Инструкция

Способ 1. Использование теоремы Пифагора. Теорема гласит: квадрат гипотенузы равен сумме квадратов катетов. Отсюда следует, что любую из сторон прямоугольного треугольника можно вычислить, зная две другие его стороны (рис.2)

Способ 2. Вытекает из того, что медиана, проведенная из к гипотенузе, образует между собой 3 подобных треугольника (рис. 3). На этом рисунке подобными являются треугольники ABC, BCD и ACD.

Пример 6: Использование кругов единиц для поиска координат

Сначала мы находим опорный угол, соответствующий данному углу. Тогда мы возьмем синус и косинус значение опорного угла, и дать им знаки, соответствующие у - и х -значений квадранта. Далее мы найдем косинус и синус заданного угла.

Ситовый угол, треугольник угла и кубический корень

Многоугольники, которые могут быть построены с помощью компаса и линейки, включают.

Заметим: ситовый угол нельзя построить с помощью компаса и линейки. Умножение длины стороны куба кубическим корнем из 2 дает боковую длину куба с двойным объемом. С помощью новаторской теории французского математика Эвариста Галуа можно показать, что для всех трех классических задач построение с кругом и линейкой невозможно.

Гипотенузой называется сторона в прямоугольном треугольнике, которая находится напротив угла в 90 градусов. Для того, чтобы рассчитать его длину, достаточно знать длину одного из катетов и величину одного из острых углов треугольника.

Имейте в виду: трехкомпонентный угол и конструкция кубического корня невозможны с компасом и линейкой.

С другой стороны, решение уравнения третьей степени по формуле Кардано может быть представлено делением угла и кубического корня. В дальнейшем мы строим некоторый угол с кругом и линейкой. Однако, после того, как треугольник этого угла и определение кубического корня, завершение конструкции квадрата сита может быть выполнено с помощью компаса и линейки.

Построение решетчатой ​​колоды согласно этому расчету


Алгебраическая формулировка задачи построения приводит к уравнению, структурный анализ которого предоставит дополнительную информацию о построении тройной структуры. Здесь используется взаимно однозначное отношение угла к его косинусу: если известна величина угла, длина косинуса угла может быть однозначно построена на единичной окружности и наоборот.

Инструкция

При известном катете и остром угле прямоугольного треугольника, то размер гипотенузы может быть равен отношению катета к косинусу/синусу этого угла, если данный угол является ему противолежащим/прилежащим:

h = C1(или C2)/sinα;

h = С1(или С2)/cosα.

Пример: Пусть дан прямоугольный треугольник ABC с гипотенузой AB и прямым углом C. Пусть угол B равен 60 градусам, а угол A 30 градусам Длина катета BC 8 см. Надо найти длину гипотенузы AB. Для этого можно воспользоваться любым из предложенных выше способов:

Это взаимно однозначное задание позволяет перейти от определения угла к определению косинуса угла. В дальнейшем 3 φ обозначает угол, который должен быть разделен. Таким образом, φ - угол, величина которого должна определяться при заданных 3 φ. Начиная с соединений, известных из тригонометрии.

Следует при заданном угле 3 φ. Алгебраическое рассмотрение разрешимости трехмерного уравнения приводит непосредственно к вопросу о возможности построения решений и, следовательно, к вопросу о возможности или невозможности конструктивного тройного угла данного угла.

AB = BC/cos60 = 8 см.

AB = BC/sin30 = 8 см.

Гипотенузой называют сторону прямоугольного треугольника, лежащую напротив прямого угла. Она является наибольшей стороной прямоугольного треугольника. Рассчитать ее можно по теореме Пифагора или с помощью формул тригонометрических функций.

Величина угла выхода оказывает большое влияние на возможность увязывания третьего угла, так как это, как абсолютный член, решительно определяет тип решений в трехмерном уравнении. Если уравнение триангуляции имеет по крайней мере одно вещественное решение, которое может быть получено рациональными операциями или рисунком квадратных корней для заданного начального угла, это решение является конструктивным.

Брейденбах сформулировал в качестве критерия, что трехсекундность угла может быть истолкована только в рациональном решении уравнения из трех частей. Если такое решение недоступно, проблема трехчастной конструкции непримирима с компасом и линейкой. Кластерный анализ - общий метод сборки небольших групп из большого набора данных. Подобно дискриминантному анализу, кластерный анализ также используется для классификации наблюдений в группах. С другой стороны, дискриминационный анализ требует знания членства в группах в случаях, используемых для получения правила классификации.

Инструкция

Катетами называют стороны прямоугольного треугольника, прилежащие к прямому углу. На рисунке катеты обозначены как AB и BC. Пусть заданы длины обоих катетов. Обозначим их как |AB| и |BC|. Для того, чтобы найти длину гипотенузы |AC|, воспользуемся теоремой Пифагора. Согласно данной теореме сумма квадратов катетов равна квадрату гипотенузы, т.е. в обозначениях нашего рисунка |AB|^2 + |BC|^2 = |AC|^2. Из формулы получаем, что длина гипотенузы AC находится как |AC| = √(|AB|^2 + |BC|^2) .

Кластерный анализ является более примитивным методом, поскольку он не делает предположений о количестве групп или членстве в группах. Классификация Кластерный анализ обеспечивает способ обнаружения потенциальных отношений и создания систематической структуры в большом количестве переменных и наблюдений. Иерархический кластерный анализ является основным статистическим методом для поиска относительно однородных кластеров случаев на основе измеренных характеристик. Он начинается с каждого случая как отдельный кластер.

Затем кластеры объединяются последовательно, количество кластеров уменьшается с каждым шагом, пока остается только один кластер. Метод кластеризации использует различия между объектами для формирования кластеров. Иерархический кластерный анализ лучше всего подходит для небольших выборок.

Рассмотрим пример. Пусть заданы длины катетов |AB| = 13, |BC| = 21. По теореме Пифагора получаем, что |AC|^2 = 13^2 + 21^2 = 169 + 441 = 610. Для того, чтобы получить длину гипотенузы, необходимо извлечь квадратный корень из суммы квадратов катетов, т.е. из числа 610: |AC| = √610. Воспользовавшись таблицей квадратов целых чисел, выясняем, что число 610 не является полным квадратом какого-либо целого числа. Для того, чтобы получить окончательное значение длины гипотенузы, попробуем вынести полный квадрат из под знака корня. Для этого разложим число 610 на множители. 610 = 2 * 5 * 61. По таблице простых чисел смотрим, что 61 – число простое. Поэтому дальнейшее приведение числа √610 невозможно. Получаем окончательный ответ |AC| = √610.
Если бы квадрат гипотенузы был равен, к примеру, 675, тогда √675 = √(3 * 25 * 9) = 5 * 3 * √3 = 15 * √3. В случае, если подобное приведение возможно, выполняйте обратную проверку - возведите результат в квадрат и сравните с исходным значением.

Иерархический кластерный анализ является лишь одним из способов наблюдения за формированием однородных переменных групп. Нет конкретного способа установить количество кластеров для вашего анализа. Возможно, вам нужно посмотреть на дендрограмму, а также на характеристики кластеров, а затем настроить число поэтапно, чтобы получить хорошее кластерное решение.

Когда переменные измеряются в разных масштабах, у вас есть три способа стандартизации переменных. В результате все переменные с примерно равными пропорциями способствуют измерению расстояния, даже если вы можете потерять информацию о дисперсии переменных.

Пусть нам известен один из катетов и прилежащий к нему угол. Для определенности пусть это будут катет |AB| и угол α. Тогда мы можем воспользоваться формулой для тригонометрической функции косинус – косинус угла равен отношению прилежащего катета к гипотенузе. Т.е. в наших обозначениях cos α = |AB| / |AC|. Отсюда получаем длину гипотенузы |AC| = |AB| / cos α.
Если же нам известны катет |BC| и угол α, то воспользуемся формулой для вычисления синуса угла – синус угла равен отношению противолежащего катета к гипотенузе: sin α = |BC| / |AC|. Получаем, что длина гипотенузы находится как |AC| = |BC| / cos α.

Евклидово расстояние: эвклидово расстояние является наиболее распространенным методом измерения. Квадратное эвклидовое расстояние: квадрат евклидова расстояния фокусирует внимание на объектах, которые находятся дальше друг от друга. Расстояние до блока города: как городской квартал, так и евклидово расстояние - это особые случаи метрики Минковского. В то время как евклидово расстояние соответствует длине кратчайшего пути между двумя точками, расстояние по городскому блоку представляет собой сумму расстояний вдоль каждого измерения. Корреляционное расстояние Пирсона Разница между 1 и коэффициентом косинуса двух наблюдений Косинус-коэффициент является косинусом угла между двумя векторами. Расстояние Жакара Разница между 1 и коэффициентом Жакарда для двух наблюдений Для двоичных данных коэффициент Жакара равен отношению величины перекрытия и суммарному количеству двух наблюдений. Ближайший сосед Этот метод предполагает, что расстояние между двумя кластерами соответствует расстоянию между объектами их ближайшего соседства. Наилучший сосед В этом методе расстояние между двумя кластерами соответствует максимальному расстоянию между двумя объектами в разных кластерах. Среднее по группе: с помощью этого метода расстояние между двумя кластерами соответствует среднему расстоянию между всеми парами объектов в разных кластерах. Этот метод обычно рекомендуется, так как он содержит более высокий объем информации. Медиана Этот метод идентичен методу центроида, за исключением того, что он невзвешен. Затем для каждого случая вычисляется квадратичное евклидово расстояние до средних значений кластера. Кластер, который должен быть объединен, - это тот, который увеличивает сумму как минимум. То есть этот метод минимизирует увеличение общей суммы квадратов расстояний внутри кластеров. Этот метод имеет тенденцию создавать меньшие кластеры.

  • Это геометрическое расстояние в многомерном пространстве.
  • Он подходит только для непрерывных переменных.
  • Косинус Расстояние Косинус угла между двумя векторами значений.
  • Этот метод рекомендуется при рисовании рисованных кластеров.
  • Если рисованные кластеры образуют уникальные «комки», метод подходит.
  • Центроид кластера - это средняя точка в многомерном пространстве.
  • Он не должен использоваться, если размеры кластеров разительно отличаются.
  • Уорд Средние значения для всех переменных вычисляются для каждого кластера.
  • Эти расстояния суммируются для всех случаев.
Идея состоит в том, чтобы минимизировать расстояние между данными и соответствующим кластером кластеров.

Для наглядности рассмотрим пример. Пусть дана длина катета |AB| = 15. И угол α = 60°. Получаем |AC| = 15 / cos 60° = 15 / 0.5 = 30.
Рассмотрим, как можно проверить свой результат с помощью теоремы Пифагора. Для этого нам необходимо посчитать длину второго катета |BC|. Воспользовавшись формулой для тангенса угла tg α = |BC| / |AC|, получаем |BC| = |AB| * tg α = 15 * tg 60° = 15 * √3. Далее применяем теорему Пифагора, получаем 15^2 + (15 * √3)^2 = 30^2 => 225 + 675 = 900. Проверка выполнена.

Функция синуса определяется из концепции синуса, учитывая, что угол всегда должен быть выражен в радианах. Мы можем наблюдать несколько характеристик синусоидальной функции.

  • Ваш домен содержит все реальные.
  • В этом случае говорят, что функция периодична, периода 2π.
Косинусная функция определяется из концепции косинуса, учитывая, что угол всегда должен быть выражен в радианах.

Мы можем наблюдать несколько характеристик косинусной функции. Таким образом, это периодический период 2π. . Ограничение не устраняет общности формулы, потому что мы всегда можем уменьшить углы второго, третьего и четвертого квадрантов до первого. Упражнение. - Рассчитайте синус 15º без помощи калькулятора.

Рассчитав гипотенузу, выполняйте проверку - удовлетворяет ли полученное значение теореме Пифагора.

Источники:

  • Таблица простых чисел от 1 до 10000

Катетами называют две короткие стороны прямоугольного треугольника, составляющие ту его вершину, величина которой равна 90°. Третью сторону в таком треугольнике называют гипотенузой. Все эти стороны и углы треугольника связаны между собой определенными соотношениями, которые позволяют вычислить длину катета, если известны несколько других параметров.

Косинус суммы двух углов

Косинус разности двух углов

Чтобы получить формулу, мы можем действовать так же, как в предыдущем разделе, но мы увидим еще одну очень простую демонстрацию, основанную на теореме Пифагора. Упрощая и меняя знак, мы имеем. Касательная сумма и разность двух углов.

Упражнение. В сегодняшней статье мы рассмотрим очень специфическое подмножество: тригонометрические функции. Чтобы наслаждаться всем, что предлагает математика, мы должны импортировать его. В следующей статье мы увидим другие стили импорта, каждый из которых имеет свои преимущества и недостатки. Но с этой простой инструкцией вы уже имеете доступ ко всему пространству имен математического модуля, заполненному десятками функций, среди которых те, с которыми мы будем иметь дело сегодня.

Инструкция

Используйте теорему Пифагора для вычисления длины катета (A), если известна длина двух других сторон (B и C) прямоугольного треугольника. Эта теорема утверждает, что сумма возведенных в квадрат длин катетов равна квадрату гипотенузы. Из этого вытекает, что длина каждого из катетов равна квадратному корню из разности квадратов длин гипотенузы и второго катета: A=√(C²-B²).

В принципе, нам нужно будет вычислить синус, косинус и тангенс угла, а также его обратные функции. Кроме того, мы хотели бы иметь возможность работать как в радианах, так и в градусах, чтобы мы могли также использовать соответствующие функции преобразования.

Вы должны иметь в виду, что эти функции ожидают, что аргумент будет предоставлен в радианах, а не в градусах. С этой целью вам будет интересно узнать, что у вас есть следующая константа. Так что мы можем использовать это выражение вместо числового значения.

Нет никакой прямой функции для косеканта, секущей и котангенса, так как это необязательно, так как они просто обратные синусоидальному, косинусу и касательной соответственно. Как и раньше, возвращаемый угол также находится в радианах. Другая полезная функция математики позволяет нам узнать значение гипотенузы правого треугольника с учетом его ног, что позволяет нам вычислить квадратный корень из суммы квадратов из них.

Воспользуйтесь определением прямой тригонометрической функции «синус» для острого угла , если известна величина угла (α), лежащего напротив вычисляемого катета, и длина гипотенузы (C). Это определение утверждает, что синус этого известного угла равен отношению длины искомого катета к длине гипотенузы. Это значит, что длина искомого катета равна произведению длины гипотенузы на синус известного угла: A=C∗sin(α). Для этих же известных величин можно использовать и определение функции косеканс и рассчитать нужную длину, разделив длину гипотенузы на косеканс известного угла A=C/cosec(α).

Задействуйте определение прямой тригонометрической функции косинус, если кроме длины гипотенузы (C) известна и величина острого угла (β), прилегающего к искомому катету. Косинус этого угла определяется как соотношение длин искомого катета и гипотенузы, а из этого можно сделать вывод, что длина катета равна произведению длины гипотенузы на косинус известного угла: A=C∗cos(β). Можно воспользоваться определением функции секанс и вычислить нужное значение, разделив длину гипотенузы на секанс известного угла A=C/sec(β).

Выведите нужную формулу из аналогичного определения для производной тригонометрической функции тангенс, если кроме величины острого угла (α), лежащего напротив искомого катета (A), известна длина второго катета (B). Тангенсом противолежащего искомому катету угла называют отношение длины этого катета к длине второго катета. Значит, искомая величина будет равна произведению длины известного катета на тангенс известного угла: A=B∗tg(α). Из этих же известных величин можно вывести и другую формулу, если воспользоваться определением функции котангенс. В этом случае для вычисления длины катета надо будет найти соотношение длины известного катета к котангенсу известного угла: A=B/ctg(α).

Видео по теме

Слово «катет» пришло в русский язык из греческого. В точном переводе оно означает отвес, то есть перпендикуляр к поверхности земли. В математике катетами называются стороны, образующие прямой угол прямоугольного треугольника. Противолежащая этому углу сторона называется гипотенузой. Термин «катет» применяется также в архитектуре и технологии сварочных работ.

Начертите прямоугольный треугольник АСВ. Обозначьте его катеты как а и b, а гипотенузу - как с. Все стороны и углы прямоугольного треугольника связаны между собой определенными отношениями. Отношение катета, противолежащего одному из острых углов, к гипотенузе называется синусом данного угла. В данном треугольнике sinCAB=a/c. Косинус - это отношение к гипотенузе прилежащего катета, то есть cosCAB=b/c. Обратные отношения называются секансом и косекансом.

Секанс данного угла получается при делении гипотенузы на прилежащий катет, то есть secCAB=c/b. Получается величина, обратная косинусу, то есть выразить ее можно по формуле secCAB=1/cosSAB.
Косеканс равен частному от деления гипотенузы на противолежащий катет и это величина, обратная синусу. Она может быть рассчитана по формуле cosecCAB=1/sinCAB

Оба катета связаны между собой тангенсом и котангенсом. В данном случае тангенсом будет отношение стороны a к стороне b, то есть противолежащего катета к прилежащему. Это отношение может быть выражено формулой tgCAB=a/b. Соответственно, обратным отношением будет котангенс: ctgCAB=b/a.

Соотношение между размерами гипотенузы и обоих катетов определил еще древнегреческий математик Пифагор. Теоремой, названной его именем, люди пользуются до сих пор. Она гласит, что квадрат гипотенузы равен сумме квадратов катетов, то есть с2=a2+b2. Соответственно, каждый катет будет равняться квадратному корню из разности квадратов гипотенузы и другого катета. Эту формулу можно записать как b=√(с2-а2).

Длину катета можно выразить и через известные вам соотношения. Согласно теоремам синусов и косинусов, катет равен произведению гипотенузы на одну из этих функций. Можно его выразить и через тангенс или котангенс. Катет а можно найти, например, по формуле a = b*tan CAB. Точно таким же образом, в зависимости от заданных тангенса или котангенса, определяется и второй катет.

В архитектуре также используется термин «катет». Он применяется по отношению к ионической капители и обозначает отвес через середину ее задка. То есть и в этом случае этим термином обозначается перпендикуляр к заданной линии.

В технологии сварочных работ есть понятие «катет углового шва». Как и в других случаях, это самое короткое расстояние. Здесь речь идет о промежутке между одной из свариваемых деталей до границы шва, находящегося на поверхности другой детали.

Видео по теме

Источники:

  • что такое катет и гипотенуза

Видео по теме

Обратите внимание

При расчете сторон прямоугольного треугольника может сыграть знание его признаков:
1) Если катет прямого угла лежит напротив угла в 30 градусов, то он равен половине гипотенузы;
2) Гипотенуза всегда длиннее любого из катетов;
3) Если вокруг прямоугольного треугольника описана окружность, то ее центр должен лежать в середине гипотенузы.

Где были рассмотрены задачи на решение прямоугольного треугольника, я пообещал изложить приём запоминания определений синуса и косинуса. Используя его, вы всегда быстро вспомните – какой катет относится к гипотенузе (прилежащий или противолежащий). Решил в «долгий ящик не откладывать», необходимый материал ниже, прошу ознакомиться 😉

Дело в том, что я не раз наблюдал, как учащиеся 10-11 классов с трудом вспоминают данные определения. Они прекрасно помнят, что катет относится к гипотенузе, а вот какой из них - забывают и путают. Цена ошибки, как вы знаете на экзамене – это потерянный бал.

Информация, которую я представлю непосредственно к математике не имеет никакого отношения. Она связана с образным мышлением , и с приёмами словесно-логической связи. Именно так, я сам, раз и на всегда запомнил данные определения. Если вы их всё же забудете, то при помощи представленных приёмов всегда легко вспомните.

Напомню определения синуса и косинуса в прямоугольном треугольнике:

Косинус острого угла в прямоугольном треугольнике - это отношение прилежащего катета к гипотенузе:

Синус острого угла в прямоугольном треугольнике - это отношение противолежащего катета к гипотенузе:

Итак, какие ассоциации у вас вызывает слово косинус?

Наверное, у каждого свои 😉 Запоминайте связку:

Таким образом, у вас сразу в памяти возникнет выражение –

«… отношение ПРИЛЕЖАЩЕГО катета к гипотенузе ».

Проблема с определением косинуса решена.

Если нужно вспомнить определение синуса в прямоугольном треугольнике, то вспомнив определение косинуса, вы без труда установите, что синус острого угла в прямоугольном треугольнике - это отношение противолежащего катета к гипотенузе. Ведь катетов всего два, если прилежащий катет «занят» косинусом, то синусу остаётся только противолежащий.

Как быть с тангенсом и котангенсом? Путаница та же. Учащиеся знают, что это отношение катетов, но проблема вспомнить какой к которому относится – то ли противолежащий к прилежащему, то ли наоборот.

Определения:

Тангенс острого угла в прямоугольном треугольнике - это отношение противолежащего катета к прилежащему:

Котангенс острого угла в прямоугольном треугольнике - это отношение прилежащего катета к противолежащему:

Как запомнить? Есть два способа. Один так же использует словесно-логическую связь, другой – математический.

СПОСОБ МАТЕМАТИЧЕСКИЙ

Есть такое определение – тангенсом острого угла называется отношение синуса угла к его косинусу:

*Запомнив формулу, вы всегда сможете определить, что тангенс острого угла в прямоугольном треугольнике - это отношение противолежащего катета к прилежащему.

Аналогично. Котангенсом острого угла называется отношение косинуса угла к его синусу:

Итак! Запомнив указанные формулы вы всегда сможете определить, что:

Тангенс острого угла в прямоугольном треугольнике - это отношение противолежащего катета к прилежащему

Котангенс острого угла в прямоугольном треугольнике - это отношение прилежащего катета к противолежащему.

СПОСОБ СЛОВЕСНО-ЛОГИЧЕСКИЙ

О тангенсе. Запомните связку:

То есть если потребуется вспомнить определение тангенса, при помощи данной логической связи, вы без труда вспомните, что это

«… отношение противолежащего катета к прилежащему»

Если речь зайдёт о котангенсе, то вспомнив определение тангенса вы без труда озвучите определение котангенса –

«… отношение прилежащего катета к противолежащему»

Есть интересный приём по запоминанию тангенса и котангенса на сайте " Математический тандем " , посмотрите.

СПОСОБ УНИВЕРСАЛЬНЫЙ

Можно просто зазубрить. Но как показывает практика, благодаря словесно-логическим связкам человек запоминает информацию надолго, и не только математическую.

Надеюсь, материал был вам полезен.

С уважением, Александр Крутицких

P.S: Буду благодарен Вам, если расскажете о сайте в социальных сетях.

Изучение тригонометрии мы начнем с прямоугольного треугольника. Определим, что такое синус и косинус, а также тангенс и котангенс острого угла. Это основы тригонометрии.

Напомним, что прямой угол - это угол, равный 90 градусов. Другими словами, половина развернутого угла.

Острый угол - меньший 90 градусов.

Тупой угол - больший 90 градусов. Применительно к такому углу «тупой» - не оскорбление, а математический термин:-)

Нарисуем прямоугольный треугольник. Прямой угол обычно обозначается . Обратим внимание, что сторона, лежащая напротив угла, обозначается той же буквой, только маленькой. Так, сторона, лежащая напротив угла A, обозначается .

Угол обозначается соответствующей греческой буквой .

Гипотенуза прямоугольного треугольника - это сторона, лежащая напротив прямого угла.

Катеты - стороны, лежащие напротив острых углов.

Катет , лежащий напротив угла , называется противолежащим (по отношению к углу ). Другой катет , который лежит на одной из сторон угла , называется прилежащим .

Синус острого угла в прямоугольном треугольнике - это отношение противолежащего катета к гипотенузе:

Косинус острого угла в прямоугольном треугольнике - отношение прилежащего катета к гипотенузе:

Тангенс острого угла в прямоугольном треугольнике - отношение противолежащего катета к прилежащему:

Другое (равносильное) определение: тангенсом острого угла называется отношение синуса угла к его косинусу:

Котангенс острого угла в прямоугольном треугольнике - отношение прилежащего катета к противолежащему (или, что то же самое, отношение косинуса к синусу):

Обратите внимание на основные соотношения для синуса, косинуса, тангенса и котангенса, которые приведены ниже. Они пригодятся нам при решении задач.

Давайте докажем некоторые из них.

Хорошо, мы дали определения и записали формулы. А для чего все-таки нужны синус, косинус, тангенс и котангенс?

Мы знаем, что сумма углов любого треугольника равна .

Знаем соотношение между сторонами прямоугольного треугольника. Это теорема Пифагора: .

Получается, что зная два угла в треугольнике, можно найти третий. Зная две стороны в прямоугольном треугольнике, можно найти третью. Значит, для углов - свое соотношение, для сторон - свое. А что делать, если в прямоугольном треугольнике известен один угол (кроме прямого) и одна сторона, а найти надо другие стороны?

С этим и столкнулись люди в прошлом, составляя карты местности и звездного неба. Ведь не всегда можно непосредственно измерить все стороны треугольника.

Синус, косинус и тангенс - их еще называют тригонометрическими функциями угла - дают соотношения между сторонами и углами треугольника. Зная угол, можно найти все его тригонометрические функции по специальным таблицам. А зная синусы, косинусы и тангенсы углов треугольника и одну из его сторон, можно найти остальные.

Мы тоже нарисуем таблицу значений синуса, косинуса, тангенса и котангенса для «хороших» углов от до .

Обратите внимание на два красных прочерка в таблице. При соответствующих значениях углов тангенс и котангенс не существуют.

Разберем несколько задач по тригонометрии из Банка заданий ФИПИ.

1. В треугольнике угол равен , . Найдите .

Задача решается за четыре секунды.

Поскольку , .

2 . В треугольнике угол равен , , . Найдите .

Найдем по теореме Пифагора.

Задача решена.

Часто в задачах встречаются треугольники с углами и или с углами и . Основные соотношения для них запоминайте наизусть!

Для треугольника с углами и катет, лежащий напротив угла в , равен половине гипотенузы .

Треугольник с углами и - равнобедренный. В нем гипотенуза в раз больше катета.

Мы рассмотрели задачи на решение прямоугольных треугольников - то есть на нахождение неизвестных сторон или углов. Но это не всё! В вариантах ЕГЭ по математике множество задач, где фигурирует синус, косинус, тангенс или котангенс внешнего угла треугольника . Об этом - в следующей статье.

Средний уровень

Прямоугольный треугольник. Полный иллюстрированный гид (2019)

ПРЯМОУГОЛЬНЫЙ ТРЕУГОЛЬНИК. НАЧАЛЬНЫЙ УРОВЕНЬ.

В задачах прямой угол вовсе не обязательно - левый нижний, так что тебе нужно научиться узнавать прямоугольный треугольник и в таком виде,

и в таком,

и в таком

Что же хорошего есть в прямоугольном треугольнике? Ну..., во-первых, есть специальные красивые названия для его сторон.

Внимание на рисунок!

Запомни и не путай: катетов - два, а гипотенуза - всего одна (единственная, неповторимая и самая длинная)!

Ну вот, названия обсудили, теперь самое важное: Теорема Пифагора.

Теорема Пифагора.

Эта теорема - ключик к решению многих задачек с участием прямоугольного треугольника. Её доказал Пифагор в совершенно незапамятные времена, и с тех пор она принесла много пользы знающим её. А самое хорошее в ней то, что она - простая.

Итак, Теорема Пифагора:

Помнишь шутку: «Пифагоровы штаны на все стороны равны!»?

Давай нарисуем эти самые пифагоровы штаны и посмотрим на них.

Правда, похоже на какие - то шорты? Ну и на какие стороны и где она равны? Почему и откуда возникла шутка? А шутка эта связана как раз с теоремой Пифагора, точнее с тем, как сам Пифагор формулировал свою теорему. А формулировал он её так:

«Сумма площадей квадратов , построенных на катетах, равна площади квадрата , построенного на гипотенузе».

Правда, немножко по-другому звучит? И вот, когда Пифагор нарисовал утверждение своей теоремы, как раз и получилась такая картинка.


На этой картинке сумма площадей маленьких квадратов равна площади большого квадрата. А чтобы дети лучше запоминали, что сумма квадратов катетов равна квадрату гипотенузы, кто-то остроумный и выдумал эту шутку про Пифагоровы штаны.

Почему же мы сейчас формулируем теорему Пифагора

А Пифагор мучился и рассуждал про площади?

Понимаешь, в древние времена не было… алгебры! Не было никаких обозначений и так далее. Не было надписей. Представляешь, как бедным древним ученикам было ужасно запоминать всё словами??! А мы можем радоваться, что у нас есть простая формулировка теоремы Пифагора. Давай её ещё раз повторим, чтобы лучше запомнить:

Теперь уже должно быть легко:

Квадрат гипотенузы равен сумме квадратов катетов.

Ну вот, самую главную теорему о прямоугольном треугольнике обсудили. Если тебе интересно, как она доказывается, читай следующие уровни теории, а сейчас пойдём дальше… в тёмный лес… тригонометрии! К ужасным словам синус, косинус, тангенс и котангенс.

Синус, косинус, тангенс, котангенс в прямоугольном треугольнике.

На самом деле все совсем не так страшно. Конечно, «настоящее» определение синуса, косинуса, тангенса и котангенса нужно смотреть в статье . Но очень не хочется, правда? Можем обрадовать: для решения задач про прямоугольный треугольник можно просто заполнить следующие простые вещи:

А почему же всё только про угол? Где же угол? Для того, чтобы в этом разобраться, нужно знать, как утверждения 1 - 4 записываются словами. Смотри, понимай и запоминай!

1.
Вообще-то звучит это так:

А что же угол? Есть ли катет, который находится напротив угла, то есть противолежащий (для угла) катет? Конечно, есть! Это катет!

А как же угол? Посмотри внимательно. Какой катет прилегает к углу? Конечно же, катет. Значит, для угла катет - прилежащий, и

А теперь, внимание! Посмотри, что у нас получилось:

Видишь, как здорово:

Теперь перейдём к тангенсу и котангенсу.

Как это теперь записать словами? Катет каким является по отношению к углу? Противолежащим, конечно - он «лежит» напротив угла. А катет? Прилегает к углу. Значит, что у нас получилось?

Видишь, числитель и знаменатель поменялись местами?

И теперь снова углы и совершили обмен:

Резюме

Давай вкратце запишем всё, что мы узнали.

Теорема Пифагора:

Главная теорема о прямоугольном треугольнике - теорема Пифагора.

Теорема Пифагора

Кстати, хорошо ли ты помнишь, что такое катеты и гипотенуза? Если не очень, то смотри на рисунок - освежай знания

Вполне возможно, что ты уже много раз использовал теорему Пифагора, а вот задумывался ли ты, почему же верна такая теорема. Как бы её доказать? А давай поступим, как древние греки. Нарисуем квадрат со стороной.

Видишь, как хитро мы поделили его стороны на отрезки длин и!

А теперь соединим отмеченные точки

Тут мы, правда ещё кое что отметили, но ты сам посмотри на рисунок и подумай, почему так.

Чему же равна площадь большего квадрата? Правильно, . А площадь меньшего? Конечно, . Осталась суммарная площадь четырех уголков. Представь, что мы взяли их по два и прислонили друг к другу гипотенузами. Что получилось? Два прямоугольника. Значит, площадь «обрезков» равна.

Давай теперь соберем всё вместе.

Преобразуем:

Вот и побывали мы Пифагором - доказали его теорему древним способом.

Прямоугольный треугольник и тригонометрия

Для прямоугольного треугольника выполняются следующие соотношения:

Синус острого угла равен отношению противолежащего катета к гипотенузе

Косинус острого угла равен отношению прилежащего катета к гипотенузе.

Тангенс острого угла равен отношению противолежащего катета к прилежащему катету.

Котангенс острого угла равен отношению прилежащего катета к противолежащему катету.

И ещё раз всё это в виде таблички:

Это очень удобно!

Признаки равенства прямоугольных треугольников

I. По двум катетам

II. По катету и гипотенузе

III. По гипотенузе и острому углу

IV. По катету и острому углу

a)

b)

Внимание! Здесь очень важно, чтобы катеты были «соответствующие». Например, если будет так:

То ТРЕУГОЛЬНИКИ НЕ РАВНЫ , несмотря на то, что имеют по одному одинаковому острому углу.

Нужно, чтобы в обоих треугольниках катет был прилежащим, или в обоих - противолежащим .

Ты заметил, чем отличаются признаки равенства прямоугольных треугольников от обычных признаков равенства треугольников? Загляни в тему « и обрати внимание на то, что для равенства «рядовых» треугольников нужно равенство трех их элементов: две стороны и угол между ними, два угла и сторона между ними или три стороны. А вот для равенства прямоугольных треугольников достаточно всего двух соответственных элементов. Здорово, правда?

Примерно такая же ситуация и с признаками подобия прямоугольных треугольников.

Признаки подобия прямоугольных треугольников

I. По острому углу

II. По двум катетам

III. По катету и гипотенузе

Медиана в прямоугольном треугольнике

Почему это так?

Рассмотрим вместо прямоугольного треугольника целый прямоугольник.

Проведём диагональ и рассмотрим точку - точку пересечения диагоналей. Что известно про диагонали прямоугольника?

И что из этого следует?

Вот и получилось, что

  1. - медиана:

Запомни этот факт! Очень помогает!

А что ещё более удивительно, так это то, что верно и обратное утверждение.

Что же хорошего можно получить из того, что медиана, проведенная к гипотенузе, равна половине гипотенузы? А давай посмотрим на картинку

Посмотри внимательно. У нас есть: , то есть расстояния от точки до всех трёх вершин треугольника оказались равны. Но в треугольнике есть всего одна точка, расстояния от которой о всех трёх вершин треугольника равны, и это - ЦЕНТР ОПИСАННОЙ ОКРУЖНОСТИ. Значит, что получилось?

Вот давай мы начнём с этого «кроме того...».

Посмотрим на и.

Но у подобных треугольников все углы равны!

То же самое можно сказать и про и

А теперь нарисуем это вместе:

Какую же пользу можно извлечь из этого «тройственного» подобия.

Ну, например - две формулы для высоты прямоугольного треугольника.

Запишем отношения соответствующих сторон:

Для нахождения высоты решаем пропорцию и получаем первую формулу "Высота в прямоугольном треугольнике" :

Итак, применим подобие: .

Что теперь получится?

Опять решаем пропорцию и получаем вторую формулу :

Обе эти формулы нужно очень хорошо помнить и применять ту, которую удобнее. Запишем их ещё раз

Теорема Пифагора:

В прямоугольном треугольнике квадрат гипотенузы равен сумме квадратов катетов: .

Признаки равенства прямоугольных треугольников:

  • по двум катетам:
  • по катету и гипотенузе: или
  • по катету и прилежащему острому углу: или
  • по катету и противолежащему острому углу: или
  • по гипотенузе и остром углу: или.

Признаки подобия прямоугольных треугольников:

  • одному острому углу: или
  • из пропорциональности двух катетов:
  • из пропорциональности катета и гипотенузы: или.

Синус, косинус, тангенс, котангенс в прямоугольном треугольнике

  • Синусом острого угла прямоугольного треугольника называется отношение противолежащего катета к гипотенузе:
  • Косинусом острого угла прямоугольного треугольника называется отношение прилежащего катета к гипотенузе:
  • Тангенсом острого угла прямоугольного треугольника называется отношение противолежащего катета к прилежащему:
  • Котангенсом острого угла прямоугольного треугольника называется отношение прилежащего катета к противолежащему: .

Высота прямоугольного треугольника: или.

В прямоугольном треугольнике медиана , проведённая из вершины прямого угла, равна половине гипотенузы: .

Площадь прямоугольного треугольника:

  • через катеты:

Синус острого угла α прямоугольного треугольника – это отношение противолежащего катета к гипотенузе.
Обозначается так: sin α.

Косинус острого угла α прямоугольного треугольника – это отношение прилежащего катета к гипотенузе.
Обозначается так: cos α.


Тангенс
острого угла α – это отношение противолежащего катета к прилежащему катету.
Обозначается так: tg α.

Котангенс острого угла α – это отношение прилежащего катета к противолежащему.
Обозначается так: ctg α.

Синус, косинус, тангенс и котангенс угла зависят только от величины угла.

Правила:

Основные тригонометрические тождества в прямоугольном треугольнике:

(α – острый угол, противолежащий катету b и прилежащий к катету a . Сторона с – гипотенуза. β – второй острый угол).

b
sin α = -
c

sin 2 α + cos 2 α = 1

a
cos α = -
c

1
1 + tg 2 α = --
cos 2 α

b
tg α = -
a

1
1 + ctg 2 α = --
sin 2 α

a
ctg α = -
b

1 1
1 + -- = --
tg 2 α sin 2 α

sin α
tg α = --
cos α


При возрастании острого угла
sin α и tg α возрастают, а cos α убывает.


Для любого острого угла α:

sin (90° – α) = cos α

cos (90° – α) = sin α

Пример-пояснение :

Пусть в прямоугольном треугольнике АВС
АВ = 6,
ВС = 3,
угол А = 30º.

Выясним синус угла А и косинус угла В.

Решение .

1) Сначала находим величину угла В. Тут все просто: так как в прямоугольном треугольнике сумма острых углов равна 90º, то угол В = 60º:

В = 90º – 30º = 60º.

2) Вычислим sin A. Мы знаем, что синус равен отношению противолежащего катета к гипотенузе. Для угла А противолежащим катетом является сторона ВС. Итак:

BC 3 1
sin A = -- = - = -
AB 6 2

3) Теперь вычислим cos B. Мы знаем, что косинус равен отношению прилежащего катета к гипотенузе. Для угла В прилежащим катетом является все та же сторона ВС. Это значит, что нам снова надо разделить ВС на АВ – то есть совершить те же действия, что и при вычислении синуса угла А:

BC 3 1
cos B = -- = - = -
AB 6 2

В итоге получается:
sin A = cos B = 1/2.

sin 30º = cos 60º = 1/2.

Из этого следует, что в прямоугольном треугольнике синус одного острого угла равен косинусу другого острого угла – и наоборот. Именно это и означают наши две формулы:
sin (90° – α) = cos α
cos (90° – α) = sin α

Убедимся в этом еще раз:

1) Пусть α = 60º. Подставив значение α в формулу синуса, получим:
sin (90º – 60º) = cos 60º.
sin 30º = cos 60º.

2) Пусть α = 30º. Подставив значение α в формулу косинуса, получим:
cos (90° – 30º) = sin 30º.
cos 60° = sin 30º.

(Подробнее о тригонометрии - см.раздел Алгебра)

Где были рассмотрены задачи на решение прямоугольного треугольника, я пообещал изложить приём запоминания определений синуса и косинуса. Используя его, вы всегда быстро вспомните – какой катет относится к гипотенузе (прилежащий или противолежащий). Решил в «долгий ящик не откладывать», необходимый материал ниже, прошу ознакомиться 😉

Дело в том, что я не раз наблюдал, как учащиеся 10-11 классов с трудом вспоминают данные определения. Они прекрасно помнят, что катет относится к гипотенузе, а вот какой из них - забывают и путают. Цена ошибки, как вы знаете на экзамене – это потерянный бал.

Информация, которую я представлю непосредственно к математике не имеет никакого отношения. Она связана с образным мышлением, и с приёмами словесно-логической связи. Именно так, я сам, раз и на всегда запомнил данные определения. Если вы их всё же забудете, то при помощи представленных приёмов всегда легко вспомните.

Напомню определения синуса и косинуса в прямоугольном треугольнике:

Косинус острого угла в прямоугольном треугольнике - это отношение прилежащего катета к гипотенузе:

Синус острого угла в прямоугольном треугольнике - это отношение противолежащего катета к гипотенузе:

Итак, какие ассоциации у вас вызывает слово косинус?

Наверное, у каждого свои 😉 Запоминайте связку:

Таким образом, у вас сразу в памяти возникнет выражение –

«… отношение ПРИЛЕЖАЩЕГО катета к гипотенузе ».

Проблема с определением косинуса решена.

Если нужно вспомнить определение синуса в прямоугольном треугольнике, то вспомнив определение косинуса, вы без труда установите, что синус острого угла в прямоугольном треугольнике - это отношение противолежащего катета к гипотенузе. Ведь катетов всего два, если прилежащий катет «занят» косинусом, то синусу остаётся только противолежащий.

Как быть с тангенсом и котангенсом? Путаница та же. Учащиеся знают, что это отношение катетов, но проблема вспомнить какой к которому относится – то ли противолежащий к прилежащему, то ли наоборот.

Определения:

Тангенс острого угла в прямоугольном треугольнике - это отношение противолежащего катета к прилежащему:

Котангенс острого угла в прямоугольном треугольнике - это отношение прилежащего катета к противолежащему:

Как запомнить? Есть два способа. Один так же использует словесно-логическую связь, другой – математический.

СПОСОБ МАТЕМАТИЧЕСКИЙ

Есть такое определение – тангенсом острого угла называется отношение синуса угла к его косинусу:

*Запомнив формулу, вы всегда сможете определить, что тангенс острого угла в прямоугольном треугольнике - это отношение противолежащего катета к прилежащему.

Аналогично. Котангенсом острого угла называется отношение косинуса угла к его синусу:

Итак! Запомнив указанные формулы вы всегда сможете определить, что:

— тангенс острого угла в прямоугольном треугольнике - это отношение противолежащего катета к прилежащему

— котангенс острого угла в прямоугольном треугольнике - это отношение прилежащего катета к противолежащему.

СПОСОБ СЛОВЕСНО-ЛОГИЧЕСКИЙ

О тангенсе. Запомните связку:

То есть если потребуется вспомнить определение тангенса, при помощи данной логической связи, вы без труда вспомните, что это

«… отношение противолежащего катета к прилежащему»

Если речь зайдёт о котангенсе, то вспомнив определение тангенса вы без труда озвучите определение котангенса –

«… отношение прилежащего катета к противолежащему»

Есть интересный приём по запоминанию тангенса и котангенса на сайте " Математический тандем " , посмотрите.

СПОСОБ УНИВЕРСАЛЬНЫЙ

Можно просто зазубрить. Но как показывает практика, благодаря словесно-логическим связкам человек запоминает информацию надолго, и не только математическую.

Надеюсь, материал был вам полезен.

С уважением, Александр Крутицких

P.S: Буду благодарен Вам, если расскажете о сайте в социальных сетях.