Если в задаче меньше трех переменных, это не задача; если больше восьми – она неразрешима. Энон.

Задачи с параметрами встречаются во всех вариантах ЕГЭ, поскольку при их решении наиболее ярко выявляется, насколько глубоки и неформальны знания выпускника. Трудности, возникающие у учащихся при выполнении подобных заданий, вызваны не только относительной их сложностью, но и тем, что в учебных пособиях им уделяется недостаточно внимания. В вариантах КИМов по математике встречается два типа заданий с параметрами. Первый: «для каждого значения параметра решить уравнение, неравенство или систему». Второй: «найти все значения параметра, при каждом из которых решения неравенства, уравнения или системы удовлетворяют заданным условиям». Соответственно и ответы в задачах этих двух типов различаются по существу. В первом случае в ответе перечисляются все возможные значения параметра и для каждого из этих значений записываются решения уравнения. Во втором – перечисляются все значения параметра, при которых выполнены условия задачи. Запись ответа является существенным этапом решения, очень важно не забыть отразить все этапы решения в ответе. На это необходимо обращать внимание учащихся.
В приложении к уроку приведен дополнительный материал по теме «Решение систем линейных уравнений с параметрами», который поможет при подготовке учащихся к итоговой аттестации.

Цели урока:

  • систематизация знаний учащихся;
  • выработка умений применять графические представления при решении систем уравнений;
  • формирование умения решать системы линейных уравнений, содержащих параметры;
  • осуществление оперативного контроля и самоконтроля учащихся;
  • развитие исследовательской и познавательной деятельности школьников, умения оценивать полученные результаты.

Урок рассчитан на два учебных часа.

Ход урока

  1. Организационный момент

Сообщение темы, целей и задач урока.

  1. Актуализация опорных знаний учащихся

Проверка домашней работы. В качестве домашнего задания учащимся было предложено решить каждую из трех систем линейных уравнений

а) б) в)

графически и аналитически; сделать вывод о количестве полученных решений для каждого случая

Заслушиваются и анализируются выводы, сделанные учащимися. Результаты работы под руководством учителя в краткой форме оформляются в тетрадях.

В общем виде систему двух линейных уравнений с двумя неизвестными можно представить в виде: .

Решить данную систему уравнений графически – значит найти координаты точек пересечения графиков данных уравнений или доказать, что таковых нет. Графиком каждого уравнения этой системы на плоскости является некоторая прямая.

Возможны три случая взаимного расположения двух прямых на плоскости:

<Рисунок1>;

<Рисунок2>;

<Рисунок3>.

К каждому случаю полезно выполнить рисунок.

  1. Изучение нового материала

Сегодня на уроке мы научимся решать системы линейных уравнений, содержащие параметры. Параметром будем называть независимую переменную, значение которой в задаче считается заданным фиксированным или произвольным действительным числом, или числом, принадлежащим заранее оговоренному множеству. Решить систему уравнений с параметром – значит установить соответствие, позволяющее для любого значения параметра найти соответствующее множество решений системы.

Решение задачи с параметром зависит от вопроса, поставленного в ней. Если нужно просто решить систему уравнений при различных значениях параметра или исследовать ее, то необходимо дать обоснованный ответ для любого значения параметра или для значения параметра, принадлежащего заранее оговоренному в задаче множеству. Если же необходимо найти значения параметра, удовлетворяющие определенным условиям, то полного исследования не требуется, и решение системы ограничивается нахождением именно этих конкретных значений параметра.

Пример 1. Для каждого значения параметра решим систему уравнений

Решение.

  1. Система имеет единственное решение, если

В этом случае имеем

  1. Если а = 0, то система принимает вид

Система несовместна, т.е. решений не имеет.

  1. Если то система запишется в виде

Очевидно, что в этом случае система имеет бесконечно много решений вида x = t; где t-любое действительное число.

Ответ:

Пример 2.

  • имеет единственное решение;
  • имеет множество решений;
  • не имеет решений?

Решение.

Ответ:

Пример 3. Найдем сумму параметров a и b, при которых система

имеет бесчисленное множество решений.

Решение. Система имеет бесчисленное множество решений, если

То есть если a = 12, b = 36; a + b = 12 + 36 =48.

Ответ: 48.

  1. Закрепление изученного в ходе решения задач
  1. № 15.24(а) . Для каждого значения параметра решите систему уравнений

  1. № 15.25(а) Для каждого значения параметра решите систему уравнений

  1. При каких значениях параметра a система уравнений

а) не имеет решений; б) имеет бесконечно много решений.

Ответ: при а = 2 решений нет, при а = -2 бесконечное множество решений

  1. Практическая работа в группах

Класс разбивается на группы по 4-5 человек. В каждую группу входят учащиеся с разным уровнем математической подготовки. Каждая группа получает карточку с заданием. Можно предложить всем группам решить одну систему уравнений, а решение оформить. Группа, первой верно выполнившая задание, представляет свое решение; остальные сдают решение учителю.

Карточка. Решите систему линейных уравнений

при всех значениях параметра а.

Ответ: при система имеет единственное решение ; при нет решений; при а = -1бесконечно много решений вида, (t; 1- t) где t R

Если класс сильный, группам могут быть предложены разные системы уравнений, перечень которых находится в Приложении1 . Тогда каждая группа представляет классу свое решение.

Отчет группы, первой верно выполнившей задание

Участники озвучивают и поясняют свой вариант решения и отвечают на вопросы, возникшие у представителей остальных групп.

  1. Самостоятельная работа

Вариант 1

Вариант 2

  1. Итоги урока

Решение систем линейных уравнений с параметрами можно сравнить с исследованием, которое включает в себя три основных условия. Учитель предлагает учащимся их сформулировать.

При решении следует помнить:

  1. для того, чтобы система имела единственное решение, нужно, чтобы прямые, отвечающие уравнению системы, пересекались, т.е. необходимо выполнение условия;
  2. чтобы не имела решений, нужно, чтобы прямые были параллельны, т.е. выполнялось условие,
  3. и, наконец, чтобы система имела бесконечно много решений, прямые должны совпадать, т.е. выполнялось условие.

Учитель оценивает работу на уроке класса в целом и выставляет отметки за урок отдельным учащимся. После проверки самостоятельной работы оценку за урок получит каждый ученик.

  1. Домашнее задание

При каких значениях параметра b система уравнений

  • имеет бесконечно много решений;
  • не имеет решений?

Графики функций y = 4x + b и y = kx + 6 симметричны относительно оси ординат.

  • Найдите b и k,
  • найдите координаты точки пересечения этих графиков.

Решите систему уравнений при всех значениях m и n.

Решите систему линейных уравнений при всех значениях параметра а (любую на выбор).

Литература

  1. Алгебра и начала математического анализа: учеб. для 11 кл. общеобразоват. учреждений: базовый и профил. уровни / С. М. Никольский, М. К. Потапов, Н. Н. Решетников, А. В. Шевкин – М. : Просвещение, 2008.
  2. Математика: 9 класс: Подготовка к государственной итоговой аттестации / М. Н. Корчагина, В. В. Корчагин – М. : Эксмо, 2008.
  3. Готовимся в вуз. Математика. Часть 2. Учебное пособие для подготовки к ЕГЭ, участию в централизованном тестировании и сдаче вступительных испытаний в КубГТУ / Кубан. гос. технол. ун-т; Ин-т совр. технол. и экон.; Сост.: С. Н. Горшкова, Л. М. Данович, Н.А. Наумова, А.В. Мартыненко, И.А. Пальщикова. – Краснодар, 2006.
  4. Сборник задач по математике для подготовительных курсов ТУСУР: Учебное пособие / З. М. Гольдштейн, Г. А. Корниевская, Г. А. Коротченко, С.Н. Кудинова. – Томск: Томск. Гос. ун-т систем управления и радиоэлектроники, 1998.
  5. Математика: интенсивный курс подготовки к экзамену/ О. Ю. Черкасов, А.Г.Якушев. – М.: Рольф, Айрис-пресс, 1998.

Системой m линейных уравнений с n неизвестными называется система вида

где a ij и b i (i =1,…,m ; b =1,…,n ) – некоторые известные числа, а x 1 ,…,x n – неизвестные. В обозначении коэффициентов a ij первый индекс i обозначает номер уравнения, а второй j – номер неизвестного, при котором стоит этот коэффициент.

Коэффициенты при неизвестных будем записывать в виде матрицы , которую назовём матрицей системы .

Числа, стоящие в правых частях уравнений, b 1 ,…,b m называются свободными членами.

Совокупность n чисел c 1 ,…,c n называется решением данной системы, если каждое уравнение системы обращается в равенство после подстановки в него чисел c 1 ,…,c n вместо соответствующих неизвестных x 1 ,…,x n .

Наша задача будет заключаться в нахождении решений системы. При этом могут возникнуть три ситуации:

Система линейных уравнений, имеющая хотя бы одно решение, называется совместной . В противном случае, т.е. если система не имеет решений, то она называется несовместной .

Рассмотрим способы нахождения решений системы.


МАТРИЧНЫЙ МЕТОД РЕШЕНИЯ СИСТЕМ ЛИНЕЙНЫХ УРАВНЕНИЙ

Матрицы дают возможность кратко записать систему линейных уравнений. Пусть дана система из 3-х уравнений с тремя неизвестными:

Рассмотрим матрицу системы и матрицы столбцы неизвестных и свободных членов

Найдем произведение

т.е. в результате произведения мы получаем левые части уравнений данной системы. Тогда пользуясь определением равенства матриц данную систему можно записать в виде

или короче A X=B .

Здесь матрицы A и B известны, а матрица X неизвестна. Её и нужно найти, т.к. её элементы являются решением данной системы. Это уравнение называют матричным уравнением .

Пусть определитель матрицы отличен от нуля |A | ≠ 0. Тогда матричное уравнение решается следующим образом. Умножим обе части уравнения слева на матрицу A -1 , обратную матрице A : . Поскольку A -1 A = E и E X = X , то получаем решение матричного уравнения в виде X = A -1 B .

Заметим, что поскольку обратную матрицу можно найти только для квадратных матриц, то матричным методом можно решать только те системы, в которых число уравнений совпадает с числом неизвестных . Однако, матричная запись системы возможна и в случае, когда число уравнений не равно числу неизвестных, тогда матрица A не будет квадратной и поэтому нельзя найти решение системы в виде X = A -1 B .

Примеры. Решить системы уравнений.

ПРАВИЛО КРАМЕРА

Рассмотрим систему 3-х линейных уравнений с тремя неизвестными:

Определитель третьего порядка, соответствующий матрице системы, т.е. составленный из коэффициентов при неизвестных,

называется определителем системы .

Составим ещё три определителя следующим образом: заменим в определителе D последовательно 1, 2 и 3 столбцы столбцом свободных членов

Тогда можно доказать следующий результат.

Теорема (правило Крамера). Если определитель системы Δ ≠ 0, то рассматриваемая система имеет одно и только одно решение, причём

Доказательство . Итак, рассмотрим систему 3-х уравнений с тремя неизвестными. Умножим 1-ое уравнение системы на алгебраическое дополнение A 11 элемента a 11 , 2-ое уравнение – на A 21 и 3-е – на A 31 :

Сложим эти уравнения:

Рассмотрим каждую из скобок и правую часть этого уравнения. По теореме о разложении определителя по элементам 1-го столбца

Аналогично можно показать, что и .

Наконец несложно заметить, что

Таким образом, получаем равенство: .

Следовательно, .

Аналогично выводятся равенства и , откуда и следует утверждение теоремы.

Таким образом, заметим, что если определитель системы Δ ≠ 0, то система имеет единственное решение и обратно. Если же определитель системы равен нулю, то система либо имеет бесконечное множество решений, либо не имеет решений, т.е. несовместна.

Примеры. Решить систему уравнений


МЕТОД ГАУССА

Ранее рассмотренные методы можно применять при решении только тех систем, в которых число уравнений совпадает с числом неизвестных, причём определитель системы должен быть отличен от нуля. Метод Гаусса является более универсальным и пригоден для систем с любым числом уравнений. Он заключается в последовательном исключении неизвестных из уравнений системы.

Вновь рассмотрим систему из трёх уравнений с тремя неизвестными:

.

Первое уравнение оставим без изменения, а из 2-го и 3-го исключим слагаемые, содержащие x 1 . Для этого второе уравнение разделим на а 21 и умножим на –а 11 , а затем сложим с 1-ым уравнением. Аналогично третье уравнение разделим на а 31 и умножим на –а 11 , а затем сложим с первым. В результате исходная система примет вид:

Теперь из последнего уравнения исключим слагаемое, содержащее x 2 . Для этого третье уравнение разделим на , умножим на и сложим со вторым. Тогда будем иметь систему уравнений:

Отсюда из последнего уравнения легко найти x 3 , затем из 2-го уравнения x 2 и, наконец, из 1-го – x 1 .

При использовании метода Гаусса уравнения при необходимости можно менять местами.

Часто вместо того, чтобы писать новую систему уравнений, ограничиваются тем, что выписывают расширенную матрицу системы:

и затем приводят её к треугольному или диагональному виду с помощью элементарных преобразований.

К элементарным преобразованиям матрицы относятся следующие преобразования:

  1. перестановка строк или столбцов;
  2. умножение строки на число, отличное от нуля;
  3. прибавление к одной строке другие строки.

Примеры: Решить системы уравнений методом Гаусса.


Таким образом, система имеет бесконечное множество решений.

  • Системы m линейных уравнений с n неизвестными.
    Решение системы линейных уравнений — это такое множество чисел {x 1 , x 2 , …, x n }, при подстановке которых в каждое из уравнений системы получается верное равенство.
    где a ij , i = 1, …, m; j = 1, …, n — коэффициенты системы;
    b i , i = 1, …, m — свободные члены;
    x j , j = 1, …, n — неизвестные.
    Вышеприведенная система может быть записана в матричном виде: A · X = B ,




    где (A |B ) — основная матрица системы;
    A — расширенная матрица системы;
    X — столбец неизвестных;
    B — столбец свободных членов.
    Если матрица B не является нуль-матрицей ∅, то данная система линейных уравнений называется неоднородной.
    Если матрица B = ∅, то данная система линейных уравнений называется однородной. Однородная система всегда имеет нулевое (тривиальное) решение: x 1 = x 2 = …, x n = 0 .
    Совместная система линейных уравнений — это имеющая решение система линейных уравнений.
    Несовместная система линейных уравнений — это не имеющая решение система линейных уравнений.
    Определённая система линейных уравнений — это имеющая единственное решение система линейных уравнений.
    Неопределённая система линейных уравнений — это имеющая бесконечное множество решений система линейных уравнений.
  • Системы n линейных уравнений с n неизвестными
    Если число неизвестных равно числу уравнений, то матрица – квадратная. Определитель матрицы называется главным определителем системы линейных уравнений и обозначается символом Δ.
    Метод Крамера для решения систем n линейных уравнений с n неизвестными.
    Правило Крамера.
    Если главный определитель системы линейных уравнений не равен нулю, то система совместна и определена, причем единственное решение вычисляется по формулам Крамера:
    где Δ i — определители, получаемые из главного определителя системы Δ заменой i -го столбца на столбец свободных членов. .
  • Системы m линейных уравнений с n неизвестными
    Теорема Кронекера−Капелли .


    Для того чтобы данная система линейных уравнений была совместной, необходимо и достаточно, чтобы ранг матрицы системы был равен рангу расширенной матрицы системы, rang(Α) = rang(Α|B) .
    Если rang(Α) ≠ rang(Α|B) , то система заведомо не имеет решений.
    Eсли rang(Α) = rang(Α|B) , то возможны два случая:
    1) rang(Α) = n (числу неизвестных) − решение единственно и может быть получено по формулам Крамера;
    2) rang(Α) < n − решений бесконечно много.
  • Метод Гаусса для решения систем линейных уравнений


    Составим расширенную матрицу (A |B ) данной системы из коэффициентов при неизвестных и правых частей.
    Метод Гаусса или метод исключения неизвестных состоит в приведении расширенной матрицы (A |B ) с помощью элементарных преобразований над ее строками к диагональному виду (к верхнему треугольному виду). Возвращаясь к системе уравнений, определяют все неизвестные.
    К элементарным преобразованиям над строками относятся следующие:
    1) перемена местами двух строк;
    2) умножение строки на число, отличное от 0;
    3) прибавление к строке другой строки, умноженной на произвольное число;
    4) выбрасывание нулевой строки.
    Расширенной матрице, приведенной к диагональному виду, соответствует линейная система, эквивалентная данной, решение которой не вызывает затруднений. .
  • Система однородных линейных уравнений.
    Однородная система имеет вид:

    ей соответствует матричное уравнение A · X = 0 .
    1) Однородная система всегда совместна, так как r(A) = r(A|B) , всегда существует нулевое решение (0, 0, …, 0).
    2) Для того чтобы однородная система имела ненулевое решение, необходимо и достаточно, чтобы r = r(A) < n , что равносильно Δ = 0.
    3) Если r < n , то заведомо Δ = 0, тогда возникают свободные неизвестные c 1 , c 2 , …, c n-r , система имеет нетривиальные решения, причем их бесконечно много.
    4) Общее решение X при r < n может быть записано в матричном виде следующим образом:
    X = c 1 · X 1 + c 2 · X 2 + … + c n-r · X n-r ,
    где решения X 1 , X 2 , …, X n-r образуют фундаментальную систему решений.
    5) Фундаментальная система решений может быть получена из общего решения однородной системы:

    ,
    если последовательно полагать значения параметров равными (1, 0, …, 0), (0, 1, …, 0), …, (0, 0, …,1).
    Разложение общего решения по фундаментальной системе решений — это запись общего решения в виде линейной комбинации решений, принадлежащих к фундаментальной системе.
    Теорема . Для того, чтобы система линейных однородных уравнений имела ненулевое решение, необходимо и достаточно, чтобы Δ ≠ 0.
    Итак, если определитель Δ ≠ 0, то система имеет единственное решение.
    Если же Δ ≠ 0, то система линейных однородных уравнений имеет бесконечное множество решений.
    Теорема . Для того чтобы однородная система имела ненулевое решение, необходимо и достаточно, чтобы r(A) < n .
    Доказательство :
    1) r не может быть больше n (ранг матрицы не превышает числа столбцов или строк);
    2) r < n , т.к. если r = n , то главный определитель системы Δ ≠ 0, и, по формулам Крамера, существует единственное тривиальное решение x 1 = x 2 = … = x n = 0 , что противоречит условию. Значит, r(A) < n .
    Следствие . Для того чтобы однородная система n линейных уравнений с n неизвестными имела ненулевое решение, необходимо и достаточно, чтобы Δ = 0.

Решение . A = . Найдем r(А). Так как матрица А имеет порядок 3х4, то наивысший порядок миноров равен 3. При этом все миноры третьего порядка равны нулю (проверить самостоятельно). Значит , r(А) < 3. Возьмем главный базисный минор = -5-4 = -9 0. Следовательно r(А) =2.

Рассмотрим матрицу С = .

Минор третьего порядка 0. Значит, r(C) = 3.

Так как r(А) r(C) , то система несовместна.

Пример 2. Определить совместность системы уравнений

Решить эту систему, если она окажется совместной.

Решение .

A = , C = . Oчевидно, что r(А) ≤ 3, r(C) ≤ 4. Так как detC = 0, то r(C) < 4. Рассмотрим минор третьего порядка , расположенный в левом верхнем углу матрицы А и С: = -23 0. Значит, r(А) = r(C) = 3.

Число неизвестных в системе n=3 . Значит, система имеет единственное решение. При этом четвертое уравнение представляет сумму первых трех и его можно не принимать во внимание.

По формулам Крамера получаем x 1 = -98/23, x 2 = -47/23, x 3 = -123/23.

2.4. Mатричный метод. Mетод Гаусса

Систему n линейных уравнений с n неизвестными можно решать матричным методом по формуле X = A -1 B (при Δ 0), которая получается из (2) умножением обоих частей на А -1 .

Пример 1. Решить систему уравнений

матричным методом (в параграфе 2.2 эта система была решена по формулам Крамера)

Решение . Δ = 10 0 А = - невырожденная матрица.

= (убедитесь в этом самостоятельно, произведя необходимые вычисления).

A -1 = (1/Δ)х= .

Х = A -1 В = х= .

Ответ : .

С практической точки зрения матричный метод и формулы Крамера связаны с большим объемом вычислений, поэтому предпочтение отдается методу Гаусса , который заключается в последовательном исключении неизвестных. Для этого систему уравнений приводят к эквивалентной ей системе с треугольной расширенной матрицей (все элементы ниже главной диагонали равны нулю). Эти действия называют прямым ходом . Из полученной треугольной системы переменные находят с помощью последовательных подстановок (обратный ход ).

Пример 2 . Методом Гаусса решить систему

(Выше эта система была решена по формуле Крамера и матричным методом).

Решение .

Прямой ход . Запишем расширенную матрицу и с помощью элементарных преобразований приведем ее к треугольному виду:

~ ~ ~ ~ .

Получим систему

Обратный ход. Из последнего уравнения находим х 3 = -6 и подставим это значение во второе уравнение:

х 2 = - 11/2 - 1/4 х 3 = - 11/2 - 1/4(-6) = - 11/2 + 3/2 = -8/2 = -4.

х 1 = 2 - х 2 + х 3 = 2+4-6 = 0.

Ответ : .

2.5. Общее решение системы линейных уравнений

Пусть дана система линейных уравнений = b i (i =). Пусть r(A) = r(C) = r, т.е. система совместна. Любой минор порядка r, отличный от нуля, является базисным минором. Не ограничивая общности, будем считать, что базисный минор располагается в первых r (1 ≤ r ≤ min(m,n)) строках и столбцах матрицы А. Отбросив последние m-r уравнений системы, запишем укороченную систему:


которая эквивалентна исходной. Назовем неизвестные х 1 ,….х r базисными , а х r +1 ,…, х r свободными и перенесем слагаемые, содержащие свободные неизвестные, в правую часть уравнений укороченной системы. Получаем систему относительно базисных неизвестных:

koтоторая для каждого набора значений свободных неизвестных х r +1 = С 1 ,…, х n = С n-r имеет единственное рeшение х 1 (С 1 ,…, С n-r),…, х r (С 1 ,…, С n-r), находимое по правилу Крамера.

Соответствующее решение укороченной, а следовательно, и исходной системы имеет вид:

Х(С 1 ,…, С n-r) = - общее решение системы.

Если в общем решении свободным неизвестным придать какие-нибудь числовые значения, то получим решение линейной системы, называемое частным .

Пример . Установить совместность и найти общее решение системы

Решение . А = , С = .

Так как r(A) = r(C) = 2 (убедитесь в этом самостоятельно), то исходная система совместна и имеет бесчисленное множество решений (так как r < 4).