В современной науке бесспорным представляется факт, что не только сама наша планета как космический объект, но и жизнь на ней являются следствием общего космического развития. «И наружный лик Земли, и жизнь, наполняющая его, - писал известный русский философ А.Л.Чижевский, - являются результатом творческого воздействия космических сил. А потому и строение земной оболочки, ее физико-химия и биосфера являются проявлением строения и механики Вселенной»…

Следовательно, и человек как наиболее высокоорганизованное проявление жизни есть продукт не только земной, но и космической эволюции. Он подчинен космическим ритмам, законам функционирования и развития космоcа. Человека не только нельзя исключать из общего потока космической эволюции, но наоборот, необходимо видеть зависимость от нее судеб людей. С этой точки зрения, изучение строения и эволюции Вселенной есть неотъемлемое условие глубокого познания самого человека, его связи с космическим целым. А это, в свою очередь, предполагает выявление места человека в системе мироздания.

Существует мнение, что жизнь на Земле – это лишь одна из форм существования космической жизни, и что человек как мыслящее существо неодинок во Вселенной. Такого мнения придерживался, например, выдающийся русский ученый и философ К.Э.Циолковский, развивавший астробиологическую и астросоциологическую концепции. Он полностью разделял идею множественности миров, существовавшую еще в далеком прошлом (вспомним в связи с этим хотя бы Джордано Бруно). Циолковский выдвигал и разрабатывал идеи, касающиеся возможного многообразия внеземных видов жизни и иных, космических цивилизаций. Он отвергал взгляд на человека как самого совершенно разумного существа и считал, что во Вселенной есть мыслящие существа, стоящие по уровню своего развития выше человека. Человечество, считал Циолковский, еще очень молодо, оно незрело по сравнению с высокоразвитыми космическими цивилизациями. Но оно быстро развивается и в будущем, выйдя за пределы Земли, начнет обживать и преобразовывать другие планеты (и даже астероиды), создавать искусственные сооружения в комическом пространстве – сначала в окрестностях нашей планеты, затем – в Солнечной системе, а позднее и в других звездных системах. Циолковский был убежден, что рано или поздно человечество в ходе освоения космоса встретится и объединится с иными цивилизациями.



Позицию, близкую к Циолковскому, занимают и в наши дни многие ученые и философы, которые убеждены, что различные формы жизни существуют во многих местах необъятной Вселенной, в которых могут также существовать и какие-то цивилизации, отличные от земной. Отсюда – стремление найти внеземные формы жизни и вступить в контакт с космическими «братьями по разуму».

Заметим, что об этом размышляли даже некоторые авторитетные ученые XIX века. И не только размышляли, но и предлагали способы привлечь к землянам внимание представителей иных, внеземных цивилизаций. Например, известный немецкий ученый-математик Карл Гаусс предлагал вырубить в сибирской тайге гигантскую фигуру в форме треугольника, иллюстрирующую теорему Пифагора, и засеять ее пшеницей. Ярко-желтый треугольник на фоне темно-зеленой тайги должен был, по мнению Гаусса, привлечь внимание марсиан. Французский математик Э.Неовиус в своей книге «Величайшая задача нашего времени», опубликованной в 1876г., предложил технически реализуемый проект связи: с помощью световых сигналов передавать в мировое пространство информацию по типу азбуки Морзе. Он даже рассчитал стоимость этого проекта, предлагая объединить во имя этой цели усилия многих государств.

Современная постановка проблемы поиска внеземных цивилизаций относится к середине ХХ века, когда в английском научном журнале «Природа» появилась статья Д.Кокони и Ф.Моррисона, в которой утверждалось, что если во Вселенной имеются разумные существа, способные передавать радиосигналы, то мы при современном уровне нашей техники способны эти сигналы принимать. В 1960 году американским радиоастрономом Ф.Дрейком были проведены первые эксперименты такого рода. Начиная с 60-х годов ХХ века, поисками разумной жизни во Вселенной всерьез занялись ученые ряда наиболее развитых стран (США, СССР, Франции, Канады, Японии, Австралии). Радиотелескопы и оптические телескопы в течение многих лет во всех направлениях исследовали космос в надежде обнаружить сигналы искусственного происхождения. На ряде космических аппаратов(главным образом, американских серий «Пионер» и «Вояджер») отправлялись послания внеземным цивилизациям.

Но в 80-х годах ХХ века оптимизм в этом вопросе сменился пессимизмом, поскольку за два с лишним десятилетия не было получено никакой информации относительно существования внеземных форм разумной жизни. За это время, например, Национальное управление по аэронавтике и исследованию космического пространства США истратило миллионы долларов в рамках программы SETI (английская аббревиатура, означающая поиск внеземного разума). Поэтому в последние годы, преимущественно по экономическим соображениям, в США и других странах такого рода исследования были фактически приостановлены.

Было сформулировано несколько возможных объяснений неудачи указанных исследований. Эти объяснения сводились к следующему. Радиосигналы – не единственное средство связи. Более развитые цивилизации могут пользоваться другими средствами связи типа гравитационных волн, потоков нейтрино или вообще неизвестных нам. Возможно, эти цивилизации вообще не посылают сигналов ввиду нашей незрелости (ведь срок существования разумной жизни на Земле по космологическим и геологическим масштабам – ничтожный, ей, по выражению Циолковского, только «одна секунда» времени). Была высказана и гипотеза, что высокоразвитые космические сообщества специально не проявляют своего присутствия, так как «галактическая этика» требует предоставить развивающимся цивилизациям (типа земной) возможность самостоятельно решать свои проблемы. А по «зоогипотезе» Дж.Бола, Земля находится как бы в заповеднике, т.е. внеземные цивилизации решили сохранить «первозданную природу» в лице землян. Как видно, все эти гипотезы исходят из идеи существования внеземных вариантов разумной жизни.

Но существует и совершенно иная точка зрения, которая исходит из уникальности разумной жизни на планете Земля, проповедуя «космическое одиночество» человечества. Такую позицию занимает, в частности, современный французский ученый, профессор физики парижского университета Марсо Фельден. В своей книге «А если мы одни во Вселенной?», опубликованной в 1994 году, он высказывает убеждение, что во Вселенной, кроме человека, других форм разумной жизни нет (при этом он допускает возможность существования примитивных форм жизни, типа бактерий, грибков, растений на других планетах). М.Фельден объясняет уникальность высокоразвитой жизни на Земле тем, что волею случая Солнечная система находится на периферии нашей Галактики и, следовательно, вне досягаемости смертоносных космических лучей. Когда Солнечная система попадет в зону повышенной радиации или будут исчерпаны ресурсы функционирования Солнца, т.е. оно «погаснет», жизнь на Земле прекратит свое существование. Но это может произойти через несколько миллиардов лет. Основной вывод, к которому, приходит французский физик, сводится к следующему: в масштабах Вселенной есть место только для одного мыслящего существа – человека, который в состоянии охватить ее своим разумом.

С таким категорическим выводом вряд ли согласятся многие ученые и философы. Еще в XIX веке Ф.Энгельс писал: «…Материя приходит к развитию мыслящих существ в силу самой своей природы, а потому это с необходимостью и происходит во всех тех случаях, когда имеются налицо соответствующие условия (не обязательно везде и всегда одни и те же)». Возражая М.Фельдену, российский ученый, член-корреспондент Академии космонавтики Л.М.Гиндилис высказал следующую мысль: «Было бы очень странно, если бы в огромной Вселенной мы оказались одни. В Галактике – 400 миллиардов звезд, подобных Солнцу, во Вселенной же таких галактик – около сотни миллиардов. Это все равно, как если бы на засеянном поле, по выражению греческого философа Метрадора, вырос бы всего один колос. Но дело не только в этом… Как это может быть, что самые глубокие фундаментальные свойства Вселенной в целом делают ее пригодной для существования жизни и человека, а реализуется жизнь только в некоторой ничтожной части Вселенной на единственной планете?».

Последняя мысль касается так называемого антропного космологического принципа, идею которого сформулировали в начале 60-х годов советские ученые Г.М.Идлис и А.Л.Зельманов и американский физик и космолог Р.Дикке. Позднее эта идея была развита Б.Картером, которому и принадлежит сам термин «антропный принцип».

Дело в том, что развитие современной естественнонаучной картины мира во многом связано с включением в нее «человеческого фактора». «Можно сказать, что наука со времен Коперника развивалась таким образом, что наблюдателю-человеку в ней отводилась весьма скромная роль. Человек не занимал какого-либо привилегированного, центрального положения в науке о Вселенной. Как бы без внимания оставался и тот факт, что необходимой предпосылкой нашего существования являются благоприятные условия (температура, химический состав окружающей среды и т.д.), возникновение которых оказалось возможным благодаря именно тонкой подстройке значений физических величин во Вселенной. Некоторые ученые обратили внимание на ограниченность такого подхода, считая, что строение физического мира неотделимо от обитателей, наблюдающих его в самом фундаментальном смысле. Наше положение в мире, если и не является центральным, то неизбежно – привилегированным. И можно заранее, до наблюдений предсказать ряд астрофизических и других факторов по той причине, что то, что мы ожидаем наблюдать, должно быть ограничено условиями, необходимыми для нашего существования как наблюдателей. Основанием для таких предсказаний и служит антропный принцип – как принцип, отражающий невероятно тонкую подстройку Вселенной».

Согласно этому принципу, Вселенная обладает определенными свойствами, благоприятными для существования в ней жизни вообще и человека как ее высшей формы. Мы знаем пока только те формы жизни, которые существуют на планете Земля. Но сама эта планета является составной частью не только Солнечной системы, но и гигантской системы нашей Вселенной, включающей множество галактик и звезд. И вряд ли в нынешнее время можно соглашаться с точкой зрения Гегеля, согласно которой «то обстоятельство, что звезды во множестве рассеяны по безмерным пространствам, ничего не говорит разуму». Данное обстоятельство «говорит» кое-что разуму и, думается, в будущем еще много скажет. Сейчас уже ясно, что жизнь могла зародится только на определенном этапе расширения Вселенной, когда образовались и прошли достаточно длительный эволюционный путь галактики и звезды и сформировались сложные сочетания разнообразных космологических, физических и химических факторов, благоприятных для перехода от неживого вещества к живому.

Свойства окружающего нас мира являются результатом удивительной согласованности фундаментальных физических констант. Причем интервал возможных значений этих констант, обеспечивающий мир, пригодный для жизни, очень мал. Наукой установлено, что определенное ослабление, например, константы сильных взаимодействий привело бы к образованию на ранних стадиях расширения Вселенной, в основном, только тяжелых элементов, что означало бы отсутствие в мире источников энергии. А при уменьшении гравитационного взаимодействия не возникло бы условий для протекания ядерных реакций в звездах. Наоборот, усиление слабых взаимодействий превратило бы на ранних этапах эволюции Вселенной все вещество в гелий, а значит, отсутствовали бы реакции термоядерного синтеза в звездах. Некоторое усиление электромагнитного взаимодействия привело бы к заключению электронов внутри атомных ядер и невозможности вследствие этого химических превращений и реакций. Существующая структура Вселенной жестко обусловлена также величиной, выражающей разницу в массах нейтрона и протона. Разность эта очень мала и составляет всего одну тысячную от массы протона. Но если бы указанная разность была в три раза больше, то во Вселенной не мог бы проходить нуклонный синтез и в ней не было бы сложных элементов, что, в свою очередь, делало бы невозможным возникновение жизни. И таких «если бы» существует еще целый ряд.

Таким образом, именно благоприятствующая возникновению жизни «тонкая подстройка» значений фундаментальных констант нашей Вселенной «приводит к появлению в физической картине мира человека как уникального и одновременно естественного результата глобально-космической эволюции».

Теория эволюции Вселенной дает ответы далеко не на все вопросы, например неясен пока характер дальнейшей эволюции Вселенной. Теория допускает два сценария: бесконечное расширение (модель открытой Вселенной) и смена расширения сжатием, возвращение в сверхплотное и сверхгорячее состояние, после чего следует цикл нового расширения (модель пульсирующей Вселенной) . Реализация того или иного варианта зависит от средней плотности вещества во Вселенной. Если плотность не превышает некоторого критического значения, то реализуется модель открытой Вселенной, в противном случае Вселенная пульсирует. Современные данные свидетельствуют в пользу модели открытой Вселенной, однако возможно, что открытие новых космических объектов изменит ситуацию.

Легче всего оценить плотность светящегося вещества, которая составляет 0.5% критической. Однако во Вселенной есть и несветящееся, невидимое вещество, называемое темной энергией или темной массой. Самый первый довод в пользу существования темной материи, основанный на изучении движения галактик, привел швейцарский астроном Фриц Цвикки (30-е годы ХХ века) – массы галактик недостаточно, чтобы удержать их от разлета. Если бы не было скрытого вещества, составляющего более 90% галактик, то они распались бы за несколько миллиардов лет, в то время их возраст составляет около 13 млрд лет.

В настоящее время считается, что большая часть невидимой материи существует в виде принципиально несветящегося вещества, состоящего из частиц, крайне слабо взаимодействующих с обычным веществом, светом и друг с другом (нейтрино). Наилучшее совпадение с данными наблюдений имеет космологическая модель, в которой плотность примерно равна критической, при этом на вакуум приходится 65%, на холодную темную материю – 30%, на барионную скрытую массу – 5%, на нейтрино и видимое вещество – по 0.5%.

Фундаментальные константы и антропный принцип.

Во всех разделах физики приходится иметь дело с постоянными величинами, т.н. константами. Существует ограниченный набор физических постоянных, связанных с важнейшими физическими теориями, которые называются фундаментальными константами.

Среди фундаментальных констант можно условно выделить мировые,

электромагнитные, атомные и физико-химические. Фундаментальные константы не выводятся из физических теорий, а определяются экспериментально. В современном естествознании считается, что мировые константы стабильны, начиная со времени 10 -35 начиная с рождения Вселенной.

М. Планк предлагал добавить к первым трем фундаментальным константам постоянную Больцмана (к=1.38 10 23 Дж/(К моль), т.к. она устанавливает связь между микроскопическими характеристиками частицы и макроскопическим состоянием системы.

Установлено, что существование основных структурных элементов материи (атомных ядер, звезд, галактик) во Вселенной связано возможно лишь в очень узком диапазоне численных значений фундаментальных констант. Расчеты показали, что их малые изменения на ранней стадии формирования Вселенной могли бы привести к формированию качественно иного мира, в частности стало бы невозможно образование макроскопических структур, а следовательно и образование высокоорганизованной живой матери. Вопрос о причинах попадания численных значений мировых констант в узкий диапазон, обеспечивающий возникновение разумной жизни, нашел отражение в антропном принципе, предложенном Г. Идлисом в 1958 г. И Б. Картером с 1974 г. Антропный принцип сформулирован в слабом и сильном вариантах:

Слабый антропный принцип – на свойства Вселенной накладывает ограничение наличие разумной жизни;

Сильный антропный принцип – свойства Вселенной должны быть такими, чтобы в ней обязательно существовала жизнь.

Антропный принцип – пример взаимозависимости фундаментальных вопросы естествознания и мировоззренческих вопросов. В тех областях, где недостаточность знания существует принципиально, большую роль играют вненаучные факторы, эстетические предпочтения или религиозное мировоззрение. Антропный принцип признает некий высший порядок, выбравший реализованный вариант эволюции Вселенной.

Антропный принцип не отвергает также возможность существования других Вселенных. Предполагая, что Вселенная однородна и изотропна в больших масштабах и применяя антропный принцип, можно прийти к выводу о закономерности возникновения и широком распространении жизни и Разума во Вселенной. Антропный принцип с точки зрения физики и философии отвергает возможность уникальности земной жизни.

Мы привыкли, что сумма углов в любом треугольнике равна 180 °; что через точку, лежащую вне прямой, можно провести только одну прямую, параллельную данной. Это - постулаты евклидовой геометрии, присущие двумерном пространства, то есть плоскости. По аналогии мы считаем, что и наш трехмерное пространство - евклидово пространство, и все аксиомы плоскостной геометрии сбываются и для пространства трех измерений. Но в XIX веке независимо друг от друга русский математик Николай Лобачевский и немецкий ученый ГеоргРиман доказали, что могут существовать и другие геометрии, отличные от евклидовой, и столь же внутренне непротиворечивые.

Так, пятый постулат Евклида утверждает, что через точку вне прямой можно провести только одну прямую, параллельную данной. Однако, оказалось, что возможны и другие варианты:

через точку вне прямой нельзя провести ни одной прямой, которая была бы параллельна данной (постулат Римана)

через точку вне прямой можно провести бесчисленное количество прямых, параллельных данной (постулат Лобачевского).

Эти постулаты вызывают некоторое недоумение. На плоскости они действительно неправильные. Но, кроме плоскости, в природе есть и другие поверхности, а для них исполняются уже постулаты Лобачевского и Римана, а евклидова геометрия неприменима.

Представим себе, например, поверхность сферы. На ней кратчайшее расстояние между двумя точками отсчитывается не по прямой (их нет на сфере), а по дуге большого круга (так называют окружности, радиусы которых равны радиусу сферы). На сфере выполняется своя, сферическая геометрия, для которой исполняется такое утверждение: сумма углов треугольника всегда больше 180 °. Представим себе треугольник на сфере, образованный двумя меридианами и дугой экватора. Углы между меридианами и экватором равны 90 °, а к их сумме прибавляется угол между меридианами с вершиной в полюсе (геометрия Римана).

Существуют и такие поверхности, для которых справедливым оказывается постулат Лобачевского. Такой поверхностью оказалась седловидная поверхность (поверхность, похожая на седло лошади). Такая поверхность называется псевдосфере. На ней сумма углов треугольника меньше 180 °.

Есть наше пространство евклидовым, римановым или пространством Лобачевского - однозначного ответа на этот вопрос нет. ,

Космологический принцип

Итак, современная космология берет начало с открытия, что Земля не является центром Вселенной. Развенчание особой роли нашей планеты породило космологический принцип, который утверждает, что в целом Вселенная выглядит одинаково, в каком бы месте мы его не наблюдали.

Слова "в целом" означает, что мы должны исследовать область Вселенной диаметром порядка в несколько миллионов световых лет. Все имеющиеся данные наблюдений согласуются с такой рабочей гипотезой. Космологический принцип необходим также и менее благородных причин без него было бы невозможно решить сложные уравнения теории поля Эйнштейна, описывающие эволюцию Вселенной.

Вселенная Эйнштейна

Приступая к построению космологии, основанной на только что созданной им общей теории относительности, Эйнштейн придерживался определенных общих взглядов на Вселенную: он считал, что Вселенная в целом должен быть однородным. Однородность означает равноправие всех его "мест", или, как говорят математики, всех точек его пространства. Эйнштейн предполагал также изотропию Вселенной, то есть равноправие всех его направлений.

Эти заключения не следовали произвольно ни с одного принципа физики, ни в теории относительности. Не было тогда и никаких конкретных астрономических сведений о крупномасштабных свойства Вселенной. Это были традиционные интуитивные представления об общих свойствах Вселенной, достигали корнями идей Коперника и Бруно. Дальнейшее развитие наблюдательной астрономии вполне их подтвердил: Вселенная как целостность действительно оказался однородным и изотропным.

Однородность и изотропность - это пространственные свойства Вселенной, который мы наблюдаем. А какие его временные свойства?

Следует отметить, что в отношении временных свойств Вселенной тоже существовала традиция, которой придерживался Эйнштейн. Он считал, что Вселенной целом находится в неизменном состоянии и совершенно не зависит от течения времени. Конечно, тут и там в мирах могут рождаться и умирать звезды или даже галактики. Но, собственно, сама Вселенная как таковой не изменится. Если погасли какие звезды или даже галактики, то вместо них возникают другие, но картина мира в общем масштабе остается одинаковой Так не меняется и остается самим собой лес, хоть поколения деревьев в нем меняются.

Эйнштейн представлял Вселенная статическим, то есть неподвижным, вечным и неизменным во времени. В любой момент Вселенная одинаков. Из таких одинаковых неразличимых мгновений состоит общее время Вселенной. В начале XX века такие представления о Вселенной и его время казались естественными и даже очевидными.

Доказательства существования Бога. Аргументы науки в пользу сотворения мира Фомин А В

АНТРОПНЫЙ КОСМОЛОГИЧЕСКИЙ ПРИНЦИП

АНТРОПНЫЙ КОСМОЛОГИЧЕСКИЙ ПРИНЦИП

Почему из бесконечной области всевозможных значений фундаментальных физических постоянных, характеризующих физические взаимодействия, и бесконечного разнообразия начальных условий, которые могли существовать в очень ранней Вселенной, реализуются величины и условия, приводящие к вполне конкретному набору особенностей, наблюдаемых нами?

Можно показать, что устойчивые движения двух тел, отсутствуют при числе пространственных координат больше трех. Еще в 20-е годы XX столетия

П. Эренфест показал, что если, бы число пространственных координат (N) было равно четырем, то не существовало бы замкнутых орбит планет и, естественно, Солнечной системы и человека. При N = 4 была бы невозможна также атомная структура вещества. При N меньше двух движение происходит в ограниченной области. Только при N = 3 возможны как связанные, так и несвязанные движения, что как раз и реализуется в наблюдаемой Вселенной.

Исследования показывают, что Вселенная, в которой мы живем, удачно приспособлена для нашего существования. Основные свойства Вселенной объясняются значениями нескольких фундаментальных постоянных (гравитационная постоянная, масса протона и электрона, заряд электрона, скорость света и другие).

В наблюдаемой Вселенной существует удивительное совпадение, вернее, согласование энергии расширения Вселенной и гравитационной энергии. Значения фундаментальных констант гравитационного, сильного, электромагнитного взаимодействий имеют такие значения, что обеспечивают возможность возникновения галактик и звезд, в том числе стабильных, в которых термоядерные реакции протекают в течение многих миллиардов лет

Для иллюстрации связи характеристик Вселенной с физическими константами представьте себе, что произошло бы при изменении значений фундаментальных мировых постоянных. Например, если бы масса электрона была в три-четыре раза выше ее нынешнего значения, то время существования нейтрального атома водорода исчислялось бы несколькими днями. А это привело бы к тому, что галактики и звезды состояли бы преимущественно из нейтронов и многообразия атомов и молекул, их в современном виде просто не существовало бы.

Современная структура Вселенной очень жестко обусловлена разницей в массах нейтрона и протона. Разность очень мала и составляет всего около 10-3 от массы протона. Однако если бы она была в три раза больше, то во Вселенной не мог бы происходить нуклеосинтез и в ней не было бы сложных элементов. Увеличение константы сильного взаимодействия всего на несколько процентов привело бы к тому, что уже в первые минуты расширения Вселенной водород полностью выгорел бы и основным элементом в ней стал бы гелий.

Константа электромагнитного взаимодействия тоже не может существенно отклоняться от своего значения 1/137. Если бы, например, она была 1/80, то все частицы, обладающие массой покоя, аннигилировали бы и Вселенная состояла бы только из безмассовых частиц.

Достаточно было бы сравнительно небольшого отличия констант от существующих в действительности, чтобы либо галактики и звезды вообще не успели возникнуть к нашему времени (если бы константа гравитационного взаимодействия была на 8-10% меньше), либо звезды эволюционировали слишком быстро (если бы она была больше на 8-10%). В соотношении констант обнаружены такие тонкости, что, например, константа сильного взаимодействия обеспечивает протекание ядерного синтеза в недрах звезд с образованием углерода и кислорода, которые поставляются в космос при взрыве сверхновых звезд и служат в дальнейшем материалом для формирования звезд второго поколения типа Солнца и планетных систем. Ясно, что даже небольшого отклонения от константы сильного взаимодействия было бы достаточно, чтобы жизнь на Земле оказалась невозможной. Если бы величины этих констант несколько отличались от их значений, то свойства Вселенной были бы совсем другими. Эти самые свойства являются условиями возникновения той формы жизни, которая существует на Земле. Сущность антропного принципа в том, что жизнь является неотъемлемой частью Вселенной, естественным следствием ее эволюции. Мы видим, таким образом, что наша реальная Вселенная поразительно приспособлена для возникновения и развития в ней существующей формы жизни. Можно сказать, что нам просто повезло - константы в Метагалактике оказались благоприятными для возникновения жизни, поэтому мы существуем и познаем Вселенную. Но наряду с такой Метагалактикой имеются многие другие с иными константами, с другим распределением материи, геометрией и даже, возможно, с другими размерностями пространства, совершенно неподходящими для жизни, с условиями, которые трудно вообразить.

Суть антропного принципа, сформулированного Г. М. Идлисом из Института истории естествознания РАН в 1958 году, в следующем: Вселенная такова, какой мы ее видим, поскольку в ней существуем мы, то есть наблюдатели, способные задаться вопросом о свойствах Вселенной. При других параметрах во Вселенной невозможны сложные структуры и жизнь в известных нам формах2.

Выше было отмечено, что даже небольшие изменения фундаментальных постоянных приводят к качественным изменениям свойств Вселенной, в частности к невозможности существования сложных структур, а значит, и жизни3.

В нашей Вселенной произошла довольно-таки точная подгонка числовых значений фундаментальных констант, необходимых для существования ее основных структурных элементов: ядер, атомов, звезд и галактик. Их устойчивость создает условия для формирования более сложных неорганических и органических структур, а в конечном счете и жизни.

Из-за того, что в очень ранней Вселенной реализовались величины и условия, приведшие к вполне конкретным значениям современных фундаментальных физических постоянных, характеризующих физические взаимодействия, стало возможно наличие известной нам Вселенной, и мы имеем возможность познавать именно ее4. При этом возникает довольно интересный и сложный со всех точек зрения вопрос о причинах существования такой начальной подгонки значений фундаментальных постоянных.

доктор физико-математических наук, профессор Дагестанского государственного университета. М. К. Гусейханов

Из книги Путь разума в поисках истины. Основное богословие автора Осипов Алексей Ильич

1. Космологический аргумент Космологический аргумент (греч. ? ?????? - порядок, мироздание, мир) был высказан уже древнегреческими философами Платоном († 347 до н. э.), Аристотелем († 322 до н. э.) и другими древними мыслителями. Впоследствии его развивали многие. Он основан на

Из книги Книга еврейских афоризмов автора Джин Нодар

Из книги Летопись начала автора Сысоев Даниил

Глава 2. Антропный принцип "Ты все расположил мерою числом и весом" (Прем.11, 21) - Так всегда учила ведомая Духом Святым Кафолическая Церковь. Она всегда знала, что мир этот устроен премудро и сотворен он "как шатер для жилья" (Ис.40, 22). Ведала Она, что Бог поставил человека царем

Из книги Пути философии Востока и Запада автора Торчинов Евгений Алексеевич

Представления о времени. Космологический контекст Как показал известный историк традиционной китайской науки Н. Сивин, китайский календарь, основы которого сформировались в ханьскую эпоху – во II–I вв. до н. э., представлял собой систему сплетенных между собой

Из книги Исламоведение автора Кулиев Эльмир Р

§ 2. Принцип равенства Равенство людей перед Аллахом. В Коране и Сунне неоднократно подчёркивается, что все люди были созданы Единым Богом и произошли от общего предка. Эти два постулата легли в основу исламского принципа равенства - равенства перед Аллахом и перед

Из книги Настольная книга по теологии. Библейский комментарий АСД Том 12 автора Церковь христиан адвентистов седьмого дня

1. Принцип единства Адам осознавал свое одиночество, глядя на животных, ходивших парами. Но затем, увидев Еву, он воскликнул: «Вот, это кость от костей моих и плоть от плоти моей» (Быт. 2:23). Такое единство включает в себя не только физическое, но также психологическое и

Из книги Деяния святых Апостолов автора Стотт Джон

2. Принцип взаимозависимости И снова Писание решительно заявляет: «Потому оставит человек отца своего и мать свою и прилепится к жене своей; и будут двое одна плоть» (Быт. 2:24). Этот принцип, повторенный Христом во время земного служения (Мф. 19:5), утверждает, что

Из книги Христианство и китайская культура автора

3. Принцип эндогамии Павел настаивает на эндогамии в 2 Кор. 6:14: «Не преклоняйтесь под чужое ярмо с неверными, ибо какое общение праведности с беззаконием? Что общего у света с тьмою?» А в современном переводе Библии говорится так: «Не склоняйтесь под одно ярмо с неверующими;

Из книги История магии и оккультизма автора Зелигманн Курт

4. Принцип моногамии Библия представляет полигамию, начавшуюся с Ламеха (Быт. 4:19), как проявление своеволия Божьих творений. Бог терпел ее, но она не была выражением Его благой воли в отношении людей. Боль, которую пережил Авраам в связи с Агарью (16:1–6), духовные переживания,

Из книги автора

5. Принцип постоянства Брак должен быть союзом на всю жизнь - взаимоотношениями, которые оканчиваются только со смертью одного из партнеров. Склонность современного общества считать этот союз договорными отношениями, в которые можно легко вступать, а потом так же легко

Из книги автора

6. Принцип уединения «Оставление» и «привязанность», заповеданная Богом (Быт. 2:24), предполагает определенное уединение супругов, что немаловажно для счастливого брака. Намерение Бога состоит в том, чтобы супружеская чета была ограждена от вмешательства даже

Из книги автора

7. Принцип исключительности Еще один принцип, вытекающий из библейского повеления «оставить» и «прилепиться», содержится в определении Дж. Стотта:«Брак - это исключительный, гетеросексуальный завет между одним мужчиной и одной женщиной, освященный и запечатленный

Из книги автора

Г. Принцип «день за год» Символические видения включают элементы времени, которые также представлены иносказательно. Согласно Дан. 7:25, маленький рог будет угнетать святых Всевышнего в течение «времени и времен и полувремени». В следующей главе один ангел говорит

Из книги автора

в. Принцип В данном случае мы имеем подтверждение крайне важного принципа, имеющего большое значение и для современной церкви. Он заключается в том, что Бог призывает всех Своих людей на служение. Он призывает разных людей на разное служение, и те, кто призван «к молитве и

Из книги автора

Космологический спор с неоконфуцианством Наибольшей напряженности спор двух культурно–цивилизационных традиций достиг во второй главе Тяньчжу шии?посвященной «разъяснению ошибочных представлений людей о Небесном Господе». Ее богатое содержание раскрывает многие

Из книги автора

1. Принцип зла Как оценить добро, не зная зла? Как можно стремиться к свету, не испытав ужасов тьмы? Как бессмысленна и скучна была бы наша жизнь, когда б не зло! Зло причиняет страдания, а страдания пробуждают жажду лучшей жизни; недостатки заставляют нас

Краеугольный камень современной космологии составляет утверждение: место, которое мы занимаем во Вселенной, не является специальным. Это утверждение известно как космологический принцип . Интересно отметить, что большую часть истории цивилизации считалось, что мы занимаем особое место - в центре «мироздания» (не будем конкретизировать это понятие).

Краткая история космологических идей

В модели античных греков (Александр Птолемей) считалось, что Земля лежит в центре космоса… Коперник поместил в центр космоса Солнце. Ньютоновская теория поставила новую точку зрения на твердую основу. Ньютон предполагал, что звезды подобны нашему Солнцу. Они равномерно распределены в бесконечном пространстве в статических конфигурациях. Хотя Ньютон и знал, что такие статические конфигурации нестабильны.

В следующие 200 лет постепенно приходило понимание того, что ближайшие звезды распределены не равномерно, а образуют дископодобную структуру, которая теперь известна как галактика Млечный путь. Гершель был первым, кто идентифицировал дискообразную структуру еще в конце 1700-х, но эти наблюдения были несовершенны и привели к ошибочному выводу, что солнечная система лежит в центре диска. Только в начале 1900-х это утверждение было убедительно опровергнуто Шепли, который показал, что мы находимся на расстоянии две трети радиуса от центра галактики. Даже после этого, он, по-видимому, считал, что наша галактика находится в центре Вселенной. Только в 1952 году было окончательно продемонстрировано Baade, что Млечный путь абсолютно типичная галактика, приводящая к современной точке зрения, известной как космологический принцип : Вселенная выглядит одинаково, кто бы вы не были и где бы вы не были.

Важно подчеркнуть, что космологический принцип не точен (не следует понимать буквально): сидеть на лекции совсем не то, что сидеть в баре, внутренность Солнца существенно отличается от межзвездного пространства. Принцип является приближенным и выполняется тем лучше, чем с большими масштабами мы работаем. Даже на масштабах отдельной галактики он не очень хорош. Космологический принцип свойство глобальной Вселенной и нарушается, когда мы переходим к локальным явлениям.

Космологический принцип – основа космологии Большого взрыва. Большой взрыв –лучшее описание нашей Вселенной, которое мы имеем в настоящее время. Цель настоящей книги – пояснить это утверждение. Модель Большого взрыва – эволюционирующая сущность. В настоящем она очень отличается от той модели, которая имела место в прошлом. Вначале она была вынуждена соперничать с конкурирующей идеей стационарной Вселенной, которая утверждала, что Вселенная не эволюционирует, а всегда одинакова. Однако наблюдения поддерживают сценарий Большого взрыва, и конкурирующая теория почти никогда не рассматривается.

Обзор наблюдений

В истории астрономии ученые в основном полагались на видимый свет как источник наших знаний о Вселенной. Одно из основных достижений ХХ столетия использования всего спектра электромагнитного излучения для астрономических наблюдений. Имеющаяся аппаратура позволяет работать с радиоволнами, микроволновым и инфракрасным излучением, видимым светом, ультрафиолетом, рентгеном и гамма-излучением. Мы даже входим в эпоху, когда мы сможем даже выйти за пределы электромагнитного спектра и получать информацию другого типа. Замечательная особенность наблюдения близких сверхновых состоит в том, что мы можем видеть их с помощью детектирования нейтрино, слабовзаимодействующих частиц. Детектирование высокоэнергетических космических лучей теперь рутинная процедура, хотя происхождение лучей не совсем понятно. В настоящее время начинаются эксперименты по детектированию гравитационных волн, деформирующих пространство-время. Они помогут нам наблюдать такие события как столкновения звезд.

Наступление эпохи больших телескопов земного и спутникового базирования, работающих во всех участках электромагнитного спектра принесло революцию в наше восприятие Вселенной.

Текущие годы стали золотым веком наблюдательной космологии. Используя различные наблюдательные методы, физики и космологи объяснили космический микроволновой фон. Он явился наблюдательным окном, который обеспечил большую часть получаемой информации. Анизотропия космического микроволнового излучения, детектированная к настоящему времени в широкой области угловых масштабов, представила нам картину Вселенной во время рекомбинации, эпоху, когда космические фотоны испытали последнее рассеяние. Исследования крупномасштабных галактических скоплений обеспечило нас спектрами (получаемыми с все возрастающей точностью) распределения объектов во Вселенной, которые испускают свет. Это дает нам возможность получить распределение масс во Вселенной в настоящее время.

Что убывание яркости происходит заметно быстрее, чем этого следовало бы ожидать, по принятым в то время космологическим моделям. Такое дополнительное потускнение означает, что данному красному смещению соответствует некоторая эффективная добавка расстояния. Но это, в свою очередь, возможно только тогда, когда космологическое расширение происходит с ускорением, т.е скорость удаления от нас источника света не убывает, а возрастает со временем. Важнейшая особенность новых экспериментов состояла и в том, что они позволили не только определить сам факт ускоренного расширения, но и сделать важное заключение о вкладе в ${{\Omega }_{tot}}$ различных составляющих.

Космология, обязанная «Планку»

В частности, анализ приведенной на рисунке карты всего неба, построенной по результатам WMAP, дает следующие результаты: возраст Вселенной составляет 13,7 миллиарда лет (с точностью до 1%); она состоит на 73% из темной энергии, на 23% из холодной и темной материи и только на 4% из атомов. В настоящее время Вселенная расширяется со скоростью 71 км/с/Мпс (с точностью до 5%), хотя в прошлом испытала ряд эпизодов быстрого расширения (инфляции). Параметры Вселенной таковы, что она будет неограниченно расширяться и в дальнейшем. Полученные результаты настолько интересны, что астрономы, по-видимому, еще долго будут заниматься их исследованием и интерпретацией.

Это говорит нам, что акустические колебания действительно имели место в первозданной плазме и что инфляционные адиабатические возмущения являются лучшими кандидатами для объяснения образования структур во Вселенной за счет гравитационной нестабильности. Мы также имеем очень точно измеренное содержание барионной компоненты \[{{\Omega }_{b}}{{h}^{2}}=0.0223_{-0.0009}^{+0.0007}\] Эта величина получается из отношения высот первых двух пиков и находится в согласии с предсказаниями по ядерному синтезу и относительному содержанию легких ядер. Акустический угловой масштаб в момент рекомбинации определяется с высокой точностью \[{{\theta }_{A}}=0.595\pm 0.002^0\](градусов). Таким образом, плоская модель всего лишь с шестью параметрами:

  1. плотность барионов
  2. плотность холодной темной материи
  3. амплитуда скалярных возмущений
  4. спектральный индекс скалярных возмущений
  5. текущее значение константы Хаббла
  6. Оптическая глубина в момент реионизации очень хорошо согласуется с текущими МКФ данными.
Поляризационная информация также начала накапливаться, хотя по точности она значительно уступает температурным данным. Эти первые результаты говорят о согласии между предсказанным стандартной космологической моделью уровнем поляризации и тем, что мы наблюдаем. Все это усиливает доверие к адиабатическим возмущениям и инфляции. После такой откровенной эйфории возникает естественный вопрос: что же остается сделать после WMAP? Ответ очень прост: очень много.

Что нужно делать после WMAP?

Для того, что бы ответить на этот вопрос, надо просто перечислить, что не сделано WMAP.
  1. Необходимо улучшить инфляционные тесты, и, в частности, измерение бегущего спектрального индекса. WMAP намекает на отклонения от спектра Харрисона-Зельдовича $\left({{n}_{s}}=1 \right)$. Существенное отклонение от простой масштабной инвариантности стимулирует реалистические инфляционные модели.
  2. Точное измерение плотности материи по данным МКФ все еще отсутствует. Это связано с тем, что для получения более надежной информации требуется реконструкция третьего акустического пика с точностью, сравнимой с определением первых двух пиков. Это невозможно сделать, используя текущие данные.

Однородность и изотропность

Доказательство того, что на больших масштабах Вселенная становится «гладкой» - основа космологического принципа. Считается, что на больших масштабах Вселенная обладает двумя важными свойствами: однородностью и изотропностью. Однородность эквивалентна утверждению, что Вселенная выглядит одинаковой в каждой точке, в то время как изотропность утверждает, что Вселенная одинакова во всех направлениях.

Эти два понятия автоматически не подразумевают друг друга. Например, Вселенная с постоянным магнитным полем однородна, так как одинакова в любой точке. Однако, она не изотропна, так как направления по полю и перпендикулярно к нему не эквивалентны. Альтернативно, сферически симметричное распределение зарядов, рассматриваемое из центральной точки изотропно, но не обязательно однородно. Если же мы потребуем, чтоб это распределение было изотропно в каждой точке, то тогда оно будет также и однородным.

Как уже упоминалось, космологический принцип не является точным, и поэтому наша Вселенная не является в точности однородной и изотропной. Более того, изучение отклонений от однородности наиболее наиболее перспективные исследования в космологии. В основном мы сконцентрируем внимание на поведении Вселенной в целом, и поэтому будем предполагать крупномасштабную однородность и изотропность.

Расширение Вселенной

Ключевой факт наблюдательной космологии: почти все во Вселенной выглядит удаляющимся от нас, причем, чем дальше от нас находятся объекты, тем быстрее они удаляются. Скорости удаления измеряются по красному смещению, которое связано с эффектом Доплера применительно к световым волнам…. Эта техника была впервые использована В. Слифером в 1912 году. В следующие десятилетия она систематически применялась одним из наиболее известным космологом Эдвином Хабблом.

Оказывается, что все галактики удаляются от нас. В стандартной терминологии это означает красное смещение. Величина красного смещения $z$ определяется как

\
Если близкая галактика удаляется со скоростью $v$, красное смещение есть

На рисунке представлена диаграмма Хаббла для 1355 галактик. Формула (2.2) не учитывает эффектов СТО и справедлива только для $v/c\ll 1$. Точное выражение ((2.2) есть его разложение по малому параметру $v/c$)

Однако для удаленных объектов в космологии необходимы другие рассмотрения, и поэтому этим выражением пользоваться нельзя!
Хаббл осознал, что его результаты показывают: скорость удаления объекта пропорциональна удалению объекта от нас

\[\vec{v}={{H}_{0}}\vec{r}~~~~~~~~~~(2.3)\]

Константа пропорциональности известна как константа Хаббла. Закон Хаббла не точен. Как и космологический принцип, закон Хаббла не выполняется точно для близких галактик, которые, вообще говоря, участвуют в некоторых случайных движениях, известных как peculiar velocities. Но он описывает среднее поведение галактик очень хорошо. Многочисленные попытки определить константу пропорциональности до настоящего времени не приводили к консенсусу. Сейчас мы приближаемся к нему. На первый взгляд, космологический принцип нарушается, если мы наблюдаем, что все удаляется от нас, т.е. мы находимся в центре Вселенной. Однако никакое утверждение не может быть более далеким от правды, чем это. В этом легко убедить себя, рассмотрев квадратную решетку, все узлы которой удаляются от некоторой «центральной» точки со скоростями, пропорциональными расстоянию до центральной точки.

Перейдя в новую систему отсчета, соседнюю точку решети, легко убедиться, что закон Хаббла будет выполняться для нового «центра». Так получается только в силу линейности соотношения между скоростью и расстоянием. Любой другой закон разрушает эту изящную картину. Таким образом, хотя Вселенная расширяется она выглядит одинаково для всех наблюдателей, размещенных в какой-либо галактике. Полезна аналогия с выпечкой кекса с изюмом или надуванием шара с точкой на поверхности. По мере того как пирог всходит или шар надувается, изюминки или точки удаляются друг от друга. Из каждой точки кажется, что все другие точки удаляются. И удаляются тем быстрее, чем дальше они друг от друга.

Понятие расстояния в расширяющейся Вселенной, описываемой метрикой Фридмана, Робертсона, Уокера, требует пояснения. Так, его можно определять по угловому размеру источника со стандартными размерами (угловое расстояние), или по принимаемому от стандартного источника потоку излучения (фотометрическое расстояние), или по собственному движению источника со стандартной скоростью (метрическое расстояние). Очевидно, в плоском пространстве-времени все три способа дадут один и тот же результат. Но Вселенная описывается искривленным пространством-временем (даже если трехмерное пространство евклидово!) с изменяющимся масштабным фактором, поэтому указанные способы дадут существенно различные значения уже при $z\sim 1.$

Как с помощью вспышек сверхновых определить плотностной состав вселенной

Различные зависимости от $z$ - ключ к разгадыванию всех возможных вкладов в ${{\Omega }_{tot}}$ с помощью наблюдения вспышек сверхновых при различных и предпочтительно больших красных смещениях.

Для измерения расстояний в астрономии используется метод фотометрического параллакса. Источник света излучает фотоны. Мощность источника называется светимостью и измеряется в ваттах. Фотометрический инструмент (например глаз) измеряет не мощность источника, а поток фотонов в данном месте. Поток обратно пропорционален квадрату расстояния от источника. Значит, если мы знаем светимость и можем измерить поток, то можем вычислить расстояние до источника. В этом и заключается метод фотометрического параллакса. Для измерения фотометрического параллакса требуется знать светимость астрономических источников.

Это сложная проблема. Более просто определить светимость одной популяции источников. В частности можно достаточно точно измерить среднюю светимость источников одной популяции. Если разброс отдельных источников относительно среднего (дисперсия) невелик, то эту популяцию можно использовать для определения расстояния до источника. Мечта астрономов – открытие популяции с маленькой дисперсией. Такую популяцию назвали стандартной свечей. Один из примеров такой популяции цефеиды – переменные звезды, период изменения блеска которых прямо пропорционален светимости звезды. (астрономические объекты, принадлежащие популяции с большой дисперсией принято называть индикаторами расстояний).

Буквально в последние годы был найден источник, который можно рассматривать как стандартную свечу. Это сверхновые (SN) типа Ia. Такие звезды имеют высокую светимость, сравнимую со светимостью всей галактики, в которой они вспыхивают. Поэтому они хорошо видны на межгалактических расстояниях.). Кроме того, они обладают очень хорошей однородностью светимости в максимуме блеска (блеск это, видимо, попадающий в прибор наблюдателя световой поток) Дисперсия светимости в максимуме блеска для этой популяции звезд $\delta m\approx 0.3-{{0.5}^{m}}$ звездной величины. Поток энергии для прежних индикаторов расстояния различался в десятки раз, что и вызывало большую неопределенность в определении расстояний. При учете тонких деталей спектра вспышки, а также при учете светимости не только в видимом, но и в ультрафиолетовом диапазоне дисперсия светимости в максимуме может быть уменьшена до $\delta m\approx {{0.15}^{m}}$.

Экспериментаторы (1998), работая с SN Ia обнаружили, что убывание яркости происходит заметно быстрее, чем этого следовало бы ожидать, по принятым в то время космологическим моделям. Такое дополнительное потускнение означает, что данному красному смещению соответствует некоторая эффективная добавка расстояния. Но это, в свою очередь, возможно только тогда, когда космологическое расширение происходит с ускорением, т.е скорость удаления от нас источника света не убывает, а возрастает со временем. Важнейшая особенность новых экспериментов состояла и в том, что они позволили не только определить сам факт ускоренного расширения, но и сделать важное заключение о вкладе в ${{\Omega }_{tot}}$различных составляющих.


Действительно, световой поток полученный от удаленной сверхновой связан с ее абсолютной светимостью $L$ и ее фотометрическим расстоянием (luminosity distance)$$${{d}_{L}}$ соотношением

Если геометрия пространства эвклидова, то ${{d}_{L}}=\sqrt{{{x}^{2}}+{{y}^{2}}+{{z}^{2}}}$. В ОТО, с другой стороны, геометрия пространства может быть неэвклидовой, и ${{d}_{L}}$ будет, вообще говоря, зависеть от геометрии пространства и от истории расширения Вселенной. Действительно, можно показать, что в пространственно плоской и расширяющейся FRW Вселенной ${{d}_{L}}$ имеет форму

\[{{d}_{L}}(z)=(1+z)\int\limits_{0}^{z}{\frac{d{z}"}{H({z}")}}\]

Предельный случай ${{\Omega }_{m}}=1,\ {{\Omega }_{\Lambda }}=0$ соответствует стандартной модели холодной темной материи (SCDM), в которой Вселенная замедляется по слабому степенному закону $a(t)\propto {{t}^{2/3}}$. Другой экстремальный пример ${{\Omega }_{\Lambda }}=1,\,{{\Omega }_{m}}=0$ описывает Вселенную де Ситтера (известную как устойчивое космологическое состояние), для которой $a(t)\propto \exp \left(\sqrt{\frac{\Lambda }{3}}ct \right)$. Таким образом сверхновая при красном смещении $z=3$ будет казаться в 9 раз ярче в $SCDM$ модели, чем в пространстве де Ситтера.

Уравнение Фридмана: классический намек

Уравнение Фридмана описывает расширение Вселенной и, следовательно, является наиболее важным уравнением в космологии. Одна из рутинных задач космолога – решение этого уравнения при различных предположениях относительно материального содержания Вселенной. Для того, чтобы вывести уравнение Фридмана, необходимо вычислить гравитационную потенциальную энергию и кинетическую энергию пробной частицы и затем воспользоваться законом сохранения энергии.
Рассмотрим наблюдателя в однородной расширяющейся Вселенной с массовой плотностью $\rho $. В силу однородности Вселенной любая точка может быть выбрана в качестве ее «центра». Рассмотрим пробную частицу массы $m$на расстоянии $r$, тогда (с учетом теоремы Гаусса)
\

и
\

Кинетическая энергия

и полная энергия
\

Заметим, что $U$ различно для частиц, разделенных различными расстояниями. Полная энергия
\

Это уравнение определяет эволюцию расстояния $r$ между двумя частицами.
Сделаем теперь важный шаг, который связан с тем, что эти аргументы применимы к любым двум частицам во Вселенной. Это позволяет нам перейти к новым координатам, которые известны как сопутствующие координаты. Эти координаты «переносятся» расширением. В силу того, что расширение однородно, связь между реальным расстоянием $\vec{r}$ и сопутствующим расстоянием может быть записана

\[\vec{r}=a(t)\vec{x}~~~~~~~~~~(**)\]

Где в силу однородности $a$зависит только от времени. Для понимания уравнения Фридмана, удобно представлять себе координатную решетку, расширяющуюся со временем. Галактики остаются в фиксированных точках решетки (в $\vec{x}$ координатной системе). Исходные $\vec{r}$ координаты, которые не подвергаются расширению, называются физическими координатами.
Величина $a(t)$ является ключевой и известна как масштабный фактор Вселенной. Она определяет универсальную скорость расширения. Являясь функцией только времени, она показывает как физические расстояния растут со временем, в то время как координатное расстояние $\left| {\vec{x}} \right|$ по определению фиксировано. Мы можем использовать масштабный фактор, чтобы переписать уравнение (*). Подставляя (**) в (*) и учитывая, что $\dot{x}=0$ (сопутствующие координаты при расширении фиксированы), получим

Полагая $k{{c}^{2}}=-2U/m{{x}^{2}}$, это уравнение можно представить в виде

\[{{\left(\frac{{\dot{a}}}{a} \right)}^{2}}=\frac{8\pi G}{3}\rho -\frac{k{{c}^{2}}}{{{a}^{2}}}\]

Это уравнение Фридмана –важнейшее уравнение космологии. В этом выражении $k$ должно не зависеть ни от координат, ни от времени. Эта величина имеет размерность ${{\left[ L \right]}^{-2}}.$ Расширяющаяся Вселенная имеет единственное значение $k$, которое сохраняется в процессе расширения.

Cмысл расширения

Каков смысл расширения Вселенной? Давайте начнем с того, какой смысл не вкладывается в это понятие. Это не означает, что ваше тело постоянно увеличивается со временем (и, конечно, не является оправданием, если это все-таки происходит). Это не означает, что земная орбита со временем удаляется от Солнца. Это не означает, что звезды в нашей галактике удаляются друг от друга со временем. Но это означает, удаленные галактики разбегаются со временем. Ответ на вопрос зависит от того, управляется ли движение объекта кумулятивным гравитационным эффектом однородного распределения материи. Атомы в нашем теле нет.

Расстояния между ними диктуются силами химической связи, в которых гравитация несущественна. Поэтому молекулярные структуры не будут подвержены расширению. Аналогично, движение Земли по орбите (почти) полностью определяется притяжением Солнца (с небольшим влиянием других планет). И даже звезды в нашей галактике двигаются в потенциальной яме, которую они сами и создают. И не удаляются друг от друга. Общая особенность как солнечной системы так и галактик – их плотность существенно превосходит плотность гладко распределенной материи, которую мы использовали при выводе уравнений Фридмана. Но если мы перейдем к большим масштабам, десятки мегапарсек, Вселенная будет эффективно изотропной и однородной с галактиками, уплывающими друг от друга, как это предсказывают уравнения Фридмана. На этих больших масштабах работает космологический принцип и ощущается расширение Вселенной.

Объекты, которые двигаются быстрее света

Общий вопрос, который волнует людей: могут ли удаленные галактики разбегаться со скоростью больше скорости света? Так как скорость разбегания пропорциональна расстоянию между галактиками, то если мы рассмотрим достаточно удаленные галактики, то мы можем сделать скорости сколь угодно большими в нарушение специальной относительности. Ответ на этот вопрос таков. В наших теоретических предсказаниях могут появиться объекты, удаляющиеся со скоростями больше скорости света. Однако это происходит в пространстве, которое само по себе расширяется. Это не нарушает причинность, потому что никакой сигнал не может быть послан между такими галактиками.

Кроме того, специальная теория относительности не нарушается, потому что она относится к относительным скоростям объектов, проходящих вблизи друг друга, и не может быть использована для сравнения относительных скоростей удаленных объектов. Чтобы понять это, вообразим группу муравьев на воздушном шаре. Представим, что быстрейшие муравьи могут двигаться со скоростью 1см/сек. Если два муравья проходят друг мимо друга, то наибольшая относительная скорость 2см/сек, если они двигаются в противоположном направлении. Начнем надувать шар. Хотя муравьи, блуждающие по поверхности, все еще имеют скорость, не превосходящую 1см/сек, но шар расширяется под ними. Следовательно, их относительная скорость легко превзойдет 2см/сек, если шар надувать достаточно быстро (а если медленно?). Но они никогда не могут рассказать друг другу об этом, потому что шар растаскивает их быстрее, чем они могут двигаться вместе, даже при полной скорости. Любые два муравья, которые стартуют достаточно близко друг к другу и могут проходить мимо обладают относительной скоростью, не превосходящей 2 см/сек, даже если Вселенная расширяется. Расширяющееся пространство подобно надуваемому шару и тащит галактики за собой.

Уравнение сохранения: термодинамический взгляд

Будучи фундаментальным, уравнение Фридмана тем не менее не может использоваться без уравнения, описывающего как плотность $\rho $ компонент Вселенной зависит от времени. Это уравнение включает давление материала и называется уравнением жидкости. Как мы вскоре увидим, различные материалы имеют разное давление, а это приводит к различным эволюциям. Мы можем получить необходимое уравнение, написав первый закон термодинамики \ И применив его к расширяющемуся объему единичного сопутствующего радиуса (размера), получим $(dS=0)$ \[\dot{\rho }+3\frac{{\dot{a}}}{a}(\rho +\frac{p}{{{c}^{2}}})=0\]

Как мы видим два члена дают вклад в изменение плотности. Первый член описывает уменьшение плотности за счет увеличения объема. Второй член описывает уменьшение энергии за счет того, что давление совершает работу при увеличении объема Вселенной. Эта энергия не исчезает (энергия, конечно, сохраняется). Она переходит в потенциальную гравитационную энергию.

Подчеркнем, что в однородной Вселенной отсутствуют силы, связанные с давлением, потому что плотность и давление всюду одинаковы. Требуется градиент давления, чтобы возникла сила. Поэтому давление не дает вклад в силу, способствующую расширению. Его эффект проявляется только в работе, выполненной при расширении Вселенной.

Мы еще не готовы решить уравнение Фридмана, так как не конкретизировали зависимость давления для конкретного материала, заполняющего Вселенную. Обычное предположение, известное как уравнение состояния, $p=p(\rho)$. Простейшее предположение – отсутствие давления, как это имеет место для нерелятивистской материи.

Уравнение для ускорения

Уравнение Фридмана и жидкостное уравнение можно использовать для получения третьего уравнения (конечно, не независимого), описывающего ускорение масштабного фактора \[\frac{{\ddot{a}}}{a}=-\frac{4\pi G}{3}(\rho +\frac{3p}{{{c}^{2}}})\] (3.18) Заметим, что какое бы давление (положительное) не имел материал, оно увеличивает гравитационные силы и приводит к дополнительному замедлению ускорения. Напомню, что нет сил, связанных с давлением в изотропной Вселенной, так как отсутствуют градиенты давления.

Открытие темной энергии одно из наиболее удивительных и глубоких открытий в истории науки.

Рассмотрим некоторые следствия этого открытия.
  1. Основная часть энергии во Вселенной не является (обычной) материей. В свои первые 300 лет (от Начал Ньютона) физика сосредоточила внимание на свойствах материи и излучения (включая темную материю).
  2. Основная часть энергии во Вселенной не является гравитационно притягивающей. Мы, видимо, последнее поколение, которое думает, что гравитация всегда притягивает. Это понятие доминировало как основное свойство природы в течение многих сотен лет. Теперь мы знаем, что гравитация может также и отталкивать. Конечно, возможность существования самоотталкивательных форм энергии существует в ОТО в качестве исходного положения. Но до настоящего времени это положение не пользовалось успехом. Мы должны переписать учебники, чтобы объяснить, что гравитационно притягивающая материя, которая нам известна, есть лишь малая часть Вселенной сегодня и в неограниченном будущем.
  3. Мы живем в особое время развития Вселенной. Коперниковская революция научила нас, что нет ничего особого в нашем положении во Вселенной. Если пространство однородно, то правильно ли то же самое для времени? Открытие Хаббла научила нас тому, что Вселенная эволюционирует, но в течение последних 15 млд лет эта эволюция происходит плавно, без заметных изменений. Теперь мы знаем, что время $anti-Copernican.$ Мы живем в особый момент космической истории, момент перехода от замедляющейся, материально доминированной Вселенной и ускоряющейся Вселенной, в которой доминирует Темная энергия. Прогрессирующее образование сверх больших структур и увеличение сложности, то чем характеризуется материально доминированная Вселенная, достигло конца и теперь Вселенная открывает период сверх пустоты и бесструктурности
  4. Будущее (а может и прошлое (в теориях циклической Вселенной)) определяется темной энергией
  5. Осознание идентичности темных компонент (темной материи и темной энергии) один из величайших вызовов 21 столетия.

Стандартная космологическая модель – современное состояние

Несмотря на колоссальный приток наблюдательных данных (особенно следует отметить окончательные результаты эксперимента WMAP и результаты по сверхновым), все они, в пределах ошибок наблюдений, продолжают укладываться в современную парадигму четырехстадийной эволюции нашей Вселенной, частью которой является стандартная модель современной Вселенной.

Эти 4 основных стадии – вакуумоподобная квази-де-ситтеровская, или инфляционная стадия в ранней Вселенной, за которой (после промежуточной стадии рождения и разогрева обычной материи) следует стадия доминирования горячей ультра-релятивистской материи (исторически названная Большим Взрывом), которая относительно недавно (при красном смещении $z \approx 3200$) сменяется стадией доминирования нерелятивистской материи (холодной темной небарионной материи и барионов). Наконец, уже в наше время, начиная с z

Последняя стадия поддерживается темной энергией. Соответственно, для количественного описания требуются четыре новых (по отношению к стандартной модели элементарных частиц) безразмерных постоянных, которые на современном уровне понимания либо сами являются фундаментальными постоянными микрофизики, либо связаны с ними через теоретические модели. Это безразмерная амплитуда начальных, приближенно масштабно-инвариантных возмущений плотности материи, отношение числа фотонов реликтового излучения к числу барионов, отношение плотностей холодной темной небарионной материи и барионов и, наконец, практически не зависящая от z плотность энергии современной темной энергии, обезразмеренная известными фундаментальными постоянными. На современном теоретическом уровне уменьшить число этих постоянных нельзя. Однако оно существено меньше, чем число фундаментальных безразмерных постоянных в стандартной модели элементарных частиц. В настоящее время уже ясно, что начальный спектр возмущений не является строго масштабно-инвариантным, так что для его количественного описания требуется по крайней мере еще одно число (окончательного доказательства этого мы ожидаем от эксперимента Planck).

Здесь однако могут помочь инфляционные модели ранней Вселенной, в которых все параметры начального спектра выражаются в максимально простом случае через одну безразмерную постоянную, и я приведу примеры таких моделей, которые еще остаются жизнеспособными (это как раз пионерские модели инфляции). Другое ожидаемое здесь фундаментальное открытие – это первичные гравитационные волны (через обнаружение В-моды поляризации реликтового излучения), но чувствительности Planck может для этого не хватить.

Что касается темной небарионной нерелятивистской материи, про которую мы уже знаем, что она почти бесстолкновительная, то здесь наиболее замечательным явилось бы ее прямое детектирование в наземных экспериментах.

Aстрономическими методами можно открыть ее аннигиляцию в фотоны, а также определить, в какой мере она все-таки является столкновительной, из структуры темного галактического гало (в т.ч. в центре) и количества спутников массивных галактик. Наконец, главной целью исследования темной энергии во Вселенной является поиск слабого отличия ее тензора энергии-импульса от точной космологической постоянной. Пока никакого отличия не найдено на уровне относительной точности ~ 10%, однако я приведу аргументы, почему такой поиск не безнадежен. Один из простейших классов моделей темной энергии, альтернативных космологической постоянной, строится на основе f(R) гравитации.