Еще в древние времена люди поняли, что не только количество армии, умение полководцев и мужество бойцов помогает победить в войне. Поэтому постоянно разрабатывались новые виды оружия и защиты от него. Превосходство в вооружении зачастую становится решающим фактором, который перевешивает и боевой дух, и выгодное расположение войск.

В годы Второй мировой войны развитие вооружений шло сумасшедшими темпами. Но иногда сумасшедшими оказывались сами технические военные новинки.

Странные «гибриды» и необычные модели оружия, миномет-лопата или «ампуломет», успели только удивить, но не принесли никакой пользы при своем использовании на поле боя.

Необычные примеры оружия, изобретенного во Второй мировой войне

Миномет-лопата

Известны неоднократные попытки создать универсальное или многофункциональное оружие. В Красной Армии одним из таких образцов стал миномет-лопата, призванный выполнять функцию лопаты, а на небольших дистанциях использоваться в качестве миномета. 37-мм миномет состоял из ствола, лопаты, выполнявшей роль опорной плиты и сошки. В боевой обстановке оружие показало очень низкую эффективность, Для лопаты гибрид оказался тяжелым и неудобным, а для миномета обладал очень невысокой дальностью стрельбы и отсутствием прицела. В войсках миномет-лопату чаще называли «ни миномет, ни лопата».

Ампуломет

Одним из достаточно необычных средств борьбы с немецкими танками и огневыми точками противника стал ампуломет. Оружие состояло из ствола с патронником, лафета и прицельного приспособления. Общая масса оружия достигала 28 килограмм. Обслуживался ампуломет тремя солдатами - наводчиком, заряжающим и подносчиком. Ампула, начиненная горючей смесью выбрасывалась на расстояние до 250 метров. Применение ампулометов отмечено, в основном, при обороне Ленинграда. Но уже к середине 1942 года производство ампулометов было свернуто в силу небезопасности обращения с оружием и и постепенным ростом количества других средств борьбы - противотанковых ружей и артиллерии.

«Кайтэн»

Помимо известных камикадзе, японской стороной предпринимались попытки использования «кайтэн» - людей-торпед. Идея состояла в том что подводная лодка доставляла в район атаки несколько «кайтэн», которые отсоединялись от субмарины и выходили в атаку. Огромная двенадцатиметровая торпеда с полуторатонным зарядом могла нанести гибельные повреждения даже крупному кораблю, а часовой запас хода обеспечивал возможность атаковать при удобном случае даже движущиеся цели. Поиск осуществлялся при помощи перископа. Покидать в последний момент торпеду было признано нецелесообразным, поскольку шансов уцелеть все равно практически не было. Практическое применение «кайтен» показало малую эффективность этого вида оружия из-за конструктивных недостатков, уязвимости субмарины-носителя и прежде всего постоянно усиливавшейся противолодочной обороны союзников, которая делала незаметную атаку практически невозможной.

Гранатомет Шавгулидзе

Среди оружия, применявшегося партизанскими отрядами Белоруссии, особое место занимает партизанский гранатомет системы Тенгиза Шавгулидзе. Оружие представляло собой винтовку с насадкой, выполненной из гильзы 45-мм снаряда. Дальность стрельбы - более 150 метров. Меткость была невысокой, но при выстрелах из засады по колонне противника гранатометы, Шавгулидзе показали неплохие результаты. Так известен случай, когда шесть партизан, выпустив из гранатометов 18 мин, рассеяли из засады противника на марше. В партизанских отрядах Белоруссии было выпущено несколько сотен гранатометов Шавгулидзе.

«БраМит»

Один из первых серийных глушителей в Советском союзе получил свою аббревиатуру по имени его создателей - братьев Митиных. «БраМит» мог применяться на револьвере образца 1895 года, превращая «наган» в почти бесшумное оружие. Мог ставиться «БраМит» и на трехлинейку при условии использования специального патрона, о чем напоминала надпись выбитая на ствольной коробке винтовки. Патрон с уменьшенным зарядом пороха позволял использовать трехлинейку в качестве бесшумного оружия с оптическим прицелом. И если в стрелковых частях Красной Армии применение «БраМита» большого распространения не получило, то в партизанских и разведывательно-диверсионных отрядах глушитель нашел широкое применение.

И для полного счастья процитируем сайта «Самый-самый».

Самое необычное оружие

Вслед за подборкой самого необычного оружия наших дней, маскируемого под обыденные предметы, представляю вам подборку необычного оружия за всю историю человечества.
Перед вами подборка самых необычных видов оружия, созданных в разные века нашей истории. И тогда, и сейчас оружейных дел мастера порой создают очень странные образцы оружия. Печально, конечно, что это оружие создается для причинения вреда ближнему, но этого факта не избежать. Вот наиболее интересные экземпляры оружия.
Первый вид оружия – оружие массового поражения.

Голиаф – самоходная управляемая мина, габариты которой составляли 4×2х1 фут или 1,2 метра в длину, 60 сантиметров в ширину и 30 сантиметров в высоту. Внешне «Голиаф» очень напоминает танк, но суть его совершенно другая. В корпусе «Голиафа» находилось около 60 кг взрывчатого вещества, управление осуществлялось по кабелю, связывающему джойстик с пультом управления на мине. Два провода кабеля несли на себе силовую нагрузку, третий отвечал за детонацию мины. Длина кабеля могла достигать 650 метров. Каждый «Голиаф» был одноразовым «камикадзе» и использовался в основном для борьбы с бронетехникой. Началось применение этого вида оружия с весны 1942 года, первые варианты были оснащены электрическим двигателем, позднее мины стали производить с обычным бензиновым двигателем. Всего было произведено 7564 «Голиафа», однако это оружие имело несколько недостатков: низкую скорость (менее 10 км/ч), малый клиренс (11,4 см) и уязвимые кабели управления.

Бомба на воздушном шаре

Данный вид оружия впервые применила австрийская армия во время осады Венеции в 1849 году. Австрийцы использовали воздушные шары для метания двенадцатикилограммовых (30 фунтов) бомб. Сбрасывание бомб производилось после сгорания специального шнура, удерживающего подвеску снаряда. Однако, бомбометание оказалось малоэффективным, поэтому от применения этого вида оружия австрийцы отказались. Следующим вариантом этого вида оружия был управляемый аэростат с бомбой на борту, который итальянцы использовали в Триполитанскую кампанию 1911—1912 годов. Практика показала эффективность этого оружия, поэтому оно активно применялось в первую мировую войну.
Однако самое широкое упоминание этот вид оружия получил в конце 1944 года, когда японские военные специалисты направили через океан на территорию США около 9000 шаров. Более тысячи из них достигло побережья Америки, но значительного уроне не принесло.

Парижская пушка

В 1918 году во время первой мировой войны для устрашения населения Парижа немецкая армия использовала самую большую пушку, созданную когда-либо. Длина ствола монстра составила почти 28 метров, а дальность стрельбы достигала 75 миль. И хотя разрушения от применения этого оружия были не столь значительными (вес ядра составлял 84 кг), но сам факт применения этого колоссального оружия ввергал население в панику.

Оборонительное оружие

Прародитель системы ПВО

Система труб, позволяющая в ночное время услышать приближение самолетов противника. Как показала практика, это устройство ночного обнаружения самолётов противника было весьма эффективным. Средство ПВО обслуживали два оператора: первый наводил вертикальную пару раструбов для получения максимального звука, второй - горизонтальную. Затем по их наводке включался прожектор и находил самолет своим лучом. Далее в воздушный бой вступали зенитки.

Образцы холодного оружия

Уруми представляет собой обоюдоострый меч из стали, который использовался индусами. Уруми длинный и гибкий. Иногда он достигал 6 метров в длину, однако стандартом являлась длина 1,5 метра. В прошлом такие мечи носили ассасины. Они обматывали такой меч вокруг пояса и могли проносить его незамеченным.
Создаются уруми и сегодня. Но важно помнить, что гибкий меч – это весьма опасное оружие, требующее воинского искусства. Уруми способен наносить удары как меч и как обыкновенная плеть. Иногда уруми имеет несколько полос, а не одну, это делает его гораздо мощнее и опаснее, особенно в руках настоящего виртуоза.

Текко-каги. Это оружие немного напоминает ножи героя Росомахи из фильма «Люди Х». Текко-каги использовался средневековыми ниндзя. Это оружие использовалась в течение сотен лет, преимущественно против противников, вооруженных мечами. Мастер текко-каги способен, действительно, использовать эти когти в бою против сабли или меча, успешно защищаясь, а также даже наносить удары. При определенных навыках из рук противника с помощью текко-каги даже можно вырвать меч.

Кусари-гама – весьма странное оружие, напоминающее гибрид булавы и серпа. Оно очень страшно в бою. Им пользовались японские воины. Кусари-гама немало весит, что позволит оглушить противника, а затем изрезать его. Чтобы овладеть таким оружием, потребуется много опыта и работы, иначе оно может нанести повреждения своему владельцу.

Никто не спорит, войны – страшное зло. Они отнимают тысячи и миллионы человеческих жизней и несут громадное горе оставшимся в живых. С другой стороны, войны дают толчок развитию промышленности. Самый наглядный пример – Соединенные Штаты, которые благодаря Второй мировой войне очень быстро и достаточно безболезненно преодолели последствия Великой депрессии и стали первой державой планеты.


Войны также дают мощный толчок развитию всего, так или иначе связанного с военным делом. Ученые в годы войны усиленно разрабатывают новые лекарства, средства связи, транспорта и т.д. и т.п.

Естественно, наиболее сильный толчок получает военно-промышленный комплекс, который не только наращивает выпуск всех видов вооружений, боеприпасов и техники, но и лихорадочно разрабатывает новые виды и техники.

Нередко попадаются среди разработок и изобретений и довольно странные. Ниже приводится далеко не полный, конечно, список самого необычного оружия, придуманного в годы Второй мировой войны.

1. Пушка, стреляющая ракетами с кораблей

С появлением авиации именно вражеские самолеты стали главным врагом военно-морского флота. Для защиты от авиации противника в Великобритании и были придуманы пусковые ракетные установки, которые устанавливались на палубах кораблей. Они стреляли специальными ракетами. Поднимаясь на высоту 300 метров, ракеты взрывались. В разные стороны разлетались находящиеся внутри мины на парашютах.

Идея состояла в создании над кораблем своего рода воздушного минного поля. Парашюты крепились на тросах длиной до 120 метров, что еще больше усложняло работу вражеских летчиков.

Идея выглядела вполне логичной, но новинка оказалась неэффективной. Мины, парашюты и тросы были видны издалека. Поэтому летчики без особых проблем обходили воздушные минные поля снизу или сверху. К тому же, мины находились полностью во власти ветра, который мог отнести их обратно на корабли.

Противосамолетные ракетные установки так и не сбили ни одного немецкого самолета. На британских же кораблях они произвели немало пожаров и унесли жизни нескольких десятков человек.

2. Собаки-подрывники

В СССР начали готовить собак подрывников еще в 1924 году, однако широкое применение четвероногие минеры, на которых вешали взрывчатку, получили в годы Второй мировой войны.

Применялись собаки в основном против танков. Их учили вырывать зубами детонатор, когда они оказывались под танком. Это «живое» оружие оказалось более эффективным, чем корабельные ракетные установки. Собаки подорвали не менее 300 немецких танков, но их слишком многое отвлекало во время выполнения задания, и они нередко возвращались к тем, кто их готовил.

3. Летучие мыши – бомбардировщики

Этот оригинальный вид оружия был придуман в США для операций против Японии. Идея использовать летучих мышей в качестве бомбардировщиков, вооруженных зажигательными бомбами, пришла в голову… дантисту Литлу С. Адамсу.

Летучие мыши казались идеальным оружием. Во-первых, их очень много. Во-вторых, они способны переносить груз значительно больше своего веса. В-третьих, находясь в спячке, летучие мыши не требуют питания и ухода. И наконец, в четвертых, они летают по ночам, а днем спят.

Мышей предполагалось сбрасывать на японские города в контейнерах. Они состояли из 26 полок, на каждой из которых располагались миниконтейнеры с 40 мышами. Летающие грызуны были вооружены 17- и 28-граммовыми напалмовыми бомбами. Контейнеры должны были сбрасывать на рассвете на парашютах с высоты 1500 м. На высоте 300 м над землей они раскрывались, и летучие мыши разлетались во все стороны. Они устраивались на ночлег на чердаках и крышах, после чего срабатывали таймеры и загорались бомбы.

Испытания проходили успешно, но летом 1944 года, когда стало ясно, что использовать боевых летучих мышей можно будет не раньше лета 45-го года, командование закрыло проект. Предпочтение было отдано атомной бомбе, работа над которой шла значительно быстрее.

4. Самое большое орудие

Перед вторжением во Францию Адольф Гитлер потребовал от немецких военных и инженеров создать новое суперорудие. Оно должно было легко пробить самые мощные укрепления защитной линии Мажино, единственной серьезной преграды, отделявшей Германию от Западной Европы.

В результате на заводах сталелитейной компании Friedrich Krupp A.G. была создана суперпушка, даже получившая имя – пушка «Густав». Высотой «Густав» был с четырехэтажный дом. В длину он имел 50 метров, а длина самой пушки составляла почти 27 метров. Весило суперорудие 1350 тонн и стреляло снарядами весом 4,5 тонны!

Гигантские размеры орудия, главный источник его мощи, оказались и главным минусом. Ввиду размеров перевозить его можно было только по железной дороге. Благодаря размерам «Густав» также был легкой мишенью союзной авиации. Менее чем через год проект создания суперпушки был закрыт.

5. Орудие Фау-3

Многокамерное артиллерийское орудие было также известно под названиями «многоножка», «трудолюбивая Лизхен» и «английская пушка». Орудие было разработано летом 1944 года и предназначалось для стрельбы ежечасно залпами из 300 снарядов в форме дротиков длиной 2,7 метра. «Дуло» орудия имело в длину 125 метров и теоретически, по крайней мере, могло достать Лондон из французской деревни Мимойек, находящейся в 8 километрах от Ла-Манша. Однако первые же испытания показали, что скорость снаряда достигала всего лишь 1 км/сек, т.е. была вдвое меньше скорости, необходимой для преодоления 160 км, отделявших Мимойек от Лондона.

Гитлер распорядился сделать 50 Фау-3, однако союзники успели разбомбить прототип орудия, который прятали в стогах сена, еще до запуска Фау-3 в производство.

В итоге были сделаны только два уменьшенных (длиной 45 метров) варианта Фау-3. Из них было произведено всего лишь несколько залпов. Поскольку никаких сведений о результатах стрельбы не сохранилось, можно утверждать, что они оказались не самыми удачными.

6. Мини-танки

Устройства, похожие на маленькие танки, управлялись при помощи пульта дистанционного управления и использовались для подрыва вражеских танков. Несмотря на название – Голиаф на библейского гиганта они не были похожи в первую очередь размерами. С оператором минитанк был сначала связан тросом длиной 650 метров. «Голиаф» был способен переносить ок. 50 кг взрывчатки. Минитанки забирались под танки союзников и взрывали их. Когда выяснилось, что самым уязвимым местом является кабель, который можно перерезать, были созданы минитанки, управляемые при помощи радиосигнала.

Судя по количеству выпущенных минитанков «Голиаф» - 7,5 тыс. штук, их действиями немецкое командование было довольно.

7. Армия призраков

Всемирно известный модельер и дизайнер Билл Бласс воевал в годы Второй мировой в «Армии призраков». Вместе с коллегами, такими же, как он представителями творческих профессий, он изготовливал камуфляж и водил врагов за нос при помощи надувных танков и орудий, бутафорских самолетов, фальшивых командных постов, громовых звуковых эффектов и многого другого.

«Призраки» несколько дней давали «представление» на поле какого-нибудь сражения или рядом с ним, после чего собирали весь инвентарь и реквизиты и переезжали на другое место. Менее чем за год они провели 17 подобных операций, смастерив 17 надувных танков, грузовиков и артиллерийских орудий, которые на расстоянии почти невозможно было отличить от настоящей техники. Их делали на основе каркаса из труб, по которым простой компрессор подавал воздух. Для придания им большего сходства солдаты накрывали каркасы прорезиненным брезентом».

Он получает очень хорошее музыкальное образование. Когда ему было десять лет, его семья переехала в родной город его отца, Флоренцию, а затем Галилей был отправлен в школу в бенедиктинский монастырь. Там, в течение четырех лет, он изучал обычные средневековые дисциплины со схоластами.

Винченцо Галилей выбирает почетную и прибыльную профессию врача для своего сына. В 1581 году семнадцатилетний Галилей был зачислен студентом в университет Пирей на факультет медицины и философии. Но состояние медицинской науки в то время наполнило его недовольством и отталкивало его от медицинской карьеры. В то время он случайно посетил лекцию по математике Остильо Ричи, друга своей семьи и был изумлен логикой и красотой геометрии Евклида.

Он сразу же изучил работы Евклида и Архимеда. Его пребывание в университете становится все более и более невыносимым. Проведя там четыре года, Галилей оставил его незадолго до завершения и вернулся во Флоренцию. Там он продолжил учебу под руководством Ричи, который оценил необычайные способности молодого Галилея. Помимо чисто математических вопросов, он знакомился с техническими достижениями. Он изучает древних философов и современных писателей и за короткое время приобретает знания серьезного ученого.

Открытия Галилео Галилея

Закон движения маятника

Учась в Пизе с его наблюдаемостью и острым умом, он обнаруживает закон движения маятника (период зависит только от длины, а не от амплитуды или веса маятника). Позже он предлагает конструкцию устройства с маятником для измерения через равные промежутки времени. В 1586 году Галилей завершил свое первое одиночное исследование гидростатического равновесия и построил новый тип гидростатического баланса. В следующем году он написал чисто геометрическую работу «Теоремы твердого тела».

Первые трактаты Галилея не были опубликованы, но быстро распространяются и выходят на первый план. В 1588 году, по заказу Флорентийской академии, он прочитал две лекции по форме, положению и размеру ада Данте. Они заполнены теоремами механики и многочисленными геометрическими доказательствами, они используются в качестве предлога для развития географии и идей для всего мира. В 1589 году великий князь Тосканский назначил Галилея профессором на факультете математики в Пизанском университете.

В Пизе молодой ученый снова сталкивается с учебной средневековой наукой. Галилей должен научиться геоцентрической системе Птолемея, которая, наряду с философией Аристотеля , адаптированной к нуждам церкви, признается. Он не общается со своими коллегами, спорит с ними и сначала сомневается во многих заявлениях Аристотеля о физике.

Первый научный эксперимент в физике

По его словам, движение тел Земли делится на «естественное», когда они стремятся к своим «естественным местам» (например, движение вниз для тяжелых тел и «восходящее» движение) и «насильственное». Движение останавливается, когда причина исчезает. «Совершенные небесные тела» – это вечное движение в идеальных кругах вокруг центра Земли (и центра мира). Чтобы опровергнуть утверждения Аристотеля, что тела падают на скорости, пропорциональной их весам, Галилей делает свои знаменитые опыты с падением тел с наклоняющейся башни в Пизе.

Это на самом деле первый научный эксперимент в физике и вместе с ним Галилей вводит новый метод приобретения знаний – из опыта и наблюдения. Результатом этих исследований является трактат «Падение тел», в котором излагается основной вывод о независимости скорости от веса падающего тела. Он написан в новом стиле для научной литературы – в форме диалога, в котором раскрывается основной вывод о скорости, не зависящей от веса падающего тела.

Отсутствие научной базы и низкая плата заставляют Галиея покинуть Университет Пизы до истечения трехлетнего срока контракта. В то время, после смерти его отца, он должен взять на себя семью. Галилею предлагается заняться кафедрой математики в Университете Падуи. Университет Падуи был одним из старейших в Европе и был известен духом свободы мысли и независимости от духовенства. Здесь Галилей работал и быстро заработал имя как отличный физик и очень хороший инженер. В 1593 году были завершены его первые две работы, а также «Механика», в которых он изложил свои взгляды на теорию простых машин, изобрел пропорции, с которыми легко выполнять различные геометрические операции – увеличение рисунка и т. д. Его патенты на гидравлическое оборудование также сохранились.
В лекциях Галилея в университете озвучиваются официальные взгляды, он учит геометрии, геоцентрической системе Птолемея и физике Аристотеля.

Знакомство с учением Коперника

В то же время, дома, в среде друзей и учеников, он рассказывает о различных проблемах и излагает свои собственные новые взгляды. Эту двойственность жизни, Галилей вынужден вести долгое время, пока он не станет убедительным в его идеях в общественном пространстве. Считается, что еще в Пизе Галилей познакомился с учением Коперника. В Падуе он уже убежденный сторонник гелиоцентрической системы и имеет в качестве своей главной цели сбор доказательств в эту пользу. В письме к Кеплеру в 1597 году он писал:

«Много лет назад я обратился к идеям Коперника и своей теорией я смог полностью объяснить ряд явлений, которые в целом не могли быть объяснены противоположными теориями. Я придумал много аргументов, которые опровергают противоположные идеи».

Галилейская трубка

В конце 1608 года Галилея достигает известие, что в Нидерландах открыли оптическое устройство, которое позволяет видеть удаленные объекты. Галилей после упорной работы и обработки сотен деталей из оптического стекла, построил свой первый телескоп с увеличением в три раза. Это система линз (окуляров), теперь называемая Галилейской трубкой. Его третий телескоп с 32-кратным увеличением смотрит на небо.

Лишь спустя несколько месяцев наблюдения он опубликовал удивительные открытия в книге:
Луна не является идеально сферической и гладкой, ее поверхность покрыта холмами и впадинами, похожими на Землю.
Млечный Путь – это собрание многочисленных звезд.
На планете Юпитер есть четыре спутника, которые кружатся вокруг него подобно Луне вокруг Земли.

Несмотря на то, что книгу разрешено печатать, эта книга на самом деле содержит серьезный удар по христианским догматам – уничтожен принцип разницы между «несовершенными» земными телами и «совершенными, вечными и неизменными» небесными телами.

Движение спутников Юпитера использовалось в качестве аргумента в пользу системы Коперника. Первые смелые астрономические достижения Галилея не вызывают внимания инквизиции, напротив, они принесли ему огромную популярность и влияние как прославленного ученого по всей Италии, в том числе и у духовенства.

В 1610 году Галилей был назначен «первым математиком и философом» во дворе правителя Тосканы и его бывшего ученика Козимо II Медичи. Он покидает Университет Падуи после 18 лет проживания там и переезжает во Флоренцию, где он освобождается от какой-либо учебной работы и может заниматься только своими исследованиями.

К аргументам в пользу системы Коперника в скором времени добавлено открытие фаз Венеры, наблюдение кольца Сатурна и солнечных пятен. Он посетил Рим, где его приветствовали кардиналы и папа. Галилей надеется, что логическая безупречность и экспериментальное оправдание новой науки заставят церковь признать это. В 1612 году вышел его важный труд «Отражение на плавающих телах». В нем он дает новые доказательства закону Архимеда и выступает против многих аспектов схоластической философии, утверждая право разума не подчиняться властям. В 1613 году он написал по-итальянски с большим литературным талантом трактат о солнечных пятнах. В то время он также почти обнаружил вращение Солнца.

Запрет учений Коперника

Поскольку на Галилея и его учеников уже были первые атаки, он чувствует необходимость говорить и писать свое знаменитое письмо Кастелли. Он провозгласил независимость науки от богословия и ненужность Писания в исследованиях ученых: «… в математических спорах, мне кажется, Библия принадлежит к последнему месту». Но распространение мнений о гелиоцентрической системе серьезно обеспокоило теологов и в марте 1616 года, с указом Святой Конгрегации, учения Коперника запрещены.

Для всей активной среды сторонников Коперника начинается много лет молчания. Но система становится очевидной только тогда, когда в 1610-1616 гг. основным оружием против геоцентрической системы были астрономические открытия. Теперь Галилей поражает самые основы старого, ненаучного мировоззрения, воздействуя на самые глубокие физические корни мира. Борьба возобновилась с появлением в 1624 году двух произведений в том числе и «Письмо к Инголи». В этой работе Галилей излагает принцип относительности. Обсуждается традиционный аргумент против движения Земли, а именно: если бы Земля вращалась, камень, выброшенный с башни, отставал бы от поверхности Земли.

Диалог по двум основным системам мира – Птолемей и Коперник

В последующие годы Галилей был погружен в работу над основной книгой, которая отражала результаты его 30-летних исследований и размышлений, опыт, накопленный в прикладной механике и астрономии и его общие философские взгляды на мир. В 1630 году завершена обширная рукопись под названием «Диалог по двум основным системам мира – Птолемей и Коперник».

Экспозиция книги была построена в форме беседы между тремя людьми: Сальвиатти, убежденным сторонником Коперника и новой философией; Сагредо, который является мудрым человеком и согласен со всеми аргументами Сальвиатти, но изначально нейтральный; и Симпличчио, защитником традиционной аристотелевской концепции. Имена Сальвиатти и Сагредо носили два друга Галилея, а Симплисио был в честь знаменитого комментатора Аристотеля VI века Симплиция, а по-итальянски это означает «простой».

Диалог дает представление о почти всех научных открытиях Галилея, а также о его понимании природы и возможностях ее изучения. Он стоит на материалистических позициях; считает, что мир существует независимо от человеческого сознания и вводит новые методы исследования – наблюдение, опыт, мысленный эксперимент и количественный математический анализ вместо оскорбительных рассуждений и ссылок на авторитет и догму.

Галилей считает мир единым и изменчивым, не разделяя его на «вечную» и «переменную» субстанцию; отрицает абсолютное движение вокруг фиксированного центра мира: «Могу ли я разумно задать вам вопрос о том, есть ли какой-либо центр мира вообще, потому что ни вы, ни кто-либо еще не доказали, что мир является конечным и имеет определенную форму, а не бесконечную и неограниченную». Галилей прилагал большие усилия, чтобы его работа была напечатана. Он делает ряд компромиссов и пишет читателям, что он не придерживается учения Коперника и предоставляет гипотетическую возможность, которая не соответствует действительности и должна быть отвергнута.

Запрет «Диалога»

В течение двух лет он собирал разрешения от высших духовных властей и цензоров инквизиции, а в начале 1632 года книга вышла из печати. Но очень скоро на нее возникает сильная реакция богословов. Римкого понтифика убедили, что он был изображен под образом Симплицио. Была назначена специальная комиссия богословов, которая объявила работу еретической, а семидесятилетний Галилей был вызван на суд в Риме. Процесс, начатый Инквизицией против него, длится полтора года и заканчивается приговором, согласно которому «Диалог» запрещен.

Отречение от своих взглядов

22 июня 1633 года перед всеми кардиналами и членами инквизиции Галилей читает текст отречения от своих взглядов. Это событие якобы говорит о полном подавлении его сопротивления, но на самом деле это следующий большой компромисс, который он должен сделать для продолжения своей научной работы. Легендарная фраза: «Eppur si muove» (и все-таки она вертится) оправдана его жизнью и работой после процесса. Как говорят, он произнес эут фразу после отречения, однако, на самом деле этот факт является художественным вымыслом 18 века.

Галилей находится под домашним арестом под Флоренцией, и, несмотря на почти потерянное зрение, он много работает над новым большим трудом. Рукопись была тайно вывезена из Италии ее поклонниками, а в 1638 году она была напечатана в Нидерландах под названием «Лекции и математические доказательства двух новых наук».

Лекции и математические доказательства двух новых наук

Лекции – это вершина работы Галилея. Они были написаны снова как беседа в течение шести дней между тремя собеседниками – Сальвиати, Сагредо и Симпличчио. Как и прежде, Сальвати играет ведущую роль. Симпличио больше не спорил, а задавал вопросы только для более подробных объяснений.

В первый, третий и четвертый день раскрывается теория движения падающих и брошенных тел. Второй день посвящен теме материалов и геометрического равновесия. В пятой лекции приведены математические теоремы, а последний содержит неполные результаты и идеи о теории сопротивления. Он имеет наименьшее значение среди шести. Что касается материального сопротивления, то работа Галилея является новаторской в этой области и играет важную роль.

Самые ценные результаты содержат первая, третья и пятая лекции. Это высшая точка, которую Галилей достиг в своем понимании движения. Рассматривая падение тел, он подводит итог:

«Я думаю, что если бы сопротивление среды было полностью удалено, все тела падали бы с той же скоростью».

Теория равномерного прямолинейного и равновесного движения далее развивается. Появляются результаты его многочисленных экспериментов по свободному падению, движению на наклонной плоскости и движению тела, брошенного под углом к горизонту. Четко сформулирована временная зависимость и исследуется параболическая траектория. Опять же, принцип инерции доказан и используется как фундаментальный во всех соображениях.

Когда «Лекции» выходят из печати, Галилей полностью слеп. Но в последние годы своей жизни он работает. В 1636 году он предложил метод точного определения долготы на море с помощью спутников Юпитера. Его мечта – организовать многочисленные астрономические наблюдения из разных точек земной поверхности. С этой целью он ведет переговоры с голландской комиссией о принятии своего метода, но получает отказ и церковь запрещает его дальнейшие контакты. В своих последних письмах своим последователям он продолжает делать важные астрономические соображения.

Галилео Галилей умер 8 января 1642 года в окружении своих учеников Вивиани и Торичелли, его сына и представителя инквизиции. Только через 95 лет его прах разрешили перевозить во Флоренцию, двум другим великим сыновьям Италии, Микеланджело и Данте. Его изобретательная научная работа, проходящая через строгие критерии времени, дает ему бессмертие среди имен самых ярких художников физики и астрономии.

Галилео Галилей – биография жизни и его открытий

отзыв 6 оценка 4.3


Галилео Галилей (итал. Galileo Galilei). Родился 15 февраля 1564 года в Пизе - умер 8 января 1642 года в Арчетри. Итальянский физик, механик, астроном, философ и математик, оказавший значительное влияние на науку своего времени. Он первым использовал телескоп для наблюдения небесных тел и сделал ряд выдающихся астрономических открытий.

Галилей - основатель экспериментальной физики. Своими экспериментами он убедительно опроверг умозрительную метафизику и заложил фундамент классической механики.

При жизни был известен как активный сторонник гелиоцентрической системы мира, что привело Галилея к серьёзному конфликту с католической церковью.

Галилей родился в 1564 году в итальянском городе Пиза, в семье родовитого, но обедневшего дворянина Винченцо Галилея, видного теоретика музыки и лютниста. Полное имя Галилео Галилея: Галилео ди Винченцо Бонайути де Галилей (итал. Galileo di Vincenzo Bonaiuti de" Galilei). Представители рода Галилеев упоминаются в документах с XIV века. Несколько его прямых предков были приорами (членами правящего совета) Флорентийской республики, а прапрадед Галилея, известный врач, тоже носивший имя Галилео, в 1445 году был избран главой республики.

В семье Винченцо Галилея и Джулии Амманнати было шестеро детей, но выжить удалось четверым: Галилео (старшему из детей), дочерям Вирджинии, Ливии и младшему сыну Микеланджело, который в дальнейшем тоже приобрел известность как композитор-лютнист. В 1572 году Винченцо переехал во Флоренцию, столицу Тосканского герцогства. Правящая там династия Медичи была известна широким и постоянным покровительством искусству и наукам.

О детстве Галилея известно немного. С ранних лет мальчика влекло к искусству; через всю жизнь он пронёс любовь к музыке и рисованию, которыми владел в совершенстве. В зрелые годы лучшие художники Флоренции - Чиголи, Бронзино и др. - советовались с ним о вопросах перспективы и композиции; Чиголи даже утверждал, что именно Галилею он обязан своей славой. По сочинениям Галилея можно сделать также вывод о наличии у него замечательного литературного таланта.

Начальное образование Галилей получил в расположенном неподалёку монастыре Валломброза. Мальчик очень любил учиться и стал одним из лучших учеников в классе. Он взвешивал возможность стать священником, но отец был против.

В 1581 году 17-летний Галилей по настоянию отца поступил в Пизанский университет изучать медицину. В университете Галилей посещал также лекции по геометрии (ранее он с математикой был совершенно не знаком) и настолько увлёкся этой наукой, что отец стал опасаться, как бы это не помешало изучению медицины.

Галилей пробыл студентом неполных три года; за это время он успел основательно ознакомиться с сочинениями античных философов и математиков и заработал среди преподавателей репутацию неукротимого спорщика. Уже тогда он считал себя вправе иметь собственное мнение по всем научным вопросам, не считаясь с традиционными авторитетами.

Вероятно, в эти годы он познакомился с теорией . Астрономические проблемы тогда живо обсуждались, особенно в связи с только что проведённой календарной реформой.

Вскоре финансовое положение отца ухудшилось, и он оказался не в состоянии оплачивать далее обучение сына. Просьба освободить Галилея от платы (такое исключение делалось для самых способных студентов) была отклонена. Галилей вернулся во Флоренцию (1585), так и не получив учёной степени. К счастью, он успел обратить на себя внимание несколькими остроумными изобретениями (например, гидростатическими весами), благодаря чему познакомился с образованным и богатым любителем науки, маркизом Гвидобальдо дель Монте. Маркиз, в отличие от пизанских профессоров, сумел его правильно оценить. Уже тогда дель Монте говорил, что со времени мир не видел такого гения, как Галилей. Восхищённый необыкновенным талантом юноши, маркиз стал его другом и покровителем; он представил Галилея тосканскому герцогу Фердинанду I Медичи и ходатайствовал об оплачиваемой научной должности для него.

В 1589 году Галилей вернулся в Пизанский университет, теперь уже профессором математики. Там он начал проводить самостоятельные исследования по механике и математике. Правда, жалованье ему назначили минимальное: 60 скудо в год (профессор медицины получал 2000 скудо). В 1590 году Галилей написал трактат «О движении».

В 1591 году умер отец, и ответственность за семью перешла к Галилео. В первую очередь он должен был позаботиться о воспитании младшего брата и о приданом двух незамужних сестёр.

В 1592 году Галилей получил место в престижном и богатом Падуанском университете (Венецианская республика), где преподавал астрономию, механику и математику.

Годы пребывания в Падуе - наиболее плодотворный период научной деятельности Галилея. Вскоре он стал самым знаменитым профессором в Падуе. Студенты толпами стремились на его лекции, венецианское правительство непрестанно поручало Галилею разработку разного рода технических устройств, с ним активно переписываются молодой Кеплер и другие научные авторитеты того времени.

В эти годы он написал трактат «Механика», который вызвал некоторый интерес и был переиздан во французском переводе. В ранних работах, а также в переписке, Галилей дал первый набросок новой общей теории падения тел и движения маятника.

Поводом к новому этапу в научных исследованиях Галилея послужило появление в 1604 году новой звезды, называемой сейчас Сверхновой Кеплера. Это пробуждает всеобщий интерес к астрономии, и Галилей выступает с циклом частных лекций. Узнав об изобретении в Голландии зрительной трубы, Галилей в 1609 году конструирует собственноручно первый телескоп и направляет его в небо.

Увиденное Галилеем было настолько поразительно, что даже многие годы спустя находились люди, которые отказывались поверить в его открытия и утверждали, что это иллюзия или наваждение. Галилей открыл горы на Луне, Млечный путь распался на отдельные звёзды, но особенно поразили современников обнаруженные им 4 спутника Юпитера (1610). В честь четырёх сыновей своего покойного покровителя Фердинанда Медичи (умершего в 1609 году), Галилей назвал эти спутники «Медичийскими звёздами» (лат. Stellae Medicae). Сейчас они носят более подходящее название «галилеевых спутников» .

Свои первые открытия с телескопом Галилей описал в сочинении «Звёздный вестник» (лат. Sidereus Nuncius), изданном во Флоренции в 1610 году. Книга имела сенсационный успех по всей Европе, даже коронованные особы спешили заказать себе телескоп. Несколько телескопов Галилей подарил Венецианскому сенату, который в знак благодарности назначил его пожизненным профессором с окладом 1000 флоринов. В сентябре 1610 года телескопом обзавёлся Кеплер, а в декабре открытия Галилея подтвердил влиятельный римский астроном Клавиус. Наступает всеобщее признание. Галилей становится самым знаменитым учёным Европы, в его честь сочиняются оды, где он сравнивается с Колумбом. Французский король Генрих IV 20 апреля 1610 года, незадолго до своей гибели, просил Галилея открыть и для него какую-нибудь звезду.

Были, однако, и недовольные. Астроном Франческо Сицци (итал. Sizzi) выпустил памфлет, где заявил, что семь - совершенное число, и даже в голове человека семь отверстий, так что планет может быть только семь, а открытия Галилея - иллюзия. Протестовали также астрологи и врачи, жалуясь на то, что появление новых небесных светил «губительно для астрологии и большей части медицины», так как все привычные астрологические методы «окажутся до основания разрушенными».

В эти годы Галилей вступает в гражданский брак с венецианкой Мариной Гамба (итал. Marina Gamba). Он так и не обвенчался с Мариной, но стал отцом сына и двух дочерей. Сына он в память об отце назвал Винченцо, а дочерей, в честь своих сестёр - Вирджинией и Ливией. Позже, в 1619 году, Галилей официально узаконил сына; обе дочери закончили жизнь в монастыре.

Общеевропейская слава и нужда в деньгах толкнули Галилея на губительный, как позже оказалось, шаг: в 1610 году он покидает спокойную Венецию, где он был недоступен для инквизиции, и перебирается во Флоренцию. Герцог Козимо II Медичи, сын Фердинанда, обещал Галилею почётное и доходное место советника при тосканском дворе. Обещание он сдержал, что позволило Галилею решить проблему огромных долгов, накопившихся после выдачи замуж двух его сестёр.

Обязанности Галилея при дворе герцога Козимо II были необременительны - обучение сыновей тосканского герцога и участие в некоторых делах как советника и представителя герцога. Формально он также зачислен профессором Пизанского университета, но освобождён от утомительной обязанности чтения лекций.

Галилей продолжает научные исследования и открывает фазы Венеры, пятна на Солнце, а затем и вращение Солнца вокруг оси . Свои достижения (а зачастую и свой приоритет) Галилей зачастую излагал в задиристо-полемическом стиле, чем нажил немало новых врагов (в частности, среди иезуитов).

Рост влияния Галилея, независимость его мышления и резкая оппозиционность по отношению к учению Аристотеля способствовали формированию агрессивного кружка его противников, состоящего из профессоров-перипатетиков и некоторых церковных деятелей. Особенно возмущали недоброжелателей Галилея его пропаганда гелиоцентрической системы мира, поскольку, по их мнению, вращение Земли противоречило текстам Псалмов (Псал. 103:5), стиху из Экклезиаста (Екк. 1:5), а также эпизоду из «Книги Иисуса Навина» (Нав. 10:12), где говорится о неподвижности Земли и движении Солнца. Кроме того, подробное обоснование концепции неподвижности Земли и опровержение гипотез о её вращении содержалось в трактате Аристотеля «О небе» и в «Альмагесте» Птолемея.

В 1611 году Галилей, в ореоле своей славы, решил отправиться в Рим, надеясь убедить Папу, что коперниканство вполне совместимо с католицизмом. Он был принят хорошо, избран шестым членом научной «Академии деи Линчеи», знакомится с Папой Павлом V, влиятельными кардиналами. Продемонстрировал им свой телескоп, пояснения давал осторожно и осмотрительно. Кардиналы создали целую комиссию для выяснения вопроса, не грешно ли смотреть на небо в трубу, но пришли к выводу, что это позволительно. Обнадёживало и то, что римские астрономы открыто обсуждали вопрос, движется ли Венера вокруг Земли или вокруг Солнца (смена фаз Венеры ясно говорила в пользу второго варианта).

Осмелев, Галилей в письме к своему ученику аббату Кастелли (1613) заявил, что Священное Писание относится только к спасению души и в научных вопросах не авторитетно: «ни одно изречение Писания не имеет такой принудительной силы, какую имеет любое явление природы». Более того, он опубликовал это письмо, чем вызвал появление доносов в инквизицию. В том же 1613 году Галилей выпустил книгу «Письма о солнечных пятнах», в которой открыто высказался в пользу системы Коперника. 25 февраля 1615 года римская инквизиция начала первое дело против Галилея по обвинению в ереси. Последней ошибкой Галилея стал призыв к Риму высказать окончательное отношение к коперниканству (1615).

Всё это вызвало реакцию, обратную ожидаемой. Встревоженная успехами Реформации, католическая церковь решила укрепить свою духовную монополию - в частности, запретив коперниканство. Позицию церкви проясняет письмо влиятельного кардинала Беллармино, направленное 12 апреля 1615 года теологу Паоло Антонио Фоскарини, защитнику коперниканства. Кардинал поясняет, что церковь не возражает против трактовки коперниканства как удобного математического приёма, но принятие его как реальности означало бы признание того, что прежнее, традиционное толкование библейского текста было ошибочным.

5 марта 1616 года Рим официально определяет гелиоцентризм как опасную ересь : "Утверждать, что Солнце стоит неподвижно в центре мира - мнение нелепое, ложное с философской точки зрения и формально еретическое, так как оно прямо противоречит Св. Писанию. Утверждать, что Земля не находится в центре мира, что она не остаётся неподвижной и обладает даже суточным вращением, есть мнение столь же нелепое, ложное с философской и греховное с религиозной точки зрения."

Церковный запрет гелиоцентризма, в истинности которого Галилей был убеждён, был неприемлем для учёного. Он вернулся во Флоренцию и стал размышлять, как, формально не нарушая запрета, продолжать защиту истины. В конце концов он решил издать книгу, содержащую нейтральное обсуждение разных точек зрения. Он писал эту книгу 16 лет, собирая материалы, оттачивая аргументы и выжидая благоприятного момента.

После рокового декрета 1616 года Галилей на несколько лет сменил направление борьбы - теперь он сосредотачивает усилия преимущественно на критике Аристотеля, чьи сочинения также составляли базу средневекового мировоззрения. В 1623 году выходит книга Галилея «Пробирных дел мастер» (итал. Il Saggiatore); это памфлет, направленный против иезуитов, в котором Галилей излагает свою ошибочную теорию комет (он полагал, что кометы - не космические тела, а оптические явления в атмосфере Земли). Позиция иезуитов (и Аристотеля) в данном случае была ближе к истине: кометы - внеземные объекты. Эта ошибка не помешала, однако, Галилею изложить и остроумно аргументировать свой научный метод, из которого выросло механистическое мировоззрение последующих веков.

В том же 1623 году новым Папой, под именем Урбан VIII, был избран Маттео Барберини, давний знакомый и друг Галилея. В апреле 1624 года Галилей поехал в Рим, надеясь добиться отмены эдикта 1616-го года. Он принят со всеми почестями, награждён подарками и лестными словами, однако в главном вопросе ничего не добился. Эдикт был отменён только два столетия спустя, в 1818 году. Урбан VIII особо похвалил книгу «Пробирных дел мастер» и запретил иезуитам продолжать полемику с Галилеем.

В 1624 году Галилей опубликовал «Письма к Инголи»; это ответ на анти-коперниканский трактат богослова Франческо Инголи. Галилей сразу оговаривает, что не собирается защищать коперниканство, а желает всего лишь показать, что у него имеются прочные научные основания. Этот приём он использовал позже и в своей главной книге, «Диалог о двух системах мира»; часть текста «Писем к Инголи» была просто перенесена в «Диалог». В своём рассмотрении Галилей приравнивает звёзды к Солнцу, указывает на колоссальное расстояние до них, говорит о бесконечности Вселенной. Он даже позволил себе опасную фразу: «Если какая-либо точка мира может быть названа его [мира] центром, то это центр обращений небесных тел; а в нём, как известно всякому, кто разбирается в этих вопросах, находится Солнце, а не Земля». Он заявил также, что планеты и Луна, подобно Земле, притягивают находящиеся на них тела.

Но главная научная ценность этого сочинения - закладка основ новой, неаристотелевской механики, развёрнутая 12 лет спустя в последнем сочинении Галилея «Беседы и математические доказательства двух новых наук».

В современной терминологии, Галилей провозгласил однородность пространства (отсутствие центра мира) и равноправие инерциальных систем отсчёта. Следует отметить важный анти-аристотелевский момент: аргументация Галилея неявно предполагает, что результаты земных опытов можно переносить на небесные тела, то есть законы на Земле и на небе одни и те же.

В конце своей книги Галилей, с явной иронией, выражает надежду, что его сочинение поможет Инголи заменить его возражения против коперниканства на другие, более соответствующие науке.

В 1628 году великим герцогом Тосканы стал 18-летний Фердинанд II, воспитанник Галилея; его отец Козимо II умер семью годами раньше. Новый герцог сохранил тёплые отношения с учёным, гордился им и всячески помогал.

Ценную информацию о жизни Галилея содержит сохранившаяся переписка Галилея с его старшей дочерью Вирджинией, в монашестве принявшей имя Мария-Челеста. Она жила во францисканском монастыре в Арчетри, близ Флоренции. Монастырь, как положено у францисканцев, был бедный, отец часто посылал дочери продукты и цветы, взамен дочь готовила ему варенье, чинила одежду, копировала документы. Сохранились только письма от Марии-Челесты - письма от Галилея, скорее всего, монастырь уничтожил после процесса 1633 года. Вторая дочь, Ливия, жила в том же монастыре, но в это время была часто больна и в переписке участия не принимала.

В 1629 году Винченцо, сын Галилея, женился и поселился у отца. В следующем году у Галилея появился внук, названный в его честь. Вскоре, однако, встревоженный очередной эпидемией чумы, Винченцо с семьёй уезжают. Галилей обдумывает план переселиться в Арчетри, поближе к любимой дочери; этот замысел осуществился в сентябре 1631 года.

В марте 1630 года книга «Диалог о двух главнейших системах мира - птолемеевой и коперниковой», итог почти 30-летней работы, в основном завершена, и Галилей, решив, что момент для её выхода благоприятен, предоставляет тогдашнюю версию своему другу, папскому цензору Риккарди. Почти год он ждёт его решения, затем решает пойти на хитрость. Он добавляет к книге предисловие, где объявляет своей целью развенчание коперниканства и передаёт книгу тосканской цензуре, причём, по некоторым сведениям, в неполном и смягчённом виде. Получив положительный отзыв, он пересылает его в Рим. Летом 1631 года он получает долгожданное разрешение.

В начале 1632 года «Диалог» вышел в свет. Книга написана в форме диалога между тремя любителями науки: коперниканцем Сальвиати, нейтральным участником Сагредо и Симпличио, приверженцем Аристотеля и Птолемея. Хотя в книге нет авторских выводов, сила аргументов в пользу системы Коперника говорит сама за себя. Немаловажно также, что книга написана не на учёной латыни, а на «народном» итальянском языке.

Галилей надеялся, что Папа отнесётся к его уловке так же снисходительно, как ранее к аналогичным по идеям «Письмам к Инголи», однако просчитался. В довершение всего он сам безрассудно рассылает 30 экземпляров своей книги влиятельным духовным лицам в Риме. Как уже отмечалось выше, незадолго перед тем (1623) Галилей вступил в конфликт с иезуитами; защитников у него в Риме осталось мало, да и те, оценив опасность ситуации, предпочли не вмешиваться.

Большинство биографов сходится во мнении, что в простаке-Симпличио римский Папа узнал самого себя, свои аргументы, и пришёл в ярость. Историки отмечают такие характерные черты Урбана, как деспотизм, упрямство и невероятное самомнение. Сам Галилей позже считал, что инициатива процесса принадлежала иезуитам, которые представили Папе крайне тенденциозный донос о книге Галилея (см. ниже письмо Галилея к Диодати). Уже через несколько месяцев книга была запрещена и изъята из продажи, а Галилея вызвали в Рим (невзирая на эпидемию чумы) на суд Инквизиции по подозрению в ереси. После неудачных попыток добиться отсрочки по причине плохого здоровья и продолжающейся эпидемии чумы (Урбан на это пригрозил доставить его насильно в кандалах) Галилей подчинился, отбыл положенный чумной карантин и прибыл в Рим 13 февраля 1633 года. Никколини, представитель Тосканы в Риме, по указанию герцога Фердинанда II поселил Галилея в здании посольства. Следствие тянулось с 21 апреля по 21 июня 1633 года.

По окончании первого допроса обвиняемого взяли под арест. Галилей провёл в заключении всего 18 дней (с 12 по 30 апреля 1633 года) - эта необычная снисходительность, вероятно, была вызвана согласием Галилея покаяться, а также влиянием тосканского герцога, непрестанно хлопотавшего о смягчении участи своего старого учителя. Принимая во внимание его болезни и преклонный возраст, в качестве тюрьмы была использована одна из служебных комнат в здании инквизиционного трибунала.

Историки исследовали вопрос, применялась ли к Галилею пытка в период заключения. Документы процесса опубликованы Ватиканом не полностью, а то, что увидело свет, возможно, подверглось предварительному редактированию. Тем не менее в приговоре инквизиции были обнаружены следующие слова: "Заметив, что ты при ответах не совсем чистосердечно признаёшься в своих намерениях, мы сочли необходимым прибегнуть к строгому испытанию".

После «испытания» Галилей в письме из тюрьмы (23 апреля) осторожно сообщает, что не встаёт с постели, так как его мучает «ужасная боль в бедре». Часть биографов Галилея предполагают, что пытка действительно имела место, другие же считают это предположение недоказанным, документально подтверждена лишь угроза пыткой, часто сопровождавшаяся имитацией самой пытки. В любом случае, если пытка и была, то в умеренных масштабах, так как уже 30 апреля учёного отпустили обратно в тосканское посольство.

Судя по сохранившимся документам и письмам, научные темы на процессе не обсуждались. Основными были два вопроса: сознательно ли Галилей нарушил эдикт 1616 года, и раскаивается ли он в содеянном. Три эксперта инквизиции дали заключение: книга нарушает запрет на пропаганду «пифагорейской» доктрины. В итоге учёный был поставлен перед выбором: либо он покается и отречётся от своих «заблуждений», либо его постигнет участь .

"Ознакомившись со всем ходом дела и выслушав показания, Его Святейшество определил допросить Галилея под угрозой пытки и, если устоит, то после предварительного отречения как сильно подозреваемого в ереси… приговорить к заключению по усмотрению Святой Конгрегации. Ему предписано не рассуждать более письменно или устно каким-либо образом о движении Земли и о неподвижности Солнца… под страхом наказания как неисправимого".

Последний допрос Галилея состоялся 21 июня. Галилей подтвердил, что согласен произнести требуемое от него отречение; на этот раз его не отпустили в посольство и снова взяли под арест. 22 июня был объявлен приговор: Галилей виновен в распространении книги с «ложным, еретическим, противным Св. Писанию учением» о движении Земли :

"Вследствие рассмотрения твоей вины и сознания твоего в ней присуждаем и объявляем тебя, Галилей, за всё вышеизложенное и исповеданное тобою под сильным подозрением у сего Св. судилища в ереси, как одержимого ложною и противною Священному и Божественному Писанию мыслью, будто Солнце есть центр земной орбиты и не движется от востока к западу, Земля же подвижна и не есть центр Вселенной. Также признаем тебя ослушником церковной власти, запретившей тебе излагать, защищать и выдавать за вероятное учение, признанное ложным и противным Св. Писанию… Дабы столь тяжкий и вредоносный грех твой и ослушание не остались без всякой мзды и ты впоследствии не сделался бы ещё дерзновеннее, а, напротив, послужил бы примером и предостережением для других, мы постановили книгу под заглавием «Диалог» Галилео Галилея запретить, а тебя самого заключить в тюрьму при Св. судилище на неопределённое время".

Галилей был осуждён к тюремному заключению на срок, который установит Папа. Его объявили не еретиком, а «сильно заподозренным в ереси»; такая формулировка также была тяжким обвинением, однако спасала от костра. После оглашения приговора Галилей на коленях произнёс предложенный ему текст отречения. Копии приговора по личному распоряжению Папы Урбана были разосланы во все университеты католической Европы.

Папа не стал долго держать Галилея в тюрьме. После вынесения приговора Галилея поселили на одной из вилл Медичи, откуда он был переведён во дворец своего друга, архиепископа Пикколомини в Сиене. Спустя пять месяцев Галилею было разрешено отправиться на родину, и он поселился в Арчетри, рядом с монастырём, где находились его дочери. Здесь он провёл остаток жизни под домашним арестом и под постоянным надзором инквизиции.

Режим содержания Галилея не отличался от тюремного, и ему постоянно угрожали переводом в тюрьму за малейшее нарушение режима. Галилею не дозволялось посещение городов, хотя тяжелобольной узник нуждался в постоянном врачебном наблюдении. В первые годы ему запрещено было принимать гостей под страхом перевода в тюрьму; впоследствии режим был несколько смягчён, и друзья смогли навещать Галилея - правда, не более чем по одному.

Инквизиция следила за пленником до конца его жизни; даже при кончине Галилея присутствовали два её представителя. Все его печатные работы подлежали особо тщательной цензуре. Отметим, что в протестантской Голландии издание «Диалога» продолжалось.

В 1634 году умерла 33-летняя старшая дочь Вирджиния (в монашестве Мария-Челеста), любимица Галилея, которая преданно ухаживала за больным отцом и остро переживала его злоключения. Галилей пишет, что им владеют «безграничная печаль и меланхолия… постоянно слышу, как моя дорогая дочурка зовёт меня». Состояние здоровья Галилея ухудшилось, но он продолжает энергично работать в разрешённых для него областях науки.

Сохранилось письмо Галилея к его другу Элиа Диодати (1634), где он делится новостями о своих злоключениях, указывает на их виновников (иезуитов) и делится планами будущих исследований. Письмо было послано через доверенное лицо, и Галилей в нём вполне откровенен: "В Риме я был приговорён Святой инквизицией к заточению по указанию Его Святейшества… местом заточения для меня стал этот маленький городок в одной миле от Флоренции, со строжайшим запрещением спускаться в город, встречаться и беседовать с друзьями и приглашать их… Когда я вернулся из монастыря вместе с врачом, посетившим мою больную дочь перед её кончиной, причём врач сказал мне, что случай безнадёжный и что она не переживёт следующего дня (как оно и случилось), я застал дома викария-инквизитора. Он явился, чтобы приказать мне, по распоряжению Св. инквизиции в Риме…, что я не должен был обращаться с просьбой разрешить мне вернуться во Флоренцию, иначе меня посадят в настоящую тюрьму Св. инквизиции… Это происшествие и другие, о которых писать было бы слишком долго, показывает, что ярость моих весьма могущественных преследователей постоянно возрастает. И они в конце концов пожелали раскрыть своё лицо: когда один из моих дорогих друзей в Риме, тому около двух месяцев, в разговоре с падре Христофором Гринбергом, иезуитом, математиком этой коллегии, коснулся моих дел, этот иезуит сказал моему другу буквально следующее: «Если бы Галилей сумел сохранить расположение отцов этой коллегии, он жил бы на свободе, пользуясь славой, не было бы у него никаких огорчений и он мог бы писать по своему усмотрению о чём угодно - даже о движении Земли» и т. д. Итак, Вы видите, что на меня ополчились не из-за того или иного моего мнения, а из-за того, что я в немилости у иезуитов".

В конце письма Галилей высмеивает невежд, которые «подвижность Земли объявляют ересью» и сообщает, что намерен анонимно опубликовать новый трактат в защиту своей позиции, но прежде хочет закончить давно задуманную книгу по механике. Из этих двух планов он успел осуществить только второй - написал книгу по механике, подытожившую ранее сделанные им открытия в этой области.

Последней книгой Галилея стали «Беседы и математические доказательства двух новых наук», где излагаются основы кинематики и сопротивления материалов. Фактически содержание книги представляет собой разгром аристотелевой динамики; взамен Галилей выдвигает свои принципы движения, проверенные на опыте. Бросая вызов инквизиции, Галилей вывел в новой книге тех же трёх персонажей, что и в запрещённом ранее «Диалоге о двух главнейших системах мира». В мае 1636 года учёный ведёт переговоры об издании своего труда в Голландии, а затем тайно переправляет туда рукопись. В доверительном письме другу, графу де Ноэлю (которому он посвятил эту книгу) Галилей пишет, что новый труд «снова ставит меня в ряды борцов». «Беседы…» вышли в свет в июле 1638 года, а в Арчетри книга попала почти через год - в июне 1639 года. Этот труд стал настольной книгой Гюйгенса и Ньютона, завершивших начатое Галилеем построение оснований механики.

Только один раз, незадолго до смерти (март 1638 года), инквизиция разрешила слепому и тяжело больному Галилею покинуть Арчетри и поселиться во Флоренции для лечения. При этом ему под страхом тюрьмы было запрещено выходить из дома и обсуждать «про́клятое мнение» о движении Земли. Однако спустя несколько месяцев, после появления нидерландского издания «Бесед…», разрешение было отменено, и учёному предписали вернуться в Арчетри. Галилей собирался продолжить «Беседы…», написав ещё две главы, но не успел выполнить задуманное.

Галилео Галилей умер 8 января 1642 года, на 78-м году жизни, в своей постели. Папа Урбан запретил хоронить Галилея в семейном склепе базилики Санта-Кроче во Флоренции. Похоронили его в Арчетри без почестей, ставить памятник Папа тоже не позволил.

Младшая дочь, Ливия, умерла в монастыре. Позже единственный внук Галилея тоже постригся в монахи и сжёг хранившиеся у него бесценные рукописи учёного как богопротивные. Он был последним представителем рода Галилеев.

В 1737 году прах Галилея, как он и просил, был перенесён в базилику Санта Кроче, где 17 марта он был торжественно погребён рядом с Микеланджело. В 1758 году Папа Бенедикт XIV велел вычеркнуть работы, защищавшие гелиоцентризм, из «Индекса запрещённых книг»; впрочем, эта работа проводилась неспешно и завершилась только в 1835 году.

С 1979 по 1981 годы по инициативе Римского Папы Иоанна Павла II работала комиссия по реабилитации Галилея, и 31 октября 1992 года Папа Иоанн Павел II официально признал, что инквизиция в 1633 году совершила ошибку, силой вынудив учёного отречься от теории Коперника.

Научные достижения Галилея:

Галилей по праву считается основателем не только экспериментальной, но - в значительной мере - и теоретической физики. В своём научном методе он осознанно сочетал продуманный эксперимент с его рациональным осмыслением и обобщением, и лично дал впечатляющие примеры таких исследований.

Галилей считается одним из основателей механицизма. Этот научный подход рассматривает Вселенную как гигантский механизм, а сложные природные процессы - как комбинации простейших причин, главная из которых - механическое движение. Анализ механического движения лежит в основе работ Галилея.

Галилей сформулировал правильные законы падения: скорость нарастает пропорционально времени, а путь - пропорционально квадрату времени. В соответствии со своим научным методом он тут же привёл опытные данные, подтверждающие открытые им законы. Более того, Галилей рассмотрел (в 4-й день «Бесед») и обобщённую задачу: исследовать поведение падающего тела с ненулевой горизонтальной начальной скоростью. Он совершенно правильно предположил, что полёт такого тела будет представлять собой суперпозицию (наложение) двух «простых движений»: равномерного горизонтального движения по инерции и равноускоренного вертикального падения.

Галилей доказал, что указанное, а также любое брошенное под углом к горизонту тело летит по параболе. В истории науки это первая решённая задача динамики. В заключение исследования Галилей доказал, что максимальная дальность полёта брошенного тела достигается для угла броска 45° (ранее это предположение высказал Тарталья, который, однако, не смог его строго обосновать). На основе своей модели Галилей (ещё в Венеции) составил первые артиллерийские таблицы.

Галилей опроверг и второй из приведённых законов Аристотеля, сформулировав первый закон механики (закон инерции) : при отсутствии внешних сил тело либо покоится, либо равномерно движется. То, что мы называем инерцией, Галилей поэтически назвал «неистребимо запечатлённое движение». Правда, он допускал свободное движение не только по прямой, но и по окружности (видимо, из астрономических соображений). Правильную формулировку закона позднее дали и ; тем не менее общепризнанно, что само понятие «движение по инерции» впервые введено Галилеем, и первый закон механики по справедливости носит его имя.

Галилей является одним из основоположников принципа относительности в классической механике , ставшего в слегка уточнённом виде одним из краеугольных камней современной трактовки этой науки и названного позже в его честь.

Перечисленные выше открытия Галилея, кроме всего прочего, позволили ему опровергнуть многие доводы противников гелиоцентрической системы мира, утверждавших, что вращение Земли заметно сказалось бы на явлениях, происходящих на её поверхности. Например, по мнению геоцентристов, поверхность вращающейся Земли за время падения любого тела уходила бы из-под этого тела, смещаясь на десятки или даже сотни метров. Галилей уверенно предсказал: «Будут безрезультатны любые опыты, которые должны были бы указывать более против, чем за вращение Земли».

Галилей опубликовал исследование колебаний маятника и заявил, что период колебаний не зависит от их амплитуды (это приблизительно верно для малых амплитуд). Он также обнаружил, что периоды колебаний маятника соотносятся как квадратные корни из его длины. Результаты Галилея привлекли внимание Гюйгенса, который изобрёл часы с маятниковым регулятором (1657); с этого момента появилась возможность точных измерений в экспериментальной физике.

Впервые в истории науки Галилей поставил вопрос о прочности стержней и балок при изгибе и тем самым положил начало новой науке - сопротивлению материалов.

Многие рассуждения Галилея представляют собой наброски открытых много позднее физических законов. Например, в «Диалоге» он сообщает, что вертикальная скорость шара, катящегося по поверхности сложного рельефа, зависит только от его текущей высоты, и иллюстрирует этот факт несколькими мысленными экспериментами; сейчас мы бы сформулировали этот вывод как закон сохранения энергии в поле тяжести. Аналогично он объясняет (теоретически незатухающие) качания маятника.

В статике Галилей ввёл фундаментальное понятие момента силы.

В 1609 году Галилей самостоятельно построил свой первый телескоп с выпуклым объективом и вогнутым окуляром. Труба давала приблизительно трёхкратное увеличение. Вскоре ему удалось построить телескоп, дающий увеличение в 32 раза. Отметим, что термин телескоп ввёл в науку именно Галилей (сам термин предложил ему Федерико Чези, основатель «Академии деи Линчеи»). Ряд телескопических открытий Галилея способствовали утверждению гелиоцентрической системы мира, которую Галилей активно пропагандировал, и опровержению взглядов геоцентристов Аристотеля и Птолемея.

Первые телескопические наблюдения небесных тел Галилей провёл 7 января 1610 года. Эти наблюдения показали, что Луна, подобно Земле, имеет сложный рельеф - покрыта горами и кратерами. Известный с древних времен пепельный свет Луны Галилей объяснил как результат попадания на наш естественный спутник солнечного света, отражённого Землёй. Всё это опровергало учение Аристотеля о противоположности «земного» и «небесного»: Земля стала телом принципиально той же природы, что и небесные светила, а это, в свою очередь, служило косвенным доводом в пользу системы Коперника: если другие планеты движутся, то естественно предположить, что движется и Земля. Галилей обнаружил также либрацию Луны и довольно точно оценил высоту лунных гор.

Галилей открыл также (независимо от Иоганна Фабрициуса и Хэрриота) солнечные пятна. Существование пятен и их постоянная изменчивость опровергали тезис Аристотеля о совершенстве небес (в отличие от «подлунного мира»). По результатам их наблюдений Галилей сделал вывод, что Солнце вращается вокруг своей оси, оценил период этого вращения и положение оси Солнца.

Галилей установил, что Венера меняет фазы. С одной стороны, это доказывало, что она светит отражённым светом Солнца (насчёт чего в астрономии предшествующего периода не было ясности). С другой стороны, порядок смены фаз соответствовал гелиоцентрической системе: в теории Птолемея Венера как «нижняя» планета была всегда ближе к Земле, чем Солнце, и «полновенерие» было невозможно.

Галилей отметил также странные «придатки» у Сатурна, но открытию кольца помешали слабость телескопа и поворот кольца , скрывший его от земного наблюдателя. Полвека спустя кольцо Сатурна открыл и описал Гюйгенс, в распоряжении которого был 92-кратный телескоп.

Галилей показал, что при наблюдении в телескоп планеты видны как диски, видимые размеры которых в различных конфигурациях меняются в таком соотношении, какое следует из теории Коперника. Однако диаметр звёзд при наблюдениях с телескопом не увеличивается. Это опровергало оценки видимого и реального размера звезд, которые использовались некоторыми астрономами как аргумент против гелиоцентрической системы.

Млечный путь, который невооружённым глазом выглядит как сплошное сияние, распался на отдельные звёзды (что подтвердило догадку Демокрита), и стало видно громадное количество неизвестных ранее звёзд.

Галилей разъяснил, отчего земная ось не поворачивается при обращении Земли вокруг Солнца ; для объяснения этого явления Коперник ввёл специальное «третье движение» Земли. Галилей показал на опыте, что ось свободно движущегося волчка сохраняет своё направление сама собой.

К теории вероятностей относится его исследование об исходах при бросании игральных костей. В его «Рассуждении об игре в кости» («Considerazione sopra il giuoco dei dadi», время написания неизвестно, опубликовано в 1718 году) проведён довольно полный анализ этой задачи.

В «Беседах о двух новых науках» он сформулировал «парадокс Галилея»: натуральных чисел столько же, сколько их квадратов, хотя бо́льшая часть чисел не являются квадратами . Это подтолкнуло в дальнейшем к исследованию природы бесконечных множеств и их классификации; завершился процесс созданием теории множеств .

Галилей создал гидростатические весы для определения удельного веса твёрдых тел. Галилей описал их конструкцию в трактате «La bilancetta» (1586).

Галилей разработал первый термометр , ещё без шкалы (1592), пропорциональный циркуль , используемый в чертёжном деле (1606), микроскоп , плохого качества (1612); с его помощью Галилей изучал насекомых.

Ученики Галилея:

Борелли, продолживший изучение спутников Юпитера; он одним из первых сформулировал закон всемирного тяготения. Основоположник биомеханики.
Вивиани, первый биограф Галилея, талантливый физик и математик.
Кавальери, предтеча математического анализа, в судьбе которого поддержка Галилея сыграла огромную роль.
Кастелли, создатель гидрометрии.
Торричелли, ставший выдающимся физиком и изобретателем.

Один из самых знаменитых астрономов, физиков и философов в истории человечества - Галилео Галилей. Краткая биография и его открытия, о которых вы сейчас узнаете, позволят вам получить общее представление об этом выдающемся человеке.

Первые шаги в мире науки

Родился Галилей в Пизе (Италия), 15 февраля 1564 года. В восемнадцатилетнем возрасте юноша поступает в Пизанский университет, чтобы изучать врачебное дело. На этот шаг его подтолкнул отец, однако из-за нехватки денег вскоре Галилео был вынужден оставить обучение. Однако то время, что будущий учёный провёл в университете, не прошло даром, ведь именно здесь он начал живо интересоваться математикой и физикой. Уже не являясь студентом, не забросил свои увлечения одарённый Галилео Галилей. Краткая биография и его открытия, сделанные в этот период, сыграли важную роль в дальнейшей судьбе ученого. Некоторое время он посвящает самостоятельному исследованию механики, а затем, в возвращается в Пизанский университет, на сей раз в роли преподаватели математики. Спустя некоторое время он был приглашён продолжить преподавание в Падуанском университете, где объяснял студентам основы механики, геометрии и астрономии. Как раз в это время Галилей начал совершать значимые для науки открытия.

В 1593 году в свет выходит первая учёного - книга с лаконичным названием «Механика», в которой Галилей описал свои наблюдения.

Астрономические исследования

После выхода книги в свет «рождается» новый Галилео Галилей. Краткая биография и его открытия - тема, которую невозможно обсуждать, не упомянув события 1609 года. Ведь именно тогда Галилео самостоятельно сооружает свой первый телескоп с вогнутым окуляром и выпуклым объективом. Устройство давало увеличение примерно в три раза. Однако на достигнутом Галилей не остановился. Продолжая совершенствовать свой телескоп, он довёл увеличение до 32-х раз. Наблюдая в него за спутником Земли - Луной, Галилей обнаружил, что её поверхность, как и земная, не является ровной, а покрыта разнообразными горами и многочисленными кратерами. Также были обнаружены четыре а звёзды сквозь стекло сменили свои привычные размеры, и впервые возникла мысль об их глобальной удалённости. оказался огромным скоплением миллионов новых небесных тел. Кроме того, учёный начал наблюдать за исследовать движение Солнца и делать пометки о солнечных пятнах.

Конфликт с церковью

Биография Галилео Галилея - это очередной виток в противостоянии науки того времени и церковного учения. Учёный на основе своих наблюдений вскоре приходит к выводу, что гелиоцентрическая впервые предложенная и обоснованная Коперником, является единственно верной. Это противоречило буквальному пониманию Псалмов 93 и 104, а кроме того, стиху из Экклезиаста 1:5, в которых можно найти упоминание о неподвижности Земли. Галилео вызвали в Рим, где предъявили требование прекратить пропагандировать «еретические» взгляды, и учёный был вынужден подчиниться.

Однако на этом Галилео Галилей, открытия которого на тот момент уже были оценены некоторыми представителями научного сообщества, не остановился. В 1632 году он делает хитрый ход - издаёт книгу под названием «Диалог о двух главнейших системах мира - птолемеевой и коперниковой». Написан сей труд был в необычной на то время форме диалога, участниками которого были два сторонника теории Коперника, а также один последователь учений Птолемея и Аристотеля. Папа Урбан VIII, хороший друг Галилея, даже дал разрешение на издание книги. Но длилось это недолго - всего через пару месяцев труд был признан противоречащим догматам церкви и запрещён. Автор же был вызван в Рим на суд.

Следствие продолжалось довольно долго: с 21 апреля по 21 июня 1633 года. 22 июня Галилей был вынужден произнести предложенный ему текст, согласно которому он отрекался от своих «ложных» убеждений.

Последние годы в жизни учёного

Работать приходилось в тяжелейших условиях. Галилей был отправлен к себе на виллу Арчертри, что во Флоренции. Здесь он пребывал под постоянным надзором инквизиции и не имел права выбираться в город (Рим). В 1634 года скончалась любимая дочь учёного, которая долгое время заботилась о нём.

Смерть пришла к Галилею 8 января 1642 года. Похоронен он был на территории своей виллы, без каких-либо почестей и даже без надгробия. Однако в 1737 году, спустя почти сто лет, была исполнена последняя воля учёного - прах его перенесли в монашеский придел флорентийского собора Санта Кроче. Семнадцатого марта он был, наконец, погребён там, неподалёку от могилы Микеланджело.

Посмертная реабилитация

Был ли прав в своих убеждениях Галилео Галилей? Краткая биография и его открытия долгое время являлись темой споров священнослужителей и светил научного мира, на этой почве развивалось множество конфликтов и споров. Однако лишь 31 декабря 1992 года (!) Иоанн-Павел II официально признал, что инквизиция в 33-м году XVII столетия допустила ошибку, заставив учёного отречься от гелиоцентрической теории мироздания, сформулированной Николаем Коперником.