Одна из тем, которая требует от учеников максимума внимания и усидчивости, это решение неравенств. Такие похожие на уравнения и при этом сильно от них отличающиеся. Потому что к их решению нужен особый подход.

Свойства, которые потребуются для нахождения ответа

Все они применяются для того, чтобы заменить имеющуюся запись равносильной. Большая их часть похожа на то, что было в уравнениях. Но есть и отличия.

  • Функцию, которая определена в ОДЗ, или любое число можно прибавить к обеим частям исходного неравенства.
  • Аналогичным образом возможно умножение, но только на положительную функцию или число.
  • Если это действие выполняется с отрицательными функцией или числом, то знак неравенства нужно заменить на противоположный.
  • Функции, которые являются неотрицательными, можно возводить в положительную степень.

Иногда решение неравенств сопровождается действиями, которые дают посторонние ответы. Их нужно исключить, сравнив область ОДЗ и множество решений.

Использование метода интервалов

Его суть состоит в том, чтобы свести неравенство к уравнению, в котором в правой части стоит ноль.

  1. Определить область, где лежат допустимые значения переменных, то есть ОДЗ.
  2. Преобразовать неравенство с помощью математических операций так, чтобы в его правой части стоял ноль.
  3. Знак неравенства заменить на «=» и решить соответствующее уравнение.
  4. На числовой оси отметить все ответы, которые получились во время решения, а также интервалы ОДЗ. При строгом неравенстве точки нужно нарисовать выколотыми. Если присутствует знак равенства, то их полагается закрасить.
  5. Определить знак исходной функции на каждом интервале, получившемся из точек ОДЗ и делящих его ответов. Если при переходе через точку знак функции не изменяется, то она входит в ответ. В противном случае — исключается.
  6. Граничные для ОДЗ точки нужно дополнительно проверить и только потом включать или нет в ответ.
  7. Ответ, который получается, нужно записать в виде объединенных множеств.

Немного о двойных неравенствах

Они используют в записи сразу два знака неравенства. То есть некоторая функция ограничена условиями сразу дважды. Такие неравенства решаются, как система из двух, когда исходное разбито на части. И в методе интервалов указываются ответы от решения обоих уравнений.

Для их решения также допустимо использовать свойства, указанные выше. С их помощью удобно приводить неравенство к равенству нулю.

Как обстоят дела с неравенствами, в которых имеется модуль?

В этом случае решение неравенств использует следующие свойства, причем они справедливы для положительного значения «а».

Если «х» принимает алгебраическое выражение, то справедливы такие замены:

  • |х| < a на -a < х < a;
  • |х| > a на х < -a или х > a.

Если неравенства нестрогие, то формулы тоже верны, только в них, кроме знака больше или меньше, появляется «=».

Как осуществляется решение системы неравенств?

Это знание потребуется в тех случаях, когда дано такое задание или имеется запись двойного неравенства или в записи появился модуль. В такой ситуации решением будут такие значения переменных, которые удовлетворяли бы всем имеющимся в записи неравенствам. Если таких чисел нет, то система решений не имеет.

План, по которому выполняется решение системы неравенств:

  • решить каждое из них отдельно;
  • изобразить на числовой оси все интервалы и определить их пересечения;
  • записать ответ системы, который и будет объединением того, что получилось во втором пункте.

Как быть с дробными неравенствами?

Поскольку во время их решения может потребоваться изменение знака неравенства, то нужно очень тщательно и внимательно выполнять все пункты плана. Иначе может получиться противоположный ответ.

Решение дробных неравенств тоже использует метод интервалов. И план действий будет таким:

  • Используя описанные свойства, придать дроби такой вид, чтобы справа от знака остался только ноль.
  • Заменить неравенство на «=» и определить точки, в которых функция будет равна нулю.
  • Отметить их на координатной оси. При этом числа, получившиеся в результате расчетов в знаменателе, всегда будут выколоты. Все другие — исходя из условия неравенства.
  • Определить интервалы знакопостоянства.
  • В ответ записать объединение тех промежутков, знак которых соответствует тому, который был в исходном неравенстве.

Ситуации, когда в неравенстве появляется иррациональность

Другими словами, в записи присутствует математический корень. Поскольку в школьном курсе алгебры большая часть заданий идет для квадратного корня, то именно он и будет рассмотрен.

Решение иррациональных неравенств сводится к тому, чтобы получить систему из двух или трех, которые будут равносильны исходному.

Исходное неравенство условие равносильная система
√ n(х) < m(х) m(х) меньше или равно 0 решений нет
m(х) больше 0

n(х) больше или равно 0

n(х) < (m(х)) 2

√ n(х) > m(х)

m(х) больше или равно 0

n(х) > (m(х)) 2

n(х) больше или равно 0

m(х) меньше 0

√n(х) ≤ m(х) m(х) меньше 0 решений нет
m(х) больше или равно 0

n(х) больше или равно 0

n(х) ≤ (m(х)) 2

√n(х) ≥ m(х)

m(х) больше или равно 0

n(х) ≥ (m(х)) 2

n(х) больше или равно 0

m(х) меньше 0

√ n(х) < √ m(х)

n(х) больше или равно 0

n(х) меньше m(х)

√n(х) * m(х) < 0

n(х) больше 0

m(х) меньше 0

√n(х) * m(х) > 0

n(х) больше 0

m(х) больше 0

√n(х) * m(х) ≤ 0

n(х) больше 0

n(х) равно 0

m(х) -любое

√n(х) * m(х) ≥ 0

n(х) больше 0

n(х) равно 0

m(х) -любое

Примеры решения разных видов неравенств

Для того чтобы добавить наглядности в теорию про решение неравенств, ниже приведены примеры.

Первый пример. 2х - 4 > 1 + х

Решение: для того чтобы определить ОДЗ, достаточно просто внимательно посмотреть на неравенство. Оно образовано из линейных функций, поэтому определено при всех значениях переменной.

Теперь из обеих частей неравенства нужно вычесть (1 + х). Получается: 2х - 4 - (1 + х) > 0. После того как будут раскрыты скобки и приведены подобные слагаемые неравенство примет такой вид: х - 5 > 0.

Приравняв его к нулю, легко найти его решение: х = 5.

Теперь эту точку с цифрой 5, нужно отметить на координатном луче. Потом проверить знаки исходной функции. На первом интервале от минус бесконечности до 5 можно взять число 0 и подставить его в неравенство, получившееся после преобразований. После расчетов получается -7 >0. под дугой интервала нужно подписать знак минуса.

На следующем интервале от 5 до бесконечности можно выбрать число 6. Тогда получается, что 1 > 0. Под дугой подписан знак «+». Этот второй интервал и будет ответом неравенства.

Ответ: х лежит в интервале (5; ∞).

Второй пример. Требуется решить систему двух уравнений: 3х + 3 ≤ 2х + 1 и 3х - 2 ≤ 4х + 2.

Решение. ОДЗ этих неравенств тоже лежит в области любых чисел, поскольку даны линейные функции.

Второе неравенство примет вид такого уравнения: 3х - 2 - 4х - 2 = 0. После преобразования: -х - 4 =0. Из него получается значение для переменной, равное -4.

Эти два числа нужно отметить на оси, изобразив интервалы. Поскольку неравенство нестрогое, то все точки нужно закрасить. Первый интервал от минус бесконечности до -4. Пусть будет выбрано число -5. Первое неравенство даст значение -3, а второе 1. Значит, этот промежуток не входит в ответ.

Второй интервал от -4 до -2. Можно выбрать число -3 и подставить его в оба неравенства. В первом и во втором получается значение -1. Значит, под дугой «-».

На последнем интервале от -2 до бесконечности самым лучшим числом является ноль. Его и нужно подставить и найти значения неравенств. В первом из них получается положительное число, а втором ноль. Этот промежуток тоже нужно исключить из ответа.

Из трех интервалов решением неравенства является только один.

Ответ: х принадлежит [-4; -2].

Третий пример. |1 - х| > 2 |х - 1|.

Решение. Первым делом нужно определить точки, в которых функции обращаются в ноль. Для левого этим числом будет 2, для правого — 1. их нужно отметить на луче и определить промежутки знакопостоянства.

На первом интервале, от минус бесконечности до 1, функция из левой части неравенства принимает положительные значения, а из правой — отрицательные. Под дугой нужно записать рядом два знака «+» и «-».

Следующий промежуток от 1 до 2. На нем обе функции принимают положительные значения. Значит, под дугой два плюса.

Третий интервал от 2 до бесконечности даст такой результат: левая функция — отрицательная, правая — положительная.

С учетом получившихся знаков нужно вычислить значения неравенства для всех промежутков.

На первом получается такое неравенство: 2 - х > - 2 (х - 1). Минус перед двойкой во втором неравенстве получился из-за того, что эта функция отрицательная.

После преобразования неравенство выглядит так: х > 0. Оно сразу дает значения переменной. То есть из этого интервала в ответ пойдет только промежуток от 0 до 1.

На втором: 2 - х > 2 (х - 1). Преобразования дадут такое неравенство: -3х + 4 больше ноля. Его нулем будет значение х = 4/3. С учетом знака неравенства получается, что х должен быть меньше этого числа. Значит, этот интервал уменьшается до промежутка от 1 до 4/3.

Последний дает такую запись неравенства: - (2 - х) > 2 (х - 1). Его преобразование приводит к такому: -х > 0. То есть уравнение верно при х меньшем ноля. Это значит, что на искомом промежутке неравенство не дает решений.

На первых двух промежутках граничным оказалось число 1. Его нужно проверить отдельно. То есть подставить в исходное неравенство. Получается: |2 - 1| > 2 |1 - 1|. Подсчет дает что 1 больше 0. Это верное утверждение, поэтому единица входит в ответ.

Ответ: х лежит в промежутке (0; 4/3).

Соблюдение Вашей конфиденциальности важно для нас. По этой причине, мы разработали Политику Конфиденциальности, которая описывает, как мы используем и храним Вашу информацию. Пожалуйста, ознакомьтесь с нашими правилами соблюдения конфиденциальности и сообщите нам, если у вас возникнут какие-либо вопросы.

Сбор и использование персональной информации

Под персональной информацией понимаются данные, которые могут быть использованы для идентификации определенного лица либо связи с ним.

От вас может быть запрошено предоставление вашей персональной информации в любой момент, когда вы связываетесь с нами.

Ниже приведены некоторые примеры типов персональной информации, которую мы можем собирать, и как мы можем использовать такую информацию.

Какую персональную информацию мы собираем:

Как мы используем вашу персональную информацию:

  • Собираемая нами персональная информация позволяет нам связываться с вами и сообщать об уникальных предложениях, акциях и других мероприятиях и ближайших событиях.
  • Время от времени, мы можем использовать вашу персональную информацию для отправки важных уведомлений и сообщений.
  • Мы также можем использовать персональную информацию для внутренних целей, таких как проведения аудита, анализа данных и различных исследований в целях улучшения услуг предоставляемых нами и предоставления Вам рекомендаций относительно наших услуг.
  • Если вы принимаете участие в розыгрыше призов, конкурсе или сходном стимулирующем мероприятии, мы можем использовать предоставляемую вами информацию для управления такими программами.

Раскрытие информации третьим лицам

Мы не раскрываем полученную от Вас информацию третьим лицам.

Исключения:

  • В случае если необходимо - в соответствии с законом, судебным порядком, в судебном разбирательстве, и/или на основании публичных запросов или запросов от государственных органов на территории РФ - раскрыть вашу персональную информацию. Мы также можем раскрывать информацию о вас если мы определим, что такое раскрытие необходимо или уместно в целях безопасности, поддержания правопорядка, или иных общественно важных случаях.
  • В случае реорганизации, слияния или продажи мы можем передать собираемую нами персональную информацию соответствующему третьему лицу – правопреемнику.

Защита персональной информации

Мы предпринимаем меры предосторожности - включая административные, технические и физические - для защиты вашей персональной информации от утраты, кражи, и недобросовестного использования, а также от несанкционированного доступа, раскрытия, изменения и уничтожения.

Соблюдение вашей конфиденциальности на уровне компании

Для того чтобы убедиться, что ваша персональная информация находится в безопасности, мы доводим нормы соблюдения конфиденциальности и безопасности до наших сотрудников, и строго следим за исполнением мер соблюдения конфиденциальности.

I. Выражения, в которых наряду с буквами могут быть использованы числа, знаки арифметических действий и скобки, называются алгебраическими выражениями.

Примеры алгебраических выражений:

2m -n; 3· (2a + b); 0,24x; 0,3a -b · (4a + 2b); a 2 – 2ab;

Так как букву в алгебраическом выражении можно заменить какими то различными числами, то букву называют переменной, а само алгебраическое выражение — выражением с переменной.

II. Если в алгебраическом выражении буквы (переменные) заменить их значениями и выполнить указанные действия, то полученное в результате число называется значением алгебраического выражения.

Примеры. Найти значение выражения:

1) a + 2b -c при a = -2; b = 10; c = -3,5.

2) |x| + |y| -|z| при x = -8; y = -5; z = 6.

Решение .

1) a + 2b -c при a = -2; b = 10; c = -3,5. Вместо переменных подставим их значения. Получим:

— 2+ 2 · 10- (-3,5) = -2 + 20 +3,5 = 18 + 3,5 = 21,5.

2) |x| + |y| -|z| при x = -8; y = -5; z = 6. Подставляем указанные значения. Помним, что модуль отрицательного числа равен противоположному ему числу, а модуль положительного числа равен самому этому числу. Получаем:

|-8| + |-5| -|6| = 8 + 5 -6 = 7.

III. Значения буквы (переменной), при которых алгебраическое выражение имеет смысл, называют допустимыми значениями буквы (переменной).

Примеры. При каких значениях переменной выражение не имеет смысла?

Решение. Мы знаем, что на нуль делить нельзя, поэтому, каждое из данных выражений не будет иметь смысла при том значении буквы (переменной), которая обращает знаменатель дроби в нуль!

В примере 1) это значение а = 0. Действительно, если вместо а подставить 0, то нужно будет число 6 делить на 0, а этого делать нельзя. Ответ: выражение 1) не имеет смысла при а = 0.

В примере 2) знаменатель х — 4 = 0 при х = 4, следовательно, это значение х = 4 и нельзя брать. Ответ: выражение 2) не имеет смысла при х = 4.

В примере 3) знаменатель х + 2 = 0 при х = -2. Ответ: выражение 3) не имеет смысла при х = -2.

В примере 4) знаменатель 5 -|x| = 0 при |x| = 5. А так как |5| = 5 и |-5| = 5, то нельзя брать х = 5 и х = -5. Ответ: выражение 4) не имеет смысла при х = -5 и при х = 5.
IV. Два выражения называются тождественно равными, если при любых допустимых значениях переменных соответственные значения этих выражений равны.

Пример: 5 (a – b) и 5a – 5b тожественно равны, так как равенство 5 (a – b) = 5a – 5b будет верным при любых значениях a и b. Равенство 5 (a – b) = 5a – 5b есть тождество.

Тождество – это равенство, справедливое при всех допустимых значениях входящих в него переменных. Примерами уже известных вам тождеств являются, например, свойства сложения и умножения, распределительное свойство.

Замену одного выражения другим, тождественно равным ему выражением, называют тождественным преобразованием или просто преобразованием выражения. Тождественные преобразования выражений с переменными выполняются на основе свойств действий над числами.

Примеры.

a) преобразуйте выражение в тождественно равное, используя распределительное свойство умножения:

1) 10·(1,2х + 2,3у); 2) 1,5·(a -2b + 4c); 3) a·(6m -2n + k).

Решение . Вспомним распределительное свойство (закон) умножения:

(a+b)·c=a·c+b·c (распределительный закон умножения относительно сложения: чтобы сумму двух чисел умножить на третье число, можно каждое слагаемое умножить на это число и полученные результаты сложить).
(а-b)·c=a·с-b·c (распределительный закон умножения относительно вычитания: чтобы разность двух чисел умножить на третье число, можно умножить на это число уменьшаемое и вычитаемое отдельно и из первого результата вычесть второй).

1) 10·(1,2х + 2,3у) = 10 · 1,2х + 10 · 2,3у = 12х + 23у.

2) 1,5·(a -2b + 4c) = 1,5а -3b + 6c.

3) a·(6m -2n + k) = 6am -2an +ak.

б) преобразуйте выражение в тождественно равное, используя переместительное и сочетательное свойства (законы) сложения:

4) х + 4,5 +2х + 6,5; 5) (3а + 2,1) + 7,8; 6) 5,4с -3 -2,5 -2,3с.

Решение. Применим законы (свойства) сложения:

a+b=b+a (переместительный: от перестановки слагаемых сумма не меняется).
(a+b)+c=a+(b+c) (сочетательный: чтобы к сумме двух слагаемых прибавить третье число, можно к первому числу прибавить сумму второго и третьего).

4) х + 4,5 +2х + 6,5 = (х + 2х) + (4,5 + 6,5) = 3х + 11.

5) (3а + 2,1) + 7,8 = 3а + (2,1 + 7,8) = 3а + 9,9.

6) 6) 5,4с -3 -2,5 -2,3с = (5,4с -2,3с) + (-3 -2,5) = 3,1с -5,5.

в) преобразуйте выражение в тождественно равное, используя переместительное и сочетательное свойства (законы) умножения:

7) 4 · х · (-2,5); 8) -3,5 · · (-1); 9) 3а · (-3) · 2с.

Решение. Применим законы (свойства) умножения:

a·b=b·a (переместительный: от перестановки множителей произведение не меняется).
(a·b)·c=a·(b·c) (сочетательный: чтобы произведение двух чисел умножить на третье число, можно первое число умножить на произведение второго и третьего).

7) 4 · х · (-2,5) = -4 · 2,5 · х = -10х.

8) -3,5 · · (-1) = 7у.

9) 3а · (-3) · 2с = -18ас.

Если алгебраическое выражение дано в виде сократимой дроби, то пользуясь правилом сокращения дроби его можно упростить, т.е. заменить тождественно равным ему более простым выражением.

Примеры. Упростите, используя сокращение дробей.

Решение. Сократить дробь — это значит разделить ее числитель и знаменатель на одно и то же число (выражение), отличное от нуля. Дробь 10) сократим на 3b ; дробь 11) сократим на а и дробь 12) сократим на 7n . Получаем:

Алгебраические выражения применяют для составления формул.

Формула – это алгебраическое выражение, записанное в виде равенства и выражающее зависимость между двумя или несколькими переменными. Пример: известная вам формула пути s=v·t (s — пройденный путь, v — скорость, t — время). Вспомните, какие еще формулы вы знаете.

Страница 1 из 1 1

Числовые выражения составляются из чисел, знаков арифметических действий и скобок. Если в таком выражении присутствуют переменные, оно будет называться алгебраическим. Тригонометрическим является выражение, в котором переменная содержится под знаками тригонометрических функций. Задачи на определение значений числового, тригонометрического, алгебраического выражений часто встречаются в школьном курсе математики.

Инструкция

Чтобы найти значение числового выражения, определите порядок действий в заданном примере. Для удобства обозначьте его карандашом над соответствующими знаками. Выполните все указанные действия в определенном порядке: действия в скобках, возведение в степень, умножение, деление, сложение, вычитание. Полученное число и будет значением числового выражения.

Пример. Найдите значение выражения (34 10+(489–296) 8):4–410. Определите порядок действий. Первое действие выполните во внутренних скобках 489–296=193. Затем, умножьте 193 8=1544 и 34 10=340. Следующее действие: 340+1544=1884. Далее выполните деление 1884:4=461 и затем вычитание 461–410=60. Вы нашли значение данного выражения.

Чтобы найти значение тригонометрического выражения при известном угле?, предварительно . Для этого примените соответствующие тригонометрические формулы. Вычислите заданные значения тригонометрических функций, подставьте их в пример. Выполните действия.

Пример. Найдите значение выражения 2sin 30? cos 30? tg 30? ctg 30?. Упростите данное выражение. Для этого воспользуйтесь формулой tg ? ctg ?=1. Получите: 2sin 30? cos 30? 1=2sin 30? cos 30?. Известно, что sin 30?=1/2 и cos 30?=?3/2. Следовательно, 2sin 30? cos 30?=2 1/2 ?3/2=?3/2. Вы нашли значение данного выражения.

Значение алгебраического выражения зависит от значения переменной. Чтобы найти значение алгебраического выражения при заданных переменных, упростите выражение. Подставьте вместо переменных определенные значения. Выполните необходимые действия. В итоге вы получите число, которое и будет значением алгебраического выражения при заданных переменных.

Пример. Найдите значение выражения 7(a+y)–3(2a+3y) при a=21 и y=10. Упростите данное выражение, получите: a–2y. Подставьте соответствующие значения переменных и вычислите: a–2y=21–2 10=1. Это и есть значение выражения 7(a+y)–3(2a+3y) при a=21 и y=10.

Обратите внимание

Существуют алгебраические выражения, не имеющие смысла при некоторых значениях переменных. Например, выражение x/(7–a) не имеет смысла, если a=7, т.к. при этом знаменатель дроби обращается в нуль.