Треугольник – простейшая из плоских многоугольных фигур. Если величина какого-нибудь угла в его вершинах равна 90°, то треугольник именуется прямоугольным. Около такого многоугольника дозволено начертить круг таким методом, дабы всякая из 3 вершин имела одну всеобщую точку с его рубежом (окружностью). Эта окружность будет именоваться описанной, а присутствие прямого угла гораздо упрощает задачу ее построения.

Вам понадобится

  • Линейка, циркуль, калькулятор.

Инструкция

1. Начните с определения радиуса окружности, которую нужно будет возвести. Если есть вероятность измерить длины сторон треугольника, то обратите внимание на его гипотенузу – сторону, лежащую наоборот прямого угла. Измерьте ее и поделите полученное значение напополам – это и будет радиус описываемой около прямоугольного треугольника окружности.

2. Если длина гипотенузы неведома, но есть длины (a и b) катетов (2-х сторон, прилегающих к прямому углу), то радиус (R) обнаружьте с применением теоремы Пифагора. Из нее вытекает, что данный параметр будет равен половине квадратного корня, извлеченного из суммы возведенных в квадрат длин катетов: R=?*?(a?+b?).

3. Если вестима длина лишь одного из катетов (a) и величина прилегающего к нему острого угла (?), то для определения радиуса описанной окружности (R) используйте тригонометрическую функцию – косинус. В прямоугольном треугольнике она определяет соотношение длин гипотенузы и этого катета. Рассчитайте половину частного от деления длины катета на косинус знаменитого угла: R=?*a/cos(?).

4. Если помимо длины одного из катетов (a) вестима величина острого угла (?), лежащего наоборот него, то для вычисления радиуса (R) воспользуйтесь иной тригонометрической функцией – синусом. Помимо замены функции и стороны в формуле ничего не изменится – поделите длину катета на синус вестимого острого угла, а итог поделите напополам: R=?*b/sin(?).

5. Позже нахождения радиуса любым из перечисленных методов определите центр описываемой окружности. Для этого отложите на циркуле полученное значение и установите его в всякую вершину треугольника. Описывать полный круг нет необходимости, легко подметьте место его пресечения с гипотенузой – эта точка и будет центром окружности. Таково качество прямоугольного треугольника – центр описанной около него окружности неизменно находится в середине его самой длинной стороны. Начертите круг отложенного на циркуле радиуса с центром в обнаруженной точке. На этом построение будет закончено.

Изредка около выпуклого многоугольника дозволено начертить окружность таким образом, дабы вершины всех углов лежали на ней. Такую окружность по отношению к многоугольнику нужно называть описанной. Ее центр не непременно должен находиться внутри периметра вписанной фигуры, но пользуясь свойствами описанной окружности , обнаружить эту точку, как водится, не дюже сложно.

Вам понадобится

  • Линейка, карандаш, транспортир либо угольник, циркуль.

Инструкция

1. Если многоугольник, около которого необходимо описать окружность, начерчен на бумаге, для нахождения центр а круга довольно линейки, карандаша и транспортира либо угольника. Измерьте длину всякий из сторон фигуры, определите ее середину и поставьте в этом месте чертежа вспомогательную точку. С поддержкой угольника либо транспортира проведите внутри многоугольника перпендикулярный этой стороне отрезок до пересечения с противоположной стороной.

2. Проделайте эту же операцию с всякий иной стороной многоугольника. Пересечение 2-х построенных отрезков и будет желанной точкой. Это вытекает из основного свойства описанной окружности – ее центр в выпуклом многоугольнике с любым числом сторон неизменно лежит в точке пересечения серединных перпендикуляров, проведенных к этим сторонам.

3. Для верных многоугольников определение центр а вписанной окружности может быть гораздо проще. Скажем, если это квадрат, то начертите две диагонали – их пересечение и будет центр ом вписанной окружности . В положительном многоугольнике с любым четным числом сторон довольно объединить вспомогательными отрезками две пары лежащих друг наоборот друга углов – центр описанной окружности должен совпадать с точкой их пересечения. В прямоугольном треугольнике для решения задачи легко определите середину самой длинной стороны фигуры – гипотенузы.

4. Если из условий незнакомо, дозволено ли в тезисе начертить описанную окружность для данного многоугольника, позже определения полагаемой точки центр а любым из описанных методов вы можете это узнать. Отложите на циркуле расстояние между обнаруженной точкой и всякий из вершин, установите циркуль в полагаемый центр окружности и начертите круг – вся вершина должна лежать на этой окружности . Если это не так, значит, не выполняется одно из основных свойств и описать окружность около данного многоугольника невозможно.

Согласно определению, описанная окружность должна проходить через все вершины углов заданного многоугольника. При этом идеально неважно, что это за многоугольник - треугольник, квадрат, прямоугольник, трапеция либо что-то иное. Также не играет роли, верный либо неверный это многоугольник. Нужно лишь рассматривать, что существуют многоугольники, вокруг которых окружность описать невозможно. Неизменно дозволено описать окружность вокруг треугольника. Что касается четырехугольников, то окружность дозволено описать около квадрата либо прямоугольника либо равнобедренной трапеции.

Вам понадобится

  • Заданный многоугольника
  • Линейка
  • Угольник
  • Карандаш
  • Циркуль
  • Транспортир
  • Таблицы синусов и косинусов
  • Математические представления и формулы
  • Теорема Пифагора
  • Теорема синусов
  • Теорема косинусов
  • Признаки подобия треугольников

Инструкция

1. Постройте многоугольник с заданными параметрами и определите, дозволено ли описать вокруг него окружность . Если вам дан четырехугольник, посчитайте суммы его противоположных углов. Всякая из них должна равняться 180°.

2. Для того, дабы описать окружность , необходимо вычислить ее радиус. Припомните, где лежит центр описанной окружности в различных многоугольниках. В треугольнике он находится в точке пересечения всех высот данного треугольника. В квадрате и прямоугольники - в точке пересечения диагоналей, для трапеции- в точке пересечения оси симметрии к линии, соединяющей середины боковых сторон, а для всякого иного выпуклого многоугольника - в точке пересечения серединных перпендикуляров к сторонам.

3. Диаметр окружности, описанной вокруг квадрата и прямоугольника, вычислите по теореме Пифагора. Он будет равняться квадратному корню из суммы квадратов сторон прямоугольника. Для квадрата, у которого все стороны равны, диагональ равна квадратному корню из удвоенного квадрата стороны. Поделив диаметр на 2, получаете радиус.

4. Вычислите радиус описанной окружности для треугольника. От того что параметры треугольника заданы в условиях, вычислите радиус по формуле R = a/(2·sinA), где а - одна из сторон треугольника, ? - противолежащий ей угол. Взамен этой стороны дозволено взять всякую иную сторону и противолежащий ей угол.

5. Вычислите радиус окружности, описанной вокруг трапеции. R = a*d*c / 4 v(p*(p-a)*(p-d)*(p-c)) В этой формуле a и b - вестимые по условиям задания основания трапеции, h – высота, d – диагональ, p = 1/2*(a+d+c) . Вычислите недостающие значения. Высоту дозволено вычислить по теореме синусов либо косинусов, от того что длины сторон трапеции и углы заданы в условиях задачи. Зная высоту и рассматривая знаки подобия треугольников, вычислите диагональ. Позже этого останется только вычислить радиус по указанной выше формуле.

Видео по теме

Полезный совет
Дабы вычислить радиус окружности, описанной вокруг иного многоугольника, исполните ряд дополнительных построений. Получите больше примитивные фигуры, параметры которых вам знамениты.

Совет 4: Как начертить прямоугольный треугольник по острому углу и гипотенузе

Прямоугольным называют треугольник, угол в одной из вершин которого равен 90°. Сторону, лежащую наоборот этого угла, называют гипотенузой, а стороны, противолежащие двум острым углам треугольника, именуются катетами. Если знаменита длина гипотенузы и величина одного из острых углов, то этих данных довольно, чтоб возвести треугольник, как минимум, двумя методами.

Вам понадобится

  • Лист бумаги, карандаш, линейка, циркуль, калькулятор.

Инструкция

1. 1-й метод требует наличия помимо карандаша и бумаги еще и линейки, транспортира и угольника. Вначале начертите ту сторону, которая является гипотенузой – поставьте точку A, отложите от нее вестимую длину гипотенузы, поставьте точку С и объедините точки.

2. Приложите транспортир к проведенному отрезку таким образом, дабы нулевая отметка совпала с точкой A, отмерьте величину вестимого острого угла и поставьте вспомогательную точку. Проведите линию, которая будет начинаться в точке A и проходить через вспомогательную точку.

3. Приложите угольник к отрезку AC таким образом, дабы прямой угол начинался от точки C. Точку пересечения угольником линии, проведенной на предыдущем шаге, обозначьте буквой B и объедините ее с точкой C. На этом построение прямоугольного треугольника с знаменитой длиной стороны AC (гипотенузы) и острым углом в вершине A будет завершено.

4. Иной метод помимо карандаша и бумаги затребует наличия линейки, циркуля и калькулятора. Начните с вычисления длин катетов – умения величины одного острого угла и длины гипотенузы для этого абсолютно довольно.

5. Рассчитайте длину того катета (AB), тот, что лежит наоборот угла вестимой величины (β) – он будет равен произведению длины гипотенузы (AC) на синус знаменитого угла AB=AC*sin(β).

6. Определите длину иного катета (BC) – она будет равна произведению длины гипотенузы на косинус вестимого угла BC=AC*cos(β).

7. Поставьте точку A, отмерьте от нее длину гипотенузы, поставьте точку C и проведите между ними линию.

8. Отложите на циркуле длину катета AB, рассчитанную в пятом шаге и начертите вспомогательный полукруг с центром в точке A.

9. Отложите на циркуле длину катета BC, рассчитанную в шестом шаге и начертите вспомогательный полукруг с центром в точке С.

10. Подметьте точку пересечения 2-х полукругов буквой B и проведите отрезки между точками A и B, C и B. На этом построение прямоугольного треугольника будет закончено.

Совет 5: Как именуются стороны прямоугольного треугольника

Ошеломительными свойствами прямоугольных треугольников люди заинтересовались еще во времена древности. Многие из этих свойств были описаны древнегреческим ученым Пифагором. В Старинной Греции возникли и наименования сторон прямоугольного треугольника.

Какой треугольник называют прямоугольным?

Есть несколько типов треугольников. У одних все углы острые, у других – один тупой и два острых, у третьих – два острых и прямой. По этому знаку всякий тип этих геометрических фигур и получил наименование: остроугольные, тупоугольные и прямоугольные. То есть, прямоугольным именуется такой треугольник, у которого один из углов составляет 90°. Есть и другое определение, аналогичное с первым. Прямоугольным именуется треугольник, у которого две стороны перпендикулярны.

Гипотенуза и катеты

У остроугольного и тупоугольного треугольников отрезки, соединяющие вершины углов, именуются примитивно сторонами. У треугольника прямоугольного стороны имеют и другие наименования. Те, которые прилегают к прямому углу, именуются катетами. Сторона, противолежащая прямому углу, именуется гипотенузой. В переводе с греческого слово «гипотенуза» обозначает «натянутая», а «катет» – «перпендикуляр».

Соотношения между гипотенузой и катетами

Стороны прямоугольного треугольника связаны между собой определенными соотношениями, которые гораздо облегчают вычисления. Скажем, зная размеры катетов, дозволено вычислить длину гипотенузы. Это соотношение по имени открывшего его математика получило наименование теоремы Пифагора и выглядит оно так:c2=a2+b2, где с – гипотенуза, a и b – катеты. То есть, гипотенуза будет равна квадратному корню из суммы квадратов катетов. Дабы обнаружить всякий из катетов, довольно из квадрата гипотенузы вычесть квадрат иного катета и извлечь из полученной разности квадратный корень.

Прилежащий и противолежащий катет

Начертите прямоугольный треугольник АСВ. Буквой С принято обозначать вершину прямого угла, А и В – вершины острых углов. Стороны, противолежащие всему углу, комфортно назвать а, b и с, по наименованиям лежащих наоборот них углов. Разглядите угол А. Катет а для него будет противолежащим, катет b – прилежащим. Отношение противолежащего катета к гипотенузе именуется синусом. Вычислить эту тригонометрическую функцию дозволено по формуле: sinA=a/c. Отношение прилежащего катета к гипотенузе именуется косинусом. Вычисляется он по формуле: cosA=b/c. Таким образом, зная угол и одну из сторон, дозволено по этим формулам вычислить иную сторону. Тригонометрическими соотношениями связаны и оба катета. Отношение противолежащего к прилежащему именуется тангенсом, а прилежащего к противолежащему – котангенсом. Выразить эти соотношения дозволено формулами tgA=a/b либо ctgA=b/a.

Доказательства теорем о свойствах описанной около треугольника окружности

Серединный перпендикуляр к отрезку

Определение 1 . Серединным перпендикуляром к отрезку называют, прямую, перпендикулярную к этому отрезку и проходящую через его середину (рис. 1).

Теорема 1 . Каждая точка серединного перпендикуляра к отрезку находится на одном и том же расстоянии от концов этого отрезка.

Доказательство . Рассмотрим произвольную точку D , лежащую на серединном перпендикуляре к отрезку AB (рис.2), и докажем, что треугольники ADC и BDC равны .

Действительно, эти треугольники являются прямоугольными треугольниками, у которых катеты AC и BC равны, а катет DC является общим. Из равенства треугольников ADC и BDC вытекает равенство отрезков AD и DB . Теорема 1 доказана.

Теорема 2 (Обратная к теореме 1) . Если точка находится на одном и том же расстоянии от концов отрезка, то она лежит на серединном перпендикуляре к этому отрезку.

Доказательство . Докажем теорему 2 методом «от противного». С этой целью предположим, что некоторая точка E находится на одном и том же расстоянии от концов отрезка, но не лежит на серединном перпендикуляре к этому отрезку. Приведём это предположение к противоречию. Рассмотрим сначала случай, когда точки E и A лежат по разные стороны от серединного перпендикуляра (рис.3). В этом случае отрезок EA пересекает серединный перпендикуляр в некоторой точке, которую мы обозначим буквой D .

Докажем, что отрезок AE длиннее отрезка EB . Действительно,

Таким образом, в случае, когда точки E и A лежат по разные стороны от серединного перпендикуляра, мы получили противоречие.

Теперь рассмотрим случай, когда точки E и A лежат по одну сторону от серединного перпендикуляра (рис.4). Докажем, что отрезок EB длиннее отрезка AE . Действительно,

Полученное противоречие и завершает доказательство теоремы 2

Окружность, описанная около треугольника

Определение 2 . Окружностью, описанной около треугольника , называют окружность, проходящую через все три вершины треугольника (рис.5). В этом случае треугольник называют треугольником, вписанным в окружность, или вписанным треугольником .

Свойства описанной около треугольника окружности. Теорема синусов

Фигура Рисунок Свойство
Серединные перпендикуляры
к сторонам треугольника
пересекаются в одной точке .

Центр описанной около остроугольного треугольника окружности Центр описанной около остроугольного внутри треугольника.
Центр описанной около прямоугольного треугольника окружности Центром описанной около прямоугольного середина гипотенузы .
Центр описанной около тупоугольного треугольника окружности Центр описанной около тупоугольного треугольника окружности лежит вне треугольника.

,

Площадь треугольника

S = 2R 2 sin A sin B sin C ,

Радиус описанной окружности

Для любого треугольника справедливо равенство:

Серединные перпендикуляры к сторонам треугольника

Все серединные перпендикуляры , проведённые к сторонам произвольного треугольника, пересекаются в одной точке .

Окружность, описанная около треугольника

Около любого треугольника можно описать окружность . Центром описанной около треугольника окружности является точка, в которой пересекаются все серединные перпендикуляры, проведённые к сторонам треугольника.

Центр описанной около остроугольного треугольника окружности

Центр описанной около остроугольного треугольника окружности лежит внутри треугольника.

Центр описанной около прямоугольного треугольника окружности

Центром описанной около прямоугольного треугольника окружности является середина гипотенузы .

Центр описанной около тупоугольного треугольника окружности

Центр описанной около тупоугольного треугольника окружности лежит вне треугольника.

Для любого треугольника справедливы равенства (теорема синусов):

,

где a , b , c – стороны треугольника, A , B , С – углы треугольника, R – радиус описанной окружности.

Площадь треугольника

Для любого треугольника справедливо равенство:

S = 2R 2 sin A sin B sin C ,

где A , B , С – углы треугольника, S – площадь треугольника, R – радиус описанной окружности.

Радиус описанной окружности

Для любого треугольника справедливо равенство:

где a , b , c – стороны треугольника, S – площадь треугольника, R – радиус описанной окружности.

Доказательства теорем о свойствах описанной около треугольника окружности

Теорема 3 . Все серединные перпендикуляры, проведённые к сторонам произвольного треугольника, пересекаются в одной точке.

Доказательство . Рассмотрим два серединных перпендикуляра, проведённых к сторонам AC и AB треугольника ABC , и обозначим точку их пересечения буквой O (рис. 6).

Поскольку точка O лежит на серединном перпендикуляре к отрезку AC , то в силу теоремы 1 справедливо равенство:

Поскольку точка O лежит на серединном перпендикуляре к отрезку AB , то в силу теоремы 1 справедливо равенство:

Следовательно, справедливо равенство:

откуда с помощью теоремы 2 заключаем, что точка O лежит на серединном перпендикуляре к отрезку BC. Таким образом, все три серединных перпендикуляра проходят через одну и ту же точку, что и требовалось доказать.

Следствие . Около любого треугольника можно описать окружность . Центром описанной около треугольника окружности является точка, в которой пересекаются все серединные перпендикуляры, проведённые к сторонам треугольника.

Доказательство . Рассмотрим точку O , в которой пересекаются все серединные перпендикуляры, проведённые к сторонам треугольника ABC (рис. 6).

При доказательстве теоремы 3 было получено равенство:

из которого вытекает, что окружность с центром в точке O и радиусами OA , OB , OC проходит через все три вершины треугольника ABC , что и требовалось доказать.

Касательная - это прямая , которая касается графика функции в одной точке и все точки которой находятся на наименьшем расстоянии от графика функции. Поэтому касательная проходит касательно графика функции под определённым углом и не могут проходить через точку касания несколько касательных под разными углами. Уравнения касательной и уравнения нормали к графику функции составляются с помощью производной.

Уравнение касательной выводится из уравнения прямой .

Выведем уравнение касательной, а затем - уравнение нормали к графику функции.

y = kx + b .

В нём k - угловой коэффициент.

Отсюда получаем следующую запись:

y - y 0 = k (x - x 0 ) .

Значение производной f "(x 0 ) функции y = f (x ) в точке x 0 равно угловому коэффициенту k = tgφ касательной к графику функции, проведённой через точку M 0 (x 0 , y 0 ) , где y 0 = f (x 0 ) . В этом состоит геометрический смысл производной .

Таким образом, можем заменить k на f "(x 0 ) и получить следующее уравнение касательной к графику функции :

y - y 0 = f "(x 0 )(x - x 0 ) .

В задачах на составление уравнения касательной к графику функции (а мы уже скоро к ним перейдём) требуется привести получившееся по вышеприведённой формуле уравнение к уравнению прямой в общем виде . Для этого нужно все буквы и числа перенести в левую часть уравнения, а в правой части оставить ноль.

Теперь об уравнении нормали. Нормаль - это прямая, проходящая через точку касания к графику функции перпендикулярно касательной. Уравнение нормали :

(x - x 0 ) + f "(x 0 )(y - y 0 ) = 0

Для разминки первый же пример прелагается решить самостоятельно, а затем посмотреть решение. Есть все основания надеяться, что для наших читателей эта задача не будет "холодным душем".

Пример 0. Составить уравнение касательной и уравнение нормали к графику функции в точке M (1, 1) .

Пример 1. Составить уравнение касательной и уравнение нормали к графику функции , если абсцисса точки касания .

Найдём производную функции:

Теперь у нас есть всё, что требуется подставить в приведённую в теоретической справке запись, чтобы получить уравнение касательной. Получаем

В этом примере нам повезло: угловой коэффициент оказался равным нулю, поэтому отдельно приводить уравнение к общему виду не понадобилось. Теперь можем составить и уравнение нормали:

На рисунке ниже: график функции бордового цвета, касательная зелёного цвета, нормаль оранжевого цвета.

Следующий пример - тоже не сложный: функция, как и в предыдущем, также представляет собой многочлен, но угловой коэффициен не будет равен нулю, поэтому добавится ещё один шаг - приведение уравнения к общему виду.

Пример 2.

Решение. Найдём ординату точки касания:

Найдём производную функции:

.

Найдём значение производной в точке касания, то есть угловой коэффициент касательной:

Подставляем все полученные данные в "формулу-болванку" и получаем уравнение касательной:

Приводим уравнение к общему виду (все буквы и числа, отличные от нуля, собираем в левой части, а в правой оставляем ноль):

Составляем уравнение нормали:

Пример 3. Составить уравнение касательной и уравнение нормали к графику функции , если абсцисса точки касания .

Решение. Найдём ординату точки касания:

Найдём производную функции:

.

Найдём значение производной в точке касания, то есть угловой коэффициент касательной:

.

Находим уравнение касательной:

Перед тем, как привести уравнение к общему виду, нужно его немного "причесать": умножить почленно на 4. Делаем это и приводим уравнение к общему виду:

Составляем уравнение нормали:

Пример 4. Составить уравнение касательной и уравнение нормали к графику функции , если абсцисса точки касания .

Решение. Найдём ординату точки касания:

.

Найдём производную функции:

Найдём значение производной в точке касания, то есть угловой коэффициент касательной:

.

Получаем уравнение касательной:

Приводим уравнение к общему виду:

Составляем уравнение нормали:

Распространённая ошибка при составлении уравнений касательной и нормали - не заметить, что функция, данная в примере, - сложная и вычислять её производную как производную простой функции. Следующие примеры - уже со сложными функциями (соответствующий урок откроется в новом окне).

Пример 5. Составить уравнение касательной и уравнение нормали к графику функции , если абсцисса точки касания .

Решение. Найдём ординату точки касания:

Внимание! Данная функция - сложная, так как аргумент тангенса (2x ) сам является функцией. Поэтому найдём производную функции как производную сложной функции.

В этой статье мы разберем все типы задач на нахождение

Вспомним геометрический смысл производной : если к графику функции в точке проведена касательная, то коэффициент наклона касательной (равный тангенсу угла между касательной и положительным направлением оси ) равен производной функции в точке .


Возьмем на касательной произвольную точку с координатами :


И рассмотрим прямоугольный треугольник :


В этом треугольнике

Отсюда

Это и есть уравнение касательной, проведенной к графику функции в точке .

Чтобы написать уравнение касательной, нам достаточно знать уравнение функции и точку, в которой проведена касательная. Тогда мы сможем найти и .

Есть три основных типа задач на составление уравнения касательной.

1. Дана точка касания

2. Дан коэффициент наклона касательной, то есть значение производной функции в точке .

3. Даны координаты точки, через которую проведена касательная, но которая не является точкой касания.

Рассмотрим каждый тип задач.

1 . Написать уравнение касательной к графику функции в точке .

.

б) Найдем значение производной в точке . Сначала найдем производную функции

Подставим найденные значения в уравнение касательной:

Раскроем скобки в правой части уравнения. Получим:

Ответ: .

2 . Найти абсциссы точек, в которых касательные к графику функции параллельны оси абсцисс.

Если касательная параллельна оси абсцисс, следовательно угол между касательной и положительным направлением оси равен нулю, следовательно тангенс угла наклона касательной равен нулю. Значит, значение производной функции в точках касания равно нулю.

а) Найдем производную функции .

б) Приравняем производную к нулю и найдем значения , в которых касательная параллельна оси :

Приравняем каждый множитель к нулю, получим:

Ответ: 0;3;5

3 . Написать уравнения касательных к графику функции , параллельных прямой .

Касательная параллельна прямой . Коэффициент наклона этой прямой равен -1. Так как касательная параллельна этой прямой, следовательно, коэффициент наклона касательной тоже равен -1. То есть мы знаем коэффициент наклона касательной , а, тем самым, значение производной в точке касания .

Это второй тип задач на нахождение уравнения касательной.

Итак, у нас дана функция и значение производной в точке касания.

а) Найдем точки, в которых производная функции равна -1.

Сначала найдем уравнение производной.

Приравняем производную к числу -1.

Найдем значение функции в точке .

(по условию)

.

б) Найдем уравнение касательной к графику функции в точке .

Найдем значение функции в точке .

(по условию).

Подставим эти значения в уравнение касательной:

.

Ответ:

4 . Написать уравнение касательной к кривой , проходящей через точку

Сначала проверим, не является ли точка точкой касания. Если точка является точкой касания, то она принадлежит графику функции, и её координаты должны удовлетворять уравнению функции. Подставим координаты точки в уравнение функции.

Title="1sqrt{8-3^2}">. Мы получили под корнем отрицательное число, равенство не верно, и точка не принадлежит графику функции и не является точкой касания.

Это последний тип задач на нахождение уравнения касательной. Первым делом нам нужно найти абсциссу точки касания .

Найдем значение .

Пусть - точка касания. Точка принадлежит касательной к графику функции . Если мы подставим координаты этой точки в уравнение касательной, то получим верное равенство:

.

Значение функции в точке равно .

Найдем значение производной функции в точке .

Сначала найдем производную функции . Это .

Производная в точке равна .

Подставим выражения для и в уравнение касательной. Получим уравнение относительно :

Решим это уравнение.

Сократим числитель и знаменатель дроби на 2:

Приведем правую часть уравнения к общему знаменателю. Получим:

Упростим числитель дроби и умножим обе части на - это выражение строго больше нуля.

Получим уравнение

Решим его. Для этого возведем обе части в квадрат и перейдем к системе.

Title="delim{lbrace}{matrix{2}{1}{{64-48{x_0}+9{x_0}^2=8-{x_0}^2} {8-3x_0>=0} }}{ }">

Решим первое уравнение.

Решим квадратное уравнение, получим

Второй корень не удовлетворяет условию title="8-3x_0>=0">, следовательно, у нас только одна точка касания и её абсцисса равна .

Напишем уравнение касательной к кривой в точке . Для этого подставим значение в уравнение - мы его уже записывали.

Ответ:
.

Тип задания: 7

Условие

Прямая y=3x+2 является касательной к графику функции y=-12x^2+bx-10. Найдите b , учитывая, что абсцисса точки касания меньше нуля.

Показать решение

Решение

Пусть x_0 — абсцисса точки на графике функции y=-12x^2+bx-10, через которую проходит касательная к этому графику.

Значение производной в точке x_0 равно угловому коэффициенту касательной, то есть y"(x_0)=-24x_0+b=3. С другой стороны, точка касания принадлежит одновременно и графику функции и касательной, то есть -12x_0^2+bx_0-10=3x_0+2. Получаем систему уравнений \begin{cases} -24x_0+b=3,\\-12x_0^2+bx_0-10=3x_0+2. \end{cases}

Решая эту систему, получим x_0^2=1, значит либо x_0=-1, либо x_0=1. Согласно условию абсцисса точки касания меньше нуля, поэтому x_0=-1, тогда b=3+24x_0=-21.

Ответ

Тип задания: 7
Тема: Геометрический смысл производной. Касательная к графику функции

Условие

Прямая y=-3x+4 параллельна касательной к графику функции y=-x^2+5x-7. Найдите абсциссу точки касания.

Показать решение

Решение

Угловой коэффициент прямой к графику функции y=-x^2+5x-7 в произвольной точке x_0 равен y"(x_0). Но y"=-2x+5, значит, y"(x_0)=-2x_0+5. Угловой коэффициент прямой y=-3x+4, указанной в условии, равен -3. Параллельные прямые имеют одинаковые угловые коэффициенты. Поэтому находим такое значение x_0, что =-2x_0 +5=-3.

Получаем: x_0 = 4.

Ответ

Источник: «Математика. Подготовка к ЕГЭ-2017. Профильный уровень». Под ред. Ф. Ф. Лысенко, С. Ю. Кулабухова.

Тип задания: 7
Тема: Геометрический смысл производной. Касательная к графику функции

Условие

Показать решение

Решение

По рисунку определяем, что касательная проходит через точки A(-6; 2) и B(-1; 1). Обозначим через C(-6; 1) точку пересечения прямых x=-6 и y=1, а через \alpha угол ABC (на рисунке видно, что он острый). Тогда прямая AB образует с положительным направлением оси Ox угол \pi -\alpha, который является тупым.

Как известно, tg(\pi -\alpha) и будет значением производной функции f(x) в точке x_0. Заметим, что tg \alpha =\frac{AC}{CB}=\frac{2-1}{-1-(-6)}=\frac15. Отсюда по формулам приведения получаем: tg(\pi -\alpha) =-tg \alpha =-\frac15=-0,2.

Ответ

Источник: «Математика. Подготовка к ЕГЭ-2017. Профильный уровень». Под ред. Ф. Ф. Лысенко, С. Ю. Кулабухова.

Тип задания: 7
Тема: Геометрический смысл производной. Касательная к графику функции

Условие

Прямая y=-2x-4 является касательной к графику функции y=16x^2+bx+12. Найдите b , учитывая, что абсцисса точки касания больше нуля.

Показать решение

Решение

Пусть x_0 — абсцисса точки на графике функции y=16x^2+bx+12, через которую

проходит касательная к этому графику.

Значение производной в точке x_0 равно угловому коэффициенту касательной, то есть y"(x_0)=32x_0+b=-2. С другой стороны, точка касания принадлежит одновременно и графику функции и касательной, то есть 16x_0^2+bx_0+12=-2x_0-4. Получаем систему уравнений \begin{cases} 32x_0+b=-2,\\16x_0^2+bx_0+12=-2x_0-4. \end{cases}

Решая систему, получим x_0^2=1, значит либо x_0=-1, либо x_0=1. Согласно условию абсцисса точки касания больше нуля, поэтому x_0=1, тогда b=-2-32x_0=-34.

Ответ

Источник: «Математика. Подготовка к ЕГЭ-2017. Профильный уровень». Под ред. Ф. Ф. Лысенко, С. Ю. Кулабухова.

Тип задания: 7
Тема: Геометрический смысл производной. Касательная к графику функции

Условие

На рисунке изображён график функции y=f(x), определённой на интервале (-2; 8). Определите количество точек, в которых касательная к графику функции параллельна прямой y=6.

Показать решение

Решение

Прямая y=6 параллельна оси Ox . Поэтому находим такие точки, в которых касательная к графику функции параллельна оси Ox. На данном графике такими точками являются точки экстремума (точки максимума или минимума). Как видим, точек экстремума 4 .

Ответ

Источник: «Математика. Подготовка к ЕГЭ-2017. Профильный уровень». Под ред. Ф. Ф. Лысенко, С. Ю. Кулабухова.

Тип задания: 7
Тема: Геометрический смысл производной. Касательная к графику функции

Условие

Прямая y=4x-6 параллельна касательной к графику функции y=x^2-4x+9. Найдите абсциссу точки касания.

Показать решение

Решение

Угловой коэффициент касательной к графику функции y=x^2-4x+9 в произвольной точке x_0 равен y"(x_0). Но y"=2x-4, значит, y"(x_0)=2x_0-4. Угловой коэффициент касательной y=4x-7, указанной в условии, равен 4 . Параллельные прямые имеют одинаковые угловые коэффициенты. Поэтому находим такое значение x_0, что 2x_0-4=4. Получаем: x_0=4.

Ответ

Источник: «Математика. Подготовка к ЕГЭ-2017. Профильный уровень». Под ред. Ф. Ф. Лысенко, С. Ю. Кулабухова.

Тип задания: 7
Тема: Геометрический смысл производной. Касательная к графику функции

Условие

На рисунке изображены график функции y=f(x) и касательная к нему в точке с абсциссой x_0. Найдите значение производной функции f(x) в точке x_0.

Показать решение

Решение

По рисунку определяем, что касательная проходит через точки A(1; 1) и B(5; 4). Обозначим через C(5; 1) точку пересечения прямых x=5 и y=1, а через \alpha угол BAC (на рисунке видно, что он острый). Тогда прямая AB образует с положительным направлением оси Ox угол \alpha.