью будут оттягивать общие электроны от элементов с меньшей электроотрицательностью.

Для наглядного изображения ковалентной связи в химических формулах используются точки (каждая точка отвечает валентному электрону, а также черта отвечает общей электронной паре).

Пример. Связи в молекуле Cl 2 можно изобразить так:

Такие записи формул равнозначны. Ковалентные связи обладают пространственной направленностью. В результате ковалентного связывания атомов образуются либо молекулы, либо атомные кристаллические решётки со строго определенным геометрическим расположением атомов. Каждому веществу соответствует своя структура.

С позиции теории Бора образование ковалентной связи объясняется тенденцией атомов преобразовывать свой внешний слой в октет (полное заполнение до 8 электронов).Оба атома представляют для образования ковалентной связи по одному неспаренному электрону, и оба электрона становятся общими.
Пример. Образование молекулы хлора.

Точками обозначены электроны. При расстановке следует соблюдать правило:электроны ставятся в определённой последовательности-слева, сверху, справа,снизу по одному, затем добавляют по одному, неспаренные электроны и принимают участие в образовании связи.

Новая электронная пара, возникшая из двух неспаренных электронов, становится общей для двух атомов хлора. Существует несколько способов образования ковалентных связей за счёт перекрывания электронных облаков.

σ – связь значительно прочнее π-связи, причём π-связь может быть только с σ-связью, За счёт этой связи образуются двойные и тройные кратные связи.

Полярные ковалентные связи образуются между атомами с разной электроотрицательностью.

За счёт смещения электронов от водорода к хлору атом хлора заряжается частично отрицательно, водорода-частично положительно.

Полярная и неполярная ковалентная связь

Если двухатомная молекула состоит из атомов одного элемента, то электронное облако распределяется в пространстве симметрично относительно ядер атомов. Такая ковалентная связь называется неполярной. Если ковалентная связь образуется между атомами различных элементов, то общее электронное облако смещено в сторону одного из атомов. В этом случае ковалентная связь является полярной. Для оценки способности атома притягивать к себе общую электронную пару используют величину электроотрицательности.

В результате образования полярной ковалентной связи более электроотрицательный атом приобретает частичный отрицательный заряд, а атом с меньшей электроотри-цательностью – частичный положительный заряд. Эти заряды принято называть эффективными зарядами атомов в молекуле. Они могут иметь дробную величину. Например, в молекуле HСl эффективный заряд равен 0,17e (где е – заряд электронаЗаряд электрона равен 1,602 . 10 -19 Кл.):

Система из двух равных по величине, но противоположных по знаку зарядов, расположенных на определенном расстоянии друг от друга, называется электрическим диполем. Очевидно, что полярная молекула является микроскопическим диполем. Хотя суммарный заряд диполя равен нулю, в окружающем его пространстве существует электрическое поле, напряженность которого пропорциональна дипольному моменту m:

В системе СИ дипольный момент измеряется в Кл×м, но обычно для полярных молекул в качестве единицы измерения используется дебай (единица названа в честь П. Дебая):

1 D = 3,33×10 –30 Кл×м

Дипольный момент служит количественной мерой полярности молекулы. Для многоатомных молекул дипольный момент представляет собой векторную сумму дипольных моментов химических связей. Поэтому, если молекула симметрична, то она может быть неполярной, даже если каждая из ее связей обладает значительным дипольным моментом. Например, в плоской молекуле BF 3 или в линейной молекуле BeCl 2 сумма дипольных моментов связей равна нулю:

Аналогично, нулевой дипольный момент имеют тетраэдрические молекулы CH 4 и CBr 4 . Однако, нарушение симметрии, например в молекуле BF 2 Cl, обусловливает дипольный момент, отличный от нуля.

Предельным случаем ковалентной полярной связи является ионная связь. Она образуется атомами, электроотрицательности которых значительно различаются. При образовании ионной связи происходит почти полный переход связующей электронной пары к одному из атомов, и образуются положительный и отрицательный ионы, удерживаемые вблизи друг друга электростатическими силами. Поскольку электростатическое притяжение к данному иону действует на любые ионы противоположного знака независимо от направления, ионная связь, в отличие от ковалентной, характеризуется ненаправленностью и ненасыщаемостью . Молекулы с наиболее выраженной ионной связью образуются из атомов типичных металлов и типичных неметаллов (NaCl, CsF и т.п.), т.е. когда различие в электроотрицательности атомов велико.