Простейший вид матрицы линейного оператора.

Матрицы A и B называются эквивалентными, если найдутся невырожденные матрицы Q и T , что A =QBT .

Теорема 6.1. Если матрицы эквивалентны, то их ранги равны.

Доказательство . Поскольку ранг произведения не превосходит ранги сомножителей, то . Так как , то . Объединяя два неравенства, получаем требуемое утверждение.

Теорема 6.2. Элементарными преобразованиями со строками и столбцами матрицу A можно привести к блочному виду , где - единичная матрица порядка k , а 0 – нулевая матрица соответствующих размеров.

Доказательство. Приведем алгоритм приведения матрицы A к указанному виду. Номера столбцов будут указываться в квадратных скобках, а номера строк – в круглых скобках.

1. Положим r =1.

2. Если то перейдем на шаг 4, иначе перейдем на шаг 3.

3. Сделаем преобразования со строками , где i =r +1,…,m , и со столбцами , где j =r +1,…,n , и . Увеличим r на 1 и вернемся на шаг 2.

4. Если , при i =r +1,…,m , j =r +1,…,n , то конец. В противном случае найдем i ,j >r , что . Переставим строки и столбцы , вернемся на шаг 2.

Очевидно, что алгоритмом будет строиться последовательность эквивалентных матриц, последняя из которых имеет требуемый вид.

Теорема 6.3. Матрицы A и B одинаковых размеров эквивалентны тогда и только тогда, когда их ранги равны.

Доказательство. Если матрицы эквивалентны, то их ранги равны (Теорема 6.1). Пусть ранги матриц равны. Тогда найдутся невырожденные матрицы, что , где r =rgA =rgB (Теорема 6.2). Следовательно, , и матрицы A и B – эквивалентны.

Результаты данного пункта позволяют находить простейший вид матрицы линейного оператора и базисы пространств, в которых матрица линейного оператора имеет этот простейший вид.

1. Пусть даны два векторных пространства и , соответственно и измерений над числовым полем , и линейный оператор , отображающий в . В настоящем параграфе мы выясним, как меняется матрица , соответствующая данному линейному оператору , при изменении базисов в и .

Выберем в и произвольные базисы и . В этих базисах оператору будет соответствовать матрица . Векторному равенству

соответствует матричное равенство

где и - координатные столбцы для векторов и в базисах и .

Выберем теперь в и другие базисы и . В новых базисах вместо , , будем иметь: , , . При этом

Обозначим через и неособенные квадратные матрицы соответственно порядков и , осуществляющие преобразование координат в пространствах и при переходе от старых базисов к новым (см. § 4):

Тогда из (27) и (29) получаем:

Полагая , мы из (28) и (30) находим:

Определение 8. Две прямоугольные матрицы и одинаковых размеров называются эквивалентными, если существуют две неособенные квадратные матрицы и такие, что

Из (31) следует, что две матрицы, соответствующие одному и тому же линейному оператору при различном выборе базисов в и , всегда эквивалентны между собой. Нетрудно видеть, что и обратно, если матрица отвечает оператору при некоторых базисах в и , матрица эквивалентна матрице , то она отвечает тому же линейному оператору при некоторых других базисах в и .

Таким образом, каждому линейному оператору, отображающему и , соответствует класс эквивалентных между собой матриц с элементами из поля .

2. Следующая теорема устанавливает критерий эквивалентности двух матриц:

Теорема 2. Для того чтобы две прямоугольные матрицы одинаковых размеров были эквивалентны, необходимо и достаточно, чтобы эти матрицы имели один и тот же ранг.

Доказательство. Условие необходимо. При умножении прямоугольной матрицы на какую-либо неособенную квадратную матрицу (слева или справа) ранг исходной прямоугольной матрицы не может измениться (см. гл. I, стр. 27). Поэтому из (32) следует

Условие достаточно. Пусть - прямоугольная матрица размера . Она определяет линейный оператор , отображающий пространство с базисом в пространство с базисом . Обозначим через число линейно независимых векторов среди векторов . Не нарушая общности, можем считать, что линейно независимыми являются векторы , а остальные , выражаются линейно через них:

. (33)

Определим новый базис следующим образом:

(34)

Тогда в силу (33)

. (35)

Векторы линейно независимы. Дополним их некоторыми векторами до базиса в .

Тогда матрица отвечающая тому же оператору в новых базисах ; , согласно (35) и (36) будет иметь вид

. (37)

В матрице вдоль главной диагонали сверху вниз идут единиц; все остальные элементы матрицы равны нулю. Так как матрицы и соответствуют одному и тому же оператору , то они эквивалентны между собой. По доказанному эквивалентные матрицы имеют один и тот же ранг. Поэтому ранг исходной матрицы равен .

Мы показали, что произвольная прямоугольная матрица ранга эквивалентна «канонической» матрице . Но матрица полностью определяется заданием размеров и числа . Поэтому все прямоугольные матрицы данных размеров и данного ранга эквивалентны одной и той же матрице и, следовательно, эквивалентны между собой. Теорема доказана.

3. Пусть дан линейный оператор , отображающий -мерное пространство в -мерное . Совокупность векторов вида , где , образует векторное пространство. Это пространство мы будем обозначать через ; оно составляет часть пространства или, как говорят, является подпространством в пространстве .

Наряду с подпространством в рассмотрим совокупность всех векторов , удовлетворяющих уравнению

Эти векторы так же образуют подпространство в ; это подпространство мы обозначим через .

Определение 9. Если линейный оператор отображает в , то число измерений пространства называется рангом оператора , а число измерений пространства , состоящего из всех векторов , удовлетворяющих условию (38), - дефектом оператора .

Среди всех эквивалентных прямоугольных матриц, задающих данный оператор в различных базисах, имеется каноническая матрица [ см. (37)]. Обозначим через и соответствующие ей базисы в и . Тогда

, .

Из определения и следует, что векторы образуют базис в , а векторы сопоставляют базис в . Отсюда вытекает, что - ранг оператора и

Если - произвольная матрица, соответствующая оператору , то она эквивалентна и, следовательно, имеет тот же ранг . Таким образом, ранг оператора совпадает с рангом прямоугольной матрицы

,

определяющий оператор в некоторых базисах и .

В столбцах матрицы стоят координаты векторов . Так как из следует , то ранг оператора , т. е. число измерений , равняется максимальному числу линейно независимых векторов среди . Таким образом, ранг матрицы совпадает с числом линейно независимых столбцов матрицы. Поскольку при транспонировании строки матрицы делаются столбцами, а ранг не меняется, то число линейно независимых строк матрицы так же равно рангу матрицы.

4. Пусть даны два линейных оператора , и их произведение .

Пусть оператор отображает в , а оператор отображает в . Тогда оператор отображает в :

Введем матрицы , , , соответствующие операторам , , при некотором выборе базисов , и . Тогда операторному равенству будет соответствовать матричное равенство ., т. е. в, .

Док-во: Т.е. ранг матрицы сохраняется при выполнении следующих операций:

1. Изменение очерёдности строк.

2. Умножение матрицы на число, отличное от нуля.

3. Транспонирование.

4. Исключение строки из нулей.

5. Прибавление к строке другой строки, умноженной на произвольное число.

Первое преобразование оставит неизменными некоторые миноры, а у некоторых изменит знак на противоположный. Второе преобразование также оставит неизменными некоторые миноры, а некоторые умножатся на число, отличное от нуля. Третье преобразование сохранит все миноры. Потому при применении этих преобразований сохранится и ранг матрицы (второе определение). Исключение нулевой строки не может изменить ранга матрицы, ибо такая строка не может войти в ненулевой минор. Рассмотрим пятое преобразование.

Будем считать, что базисный минор Δp располагается в первых p строках. Пусть к строке а, входящей в число этих строк, прибавлена произвольная строка b, умноженная на некоторое число λ. Т.е. к строке а прибавлена линейная комбинация строк, содержащих базисный минор. При этом базисный минор Δp останется неизменным (и отличным от 0). Прочие миноры, размещённые в первых p строках, также остаются неизменными, то же самое справедливо для всех остальных миноров. Т.о. в данном случае ранг (по второму определению) сохранится. Теперь рассмотрим минор Ms, у которого не все строки из числа первых p строк (а возможно, таких в нем и нет).

Прибавив к строке ai произвольную строку b, умноженную на число λ, получим новый минор Ms‘, причём Ms‘=Ms+λ Ms, где

Если s>p, то Ms=Ms=0, т.к. все миноры порядка большего, чем p, исходной матрицы равны 0. Но тогда и Ms‘=0, и ранг преобразований матрицы не увеличился. Но и уменьшиться он не мог, так как базисный минор не подвергался никаким изменениям. Итак, ранг матрицы остаётся неизменным.

Вы также можете найти интересующую информацию в научном поисковике Otvety.Online. Воспользуйтесь формой поиска:

Переход к новому базису.

Пусть (1) и (2) – два базиса одного и того же m-мерного линейного пространства X.

Так как (1) – базис, то по нему можно разложить векторы второго базиса:

Из коэффициентов при составим матрицу:

(4) – матрица преобразования координат при переходе от базиса (1) к базису (2).

Пусть вектор, тогда (5) и (6).

Соотношение (7) означает, что

Матрица Р – невырожденная, так как в противном случае имело бы место линейная зависимость между ее столбцами, а тогда и между векторами.

Верно и обратное: любая невырожденная матрица является матрицей преобразования координат, определяемого формулами (8). Т.к. Р – невырожденная матрица, то для нее существует обратная. Умножая обе части (8) на, получим: (9).

Пусть в линейном пространстве X выбрано 3 базиса: (10), (11), (12).

Откуда, т.е. (13).

Т.о. при последовательном преобразовании координат матрица результирующего преобразования равна произведению матриц составляющих преобразований.

Пусть линейный оператор и пусть в X выбрана пара базисов: (I) и (II), и в Y – (III) и (IV).

Оператору А в паре базисов I – III соответствует равенство: (14). Этому же оператору в паре базисов II – IV соответствует равенство: (15). Т.о. для данного оператора А имеем две матрицы и. Мы хотим установить зависимость между ними.

Пусть Р – матрица преобразования координат при переходе от I к III.

Пусть Q – матрица преобразования координат при переходе от II к IV.

Тогда (16), (17). Подставим выражения для и из (16) и (17) в (14), получим:

Сравнивая данное равенство с (15), получим:

Соотношение (19) связывает матрицу одного и того же оператора в разных базисах. В случае, когда пространства X и Y совпадают, роль III базиса играет I, а IV – II-ой, тогда соотношение (19) принимает вид: .

Библиография:

3.Кострикин А.И. Введение в алгебру. часть II. Основы алгебры: учебник для вузов, -М. : Физико-математическая литература, 2000, 368 с

Лекция №16 (II семестр)

Тема: Необходимое и достаточное условие эквивалентности матриц.

Две матрицы, А и В, одинаковых размеров, называются эквивалентными , если существуют две невырожденные матрицы R и S, такие, что (1).

Пример: Две матрицы, соответствующие одному и тому же оператору при различных выборах базисов в линейных пространствах X и Y эквивалентны.

Ясно, что отношение, определенное на множестве всех матриц одного размера с помощью вышеприведенного определения является отношением эквивалентности.



Теорема 8: Для того, чтобы две прямоугольные матрицы одинаковых размеров были эквивалентными, необходимо и достаточно, чтобы они были одного ранга.

Доказательство:

1. Пусть А и В – две матрицы, для которых имеет смысл. Ранг произведения (матрицы С) не выше ранга каждого из сомножителей.

Мы видим, что k-ый столбец матрицы С является линейной комбинацией векторов столбцов матрицы А и это выполняется для всех столбцов матрицы С, т.е. для всех. Т.о. , т.е. – подпространство линейного пространства.

Так как и так как размерность подпространства меньше или равна размерности пространства, то ранг матрицы С меньше или равен рангу матрицы А.

В равенствах (2) зафиксируем индекс i и будем придавать k всевозможные значения от 1 до s. Тогда получим систему равенств, аналогичную системе (3):

Из равенств (4) видно, что i-я строка матрицы С является линейной комбинацией строк матрицы В для всех i, а тогда линейная оболочка, натянутая на строки матрицы С, содержится в линейной оболочке, натянутой на строки матрицы В, а тогда размерность этой линейной оболочки меньше или равна размерности линейной оболочки векторов строк матрицы В, значит, ранг матрицы С меньше или равен рангу матрицы В.

2. Ранг произведения матрицы А слева и справа на невырожденную квадратную матрицу Q равен рангу матрицы А.(). Т.е. ранг матрицы С равен рангу матрицы А.

Доказательство: Согласно доказанному в случае (1) . Так как матрица Q – невырожденная, то для нее существует: и в соответствии с доказанным в предыдущем утверждении.

3. Докажем, что если матрицы эквивалентны, то они имеют одинаковые ранги. По определению, А и В эквивалентны, если существуют такие R и S, что. Так как при умножении А слева на R и справа на S получаются матрицы того же ранга, как доказано в пункте (2), ранг А равен рангу В.

4. Пусть матрицы А и В одинакового ранга. Докажем, что они эквивалентны. Рассмотрим, .

Пусть X и Y – два линейных пространства, в которых выбраны базисы (базис X) и (базис Y). Как известно, любая матрица вида определяет некоторый линейный оператор, действующий из X в Y.

Так как r – ранг матрицы А, то среди векторов в точности r линейно независимых. Не ограничивая общности, можно считать, что – первые r векторов – линейно независимы. Тогда все остальные через них линейно выражаются, и можно записать:

Определим в пространстве X новый базис, следующим образом: . (7)

Новый базис в пространстве Y следующим образом:

Векторы, по условию, линейно независимы. Дополним их некоторыми векторами до базиса Y: (8). Итак (7) и (8) – два новых базиса X и Y. Найдем матрицу оператора А в этих базисах:

Итак, в новой паре базисов матрицей оператора А является матрица J. Матрица А изначально была произвольной прямоугольной матрицей вида, ранга r. Так как матрицы одного и того же оператора в разных базисах эквивалентны, то этим показано, что любая прямоугольная матрица вида ранга r эквивалентна J. Так как мы имеем дело с отношением эквивалентности, этим показано, что любые две матрицы А и В вида и ранга r, будучи эквивалентны матрице J эквивалентны между собой.

Библиография:

1. Воеводин В.В. Линейная алгебра. СПБ.: Лань, 2008, 416 с.

2. Беклемишев Д. В. Курс аналитической геометрии и линейной алгебры. М.: Физматлит, 2006, 304 с.

3.Кострикин А.И. Введение в алгебру. часть II. Основы алгебры: учебник для вузов, -М. : Физико-математическая литература, 2000, 368 с.

Лекция №17 (II семестр)

Тема: Собственные значения и собственные векторы. Собственные подпространства. Примеры.

Пусть R и S два векторных пространства размерности n и m соответственно над числовым полем K , и пусть A линейный оператор отображающий R в S . Выясним, как меняется матрица оператора A при изменении базисов в пространствах R в S .

Выберем произвольные базисы в пространствах R в S и обозначим через и соответственно. Тогда (см. в линейные операторы) векторному равенству

y=Ax.
(1)

соответствует матричное равенство

y=Ax.
(2)

где х и у векторы x и y , представленные в виде координатных столбцов в базисах и соответственно.

Выберем теперь в пространствах R и S другие базисы и. В новых базисах векторному равенству (1) будет соответствовать матричное равенство

Тогда, учитывая (3) и (4), имеем

Определение 1. Две прямоугольные матрицы A и B одинаковых размеров называются эквивалентными, если существуют две квадратные невырожденные матрицы P и T такие, что выполнено равенство

B=PAT.
(7)

Отметим, что если A -матрица порядка m×n , то P и T квадратные матрицы порядков m и n , соответственно.

Из (6) следует, что две матрицы, соответствующие одному и тому же линейному оператору A при различном выборе базисов в пространствах R и S эквивалентны между собой. Верно и обратное утверждение. Если матрица A соответствует оператору A , а матрица B эквивалентна матрице A , то она соответствует этому же линейному оператору A при других базисах в R и S .

Выясним, при каких условиях две матрицы эквивалентны.

Теорема. Для того, чтобы две матрицы одинаковых размеров были эквивалентны между собой, необходимо и достаточно, чтобы они имели один и тот же ранг .

Доказательство. Необходимость. Так как умножение матрицы на квадратную невырожденную матрицу не может изменить ранг матрицы, то из (7) имеем:

rang B=rang A.

Достаточность. Пусть задан линейный оператор A , отображающий пространство R в S и пусть этому оператору отвечает матрица A размера m×n в базисах в R и в S , соответственно. Обозначим через r число линейно независимых векторов из числа Ae 1 , Ae 2 ,..., Ae n . Пусть линейно независимы первые r векторы Ae 1 , Ae 2 ,..., Ae r . Тогда остальные n-r векторы выражаются линейно через эти векторы:

Ae k = n c ij Ae j , (k=r +1,...n )
j=1
(8)

Зададим новый базис в пространстве R :

Дополним эти векторы некоторыми векторами до базиса в S .

Тогда матрица оператора A в новых базисах , согласно (9) и (10) будет иметь следующий вид:

(11)

где в матрице E " -на главной диагонали стоят r единиц, а остальные элементы равны нулю.

Так как матрицы A и E " соответствуют одному и тому же оператору A , то они эквивалентны между собой. Выше мы показали, что эквивалентные матрицы имеют один и тот же ранг, следовательно ранг исходной матрицы A равен r .

Из вышеуказанного следует, что произвольная m×n матрица ранга r эквивалентна матрице E " - порядка m×n . Но E " - однозначно определяется заданием размерности m×n матрицы и его ранга r . Следовательно все прямоугольные матрицы порядка m×n и ранга r эквивалентны одной и той же матрице E " и, следовательно, эквивалентны между собой.■