Целое выражение - это математическое выражение, составленное из чисел и буквенных переменных с помощью действий сложения, вычитания и умножения. Также к целым относятся выражения, которые имеют в своем составе деление на какое либо число, отличное от нуля.

Примеры целого выражения

Ниже представлены несколько примеров целых выражений:

1. 12*a^3 + 5*(2*a -1);

3. 4*y- ((5*y+3)/5) -1;

Дробные выражения

Если же в выражении присутствует деление на переменную или на другое выражение содержащее переменную, то такое выражение не является целым. Такое выражение называется дробным. Дадим полное определение дробного выражения.

Дробное выражение - это математическое выражение, которое помимо действий сложения, вычитания и умножения, выполненных с числами и буквенными переменными, а также деления на число не равное нулю, содержит так же деление на выражения с буквенными переменными.

Примеры дробных выражений:

1. (12*a^3 +4)/a

3. 4*x- ((5*y+3)/(5-y)) +1;

Дробные и целые выражения составляют два больших множества математических выражений. Если эти множества объединить, то получим новое множество, которое называется рациональными выражениями. То есть рациональные выражения это все целый и дробные выражения.

Нам известно, что целые выражения имеют смысл при любых значениях переменных, которые в него входят. Это следует из того, что для нахождения значения целого выражения необходимо выполнять действия, которые всегда возможны: сложение, вычитание, умножение, деление на число отличное от нуля.

Дробные же выражения, в отличии от целых, могут и не иметь смысла. Так как присутствует операция деления на переменную или выражение содержащее переменные, и это выражение может обратится в нуль, а делить на нуль нельзя. Значения переменных, при которых дробное выражение будет иметь смысл, называют допустимыми значениями переменных.

Рациональная дробь

Одним из частных случаев рациональных выражений будет являться дробь, числитель и знаменатель которой многочлены. Для такой дроби в математике тоже существует свое название - рациональная дробь.

Рациональная дробь будет иметь смысл в том случае, если её знаменатель не равен нулю. То есть допустимыми будут являться все значения переменных, при которых знаменатель дроби отличен от нуля.

« Алгебраические дроби, рациональные и дробные выражения.»

Цели урока:

Образовательная: введение понятия алгебраической дроби, рациональных и дробных выражений, области допустимых значений,

Развивающая: формирование навыков критического мышления, самостоятельного поиска информации, исследовательских навыков.

Воспитательная: воспитание сознательного отношения к труду, формирование коммуникативных навыков, формирование самооценки.

Ход урока

1. Организационный момент:

Приветствие. Объявление темы урока.

2. Мотивация урока.

У немцев есть такая поговорка “Попасть в дробь”, что означает попасть в тупик, трудное положение. Это объясняется тем, что долгое время действия с дробными числами, которые иногда называли “ломаными”, считались по праву очень сложными.

Но сейчас принято рассматривать не только числовые, но и алгебраические дроби, чем мы сегодня и займемся.

    • Пусть девизом нашего урока сегодня станут следующие слова:

Успех – это не пункт назначения. Это движение

Т. Фастер.

3. Актуализация опорных знаний.

Фронтальный опрос.

Что такое целые выражения? Из чего они составлены? Целое выражение имеет смысл при любых значениях входящих в него переменных.

Приведите примеры.

Что такое дробь?

Что значит сократить дробь?

Что значит разложить на множители?

Какие способы разложения вы знаете?

Чему равен квадрат суммы (разности)?

Чему равна разность квадратов?

4. Изучение нового материала.

В 8 классе мы познакомимся и с дробными выражениями.

Они отличаются от целых тем, что они содержат действие деление на выражение с переменной.

Если алгебраическое выражение составлено из чисел и переменных с помощью действий сложения, вычитания, умножения, возведения в степень с натуральным показателем и деления, причем используя деление на выражения с переменными, то его называют дробным выражением.

Дробные выражения не имеют смысла при тех значениях переменных, которые обращают знаменатель в нуль.

Областью допустимых значений (ОДЗ) алгебраического выражения называют множество всех допустимых совокупностей значений букв, входящих в это выражение.

Целые и дробные выражения называют рациональными выражениями

отдельным видом рационального выражения является рациональная дробь. Это дробь, числитель и знаменатель которой – многочлены.

Какие из выражений являются целыми, какие дробными? (или №1)

5. Физминутка

6. Закрепление нового материала.

Решить №2, 3(1), 5(1, 3, 4, 6, 7, 9, 10, 11), 7(1).

7. Самостоятельная работа учащихся (в группах).

Решить № 3(2), 5(2, 5, 8, 12), 7(2).

8. Рефлексия.

    Трудным ли для тебя был материал урока?

    На каком из этапов урока было труднее всего, легче всего?

    Что нового ты узнал на уроке? Чему научился?

    Работал ли ты на уроке в полную меру сил?

    Как эмоционально ты чувствовал себя на уроке?

Д/з: выучить п.1, вопросы с.7, решить № 4, 6, 8.

Синквейн.

Каждая группа составляет синквейн к слову «дробь».

Если будешь дроби знать

Точно смысл их понимать,

Станет легкой даже трудная задача.

Целое выражение - это математическое выражение, составленное из чисел и буквенных переменных с помощью действий сложения, вычитания и умножения. Также к целым относятся выражения, которые имеют в своем составе деление на какое либо число, отличное от нуля.

Примеры целого выражения

Ниже представлены несколько примеров целых выражений:

1. 12*a^3 + 5*(2*a -1);

2. 7*b

3. 4*y- ((5*y+3)/5) -1;

Дробные выражения

Если же в выражении присутствует деление на переменную или на другое выражение содержащее переменную, то такое выражение не является целым. Такое выражение называется дробным. Дадим полное определение дробного выражения.

Дробное выражение - это математическое выражение, которое помимо действий сложения, вычитания и умножения, выполненных с числами и буквенными переменными, а также деления на число не равное нулю, содержит так же деление на выражения с буквенными переменными.

Примеры дробных выражений:

1. (12*a^3 +4)/a

2. 7/(x+3)

3. 4*x- ((5*y+3)/(5-y)) +1;

Дробные и целые выражения составляют два больших множества математических выражений. Если эти множества объединить, то получим новое множество, которое называется рациональными выражениями. То есть рациональные выражения это все целый и дробные выражения.

Нам известно, что целые выражения имеют смысл при любых значениях переменных, которые в него входят. Это следует из того, что для нахождения значения целого выражения необходимо выполнять действия, которые всегда возможны: сложение, вычитание, умножение, деление на число отличное от нуля.

Дробные же выражения, в отличии от целых, могут и не иметь смысла. Так как присутствует операция деления на переменную или выражение содержащее переменные, и это выражение может обратится в нуль, а делить на нуль нельзя. Значения переменных, при которых дробное выражение будет иметь смысл, называют допустимыми значениями переменных.

Рациональная дробь

Одним из частных случаев рациональных выражений будет являться дробь, числитель и знаменатель которой многочлены. Для такой дроби в математике тоже существует свое название - рациональная дробь.

Рациональная дробь будет иметь смысл в том случае, если её знаменатель не равен нулю. То есть допустимыми будут являться все значения переменных, при которых знаменатель дроби отличен от нуля.

Благодаря курсу алгебры, известно, что все выражения требуют преобразования для более удобного решения. Определение целых выражений способствует тому, что для начала выполняются тождественные преобразования. Будем преобразовывать выражение в многочлен. В заключении разберем несколько примеров.

Определение и примеры целых выражений

Определение 1

Целые выражения – это числа, переменные или выражения со сложением или вычитанием, которые записываются в виде степени с натуральным показателем, которые также имеют скобки или деление, отличное от нуля.

Исходя из определения, имеем, что примеры целых выражений: 7 , 0 , − 12 , 7 11 , 2 , 73 , - 3 5 6 и так далее, причем переменные вида a , b , p , q , x , z считают за целые выражения. После их преобразования сумм, разностей, произведений выражения примут вид

x + 1 , 5 · y 3 · 2 · 3 · 7 − 2 · y − 3 , 3 − x · y · z 4 , - 6 7 , 5 · (2 · x + 3 · y 2) 2 − - (1 − x) · (1 + x) · (1 + x 2)

Если в выражении имеется деление на число, отличное от нуля вида x: 5 + 8: 2: 4 или (x + y) : 6 , тогда деление может обозначаться при помощи дробной черты, как x + 3 5 - 3 , 2 · x + 2 . При рассмотрении выражений вида x: 5 + 5: x или 4 + a 2 + 2 · a - 6 a + b + 2 · c видно, что такие выражения не могут быть целыми, так как в первом имеется деление на переменную x , а во втором на выражение с переменной.

Многочлен и одночлен являются целыми выражениями, с которыми встречаемся в школе при работе с рациональными числами. Иначе говоря, целые выражения не включают в себя записи иррациональных дробей. Другое название – это целые иррациональные выражения.

Какие преобразования целых выражений возможны?

Целые выражения рассматриваются при решении как основные тождественные преобразования, раскрытие скобок, группирование, приведение подобных.

Пример 1

Раскрыть скобки и привести подобные слагаемые в 2 · (a 3 + 3 · a · b − 2 · a) − 2 · a 3 − (5 · a · b − 6 · a + b) .

Решение

Для начала необходимо применить правило раскрытия скобок. Получим выражение вида 2 · (a 3 + 3 · a · b − 2 · a) − 2 · a 3 − (5 · a · b − 6 · a + b) = = 2 · a 3 + 2 · 3 · a · b + 2 · (− 2 · a) − 2 · a 3 − 5 · a · b + 6 · a − b = = 2 · a 3 + 6 · a · b − 4 · a − 2 · a 3 − 5 · a · b + 6 · a − b

После чего можем привести подобные слагаемые:

2 · a 3 + 6 · a · b − 4 · a − 2 · a 3 − 5 · a · b + 6 · a − b = = (2 · a 3 − 2 · a 3) + (6 · a · b − 5 · a · b) + (− 4 · a + 6 · a) − b = = 0 + a · b + 2 · a − b = a · b + 2 · a − b .

После их приведения получаем многочлен вида a · b + 2 · a − b .

Ответ : 2 · (a 3 + 3 · a · b − 2 · a) − 2 · a 3 − (5 · a · b − 6 · a + b) = a · b + 2 · a − b .

Пример 2

Произвести преобразования (x - 1) : 2 3 + 2 · (x 2 + 1) : 3: 7 .

Решение

Имеющееся деление можно заменять умножением, но на обратное число. Тогда необходимо выполнить преобразования, после которых выражение примет вид (x - 1) · 3 2 + 2 · (x 2 + 1) · 1 3 · 1 7 . Теперь следует заняться приведением подобных слагаемых. Получим, что

(x - 1) · 3 2 + 2 · (x 2 + 1) · 1 3 · 1 7 = 3 2 · (x - 1) + 2 21 · x 2 + 1 = = 3 2 · x - 3 2 + 2 21 · x 2 + 2 21 = 2 21 · x 2 + 3 2 · x - 59 42 = 2 21 · x 2 + 1 1 2 · x - 1 17 42

Ответ : (x - 1) : 2 3 + 2 · (x 2 + 1) : 3: 7 = 2 21 · x 2 + 1 1 2 · x - 1 17 42 .

Пример 3

Представить выражение 6 · x 2 · y + 18 · x · y − 6 · y − (x 2 + 3 · x − 1) · (x 3 + 4 · x) в виде произведения.

Решение

Рассмотрев выражение, видно, что первые три слагаемые имеют общий множитель вида 6 · y , который следует вынести за скобки во время преобразования. Тогда получим, что 6 · x 2 · y + 18 · x · y − 6 · y − (x 2 + 3 · x − 1) · (x 3 + 4 · x) = = 6 · y · (x 2 + 3 · x − 1) − (x 2 + 3 · x − 1) · (x 3 + 4 · x)

Видно, что получили разность двух выражений вида 6 · y · (x 2 + 3 · x − 1) и (x 2 + 3 · x − 1) · (x 3 + 4 · x) с общим множителем x 2 + 3 · x − 1 , который необходимо вынести за скобки. Получим, что

6 · y · (x 2 + 3 · x − 1) − (x 2 + 3 · x − 1) · (x 3 + 4 · x) = = (x 2 + 3 · x − 1) · (6 · y − (x 3 + 4 · x))

Раскрыв скобки, имеем выражение вида (x 2 + 3 · x − 1) · (6 · y − x 3 − 4 · x) , которое необходимо было найти по условию.

Ответ: 6 · x 2 · y + 18 · x · y − 6 · y − (x 2 + 3 · x − 1) · (x 3 + 4 · x) = = (x 2 + 3 · x − 1) · (6 · y − x 3 − 4 · x)

Тождественные преобразования требуют строгое выполнение порядка действий.

Пример 4

Преобразовать выражение (3 · 2 − 6 2: 9) 3 · (x 2) 4 + 4 · x: 8 .

Решение

Вы первую очередь выполняются действия в скобках. Тогда имеем, что 3 · 2 − 6 2: 9 = 3 · 2 − 3 6: 9 = 6 − 4 = 2 . После преобразований выражение принимает вид 2 3 · (x 2) 4 + 4 · x: 8 . Известно, что 2 3 = 8 и (x 2) 4 = x 2 · 4 = x 8 , тогда можно прийти к выражению вида 8 · x 8 + 4 · x: 8 . Второе слагаемое требует замены деления на умножение из 4 · x: 8 . Сгруппировав множители, получаем, что

8 · x 8 + 4 · x: 8 = 8 · x 8 + 4 · x · 1 8 = 8 · x 8 + 4 · 1 8 · x = 8 · x 8 + 1 2 · x

Ответ: (3 · 2 − 6 2: 9) 3 · (x 2) 4 + 4 · x: 8 = 8 · x 8 + 1 2 · x .

Преобразование в многочлен

Большинство случаев преобразования целых выражений – это представление в виде многочлена. Любое выражение можно представить в виде многочлена.Любое выражение может быть рассмотрено как многочлены, соединенные арифметическими знаками. Любое действие над многочленами в итоге дает многочлен.

Для того, чтобы выражение было представлено в виде многочлена, необходимо выполнять все действия с многочленами, согласно алгоритму.

Пример 5

Представить в виде многочлена 2 · (2 · x 3 − 1) + (2 · x − 1) 2 · (3 − x) + (4 · x − x · (15 · x + 1)) .

Решение

В данном выражение начать преобразования с выражения вида 4 · x − x · (15 · x + 1) , причем по правилу в начале выполнив умножение или деление, после чего сложение или вычитание. Умножим – x на 15 · x + 1 , тогда получим 4 · x − x · (15 · x + 1) = 4 · x − 15 · x 2 − x = (4 · x − x) − 15 · x 2 = 3 · x − 15 · x 2 . Заданное выражение примет вид 2 · (2 · x 3 − 1) + (2 · x − 1) 2 · (3 − x) + (3 · x − 15 · x 2) .

Далее необходимо произвести возведение во 2 степень многочлена 2 · x − 1 , получим выражение вида (2 · x − 1) 2 = (2 · x − 1) · (2 · x − 1) = 4 · x 2 + 2 · x · (− 1) − 1 · 2 · x − 1 · (− 1) = = 4 · x 2 − 4 · x + 1

Теперь можно перейти к виду 2 · (2 · x 3 − 1) + (4 · x 2 − 4 · x + 1) · (3 − x) + (3 · x − 15 · x 2) .

Разберем умножение. Видно, что 2 · (2 · x 3 − 1) = 4 · x 3 − 2 и (4 · x 2 − 4 · x + 1) · (3 − x) = 12 · x 2 − 4 · x 3 − 12 · x + 4 · x 2 + 3 − x = = 16 · x 2 − 4 · x 3 − 13 · x + 3

тогда можно сделать переход к выражению вида (4 · x 3 − 2) + (16 · x 2 − 4 · x 3 − 13 · x + 3) + (3 · x − 15 · x 2) .

Выполняем сложение, после чего придем к выражению:

(4 · x 3 − 2) + (16 · x 2 − 4 · x 3 − 13 · x + 3) + (3 · x − 15 · x 2) = = 4 · x 3 − 2 + 16 · x 2 − 4 · x 3 − 13 · x + 3 + 3 · x − 15 · x 2 = = (4 · x 3 − 4 · x 3) + (16 · x 2 − 15 · x 2) + (− 13 · x + 3 · x) + (− 2 + 3) = = 0 + x 2 − 10 · x + 1 = x 2 − 10 · x + 1 .

Отсюда следует, что исходное выражение имеет вид x 2 − 10 · x + 1 .

Ответ: 2 · (2 · x 3 − 1) + (2 · x − 1) 2 · (3 − x) + (4 · x − x · (15 · x + 1)) = x 2 − 10 · x + 1 .

Умножение и возведение в степень многочлена говорит о том, что необходимо использовать формулы сокращенного умножения для ускорения процесса преобразования. Это способствует тому, что действия будут выполнены рационально и правильно.

Пример 6

Преобразовать 4 · (2 · m + n) 2 + (m − 2 · n) · (m + 2 · n) .

Решение

Из формулы квадрата получим, что (2 · m + n) 2 = (2 · m) 2 + 2 · (2 · m) · n + n 2 = 4 · m 2 + 4 · m · n + n 2 , тогда произведение (m − 2 · n) · (m + 2 · n) равняется разности квадратов m и 2 · n , таким образом, равняется m 2 − 4 · n 2 . Получим, что исходное выражение примет вид 4 · (2 · m + n) 2 + (m − 2 · n) · (m + 2 · n) = 4 · (4 · m 2 + 4 · m · n + n 2) + (m 2 − 4 · n 2) = = 16 · m 2 + 16 · m · n + 4 · n 2 + m 2 − 4 · n 2 = 17 · m 2 + 16 · m · n

Ответ: 4 · (2 · m + n) 2 + (m − 2 · n) · (m + 2 · n) = 17 · m 2 + 16 · m · n .

Чтобы преобразование не было слишком длинным, необходимо заданное выражение приводить к стандартному виду.

Пример 7

Упростить выражение вида (2 · a · (− 3) · a 2 · b) · (2 · a + 5 · b 2) + a · b · (a 2 + 1 + a 2) · (6 · a + 15 · b 2) + (5 · a · b · (− 3) · b 2)

Решение

Чаще всего многочлены и одночлены даются не стандартного вида, поэтому приходится выполнять преобразования. Следует преобразовать, чтобы получить выражение вида − 6 · a 3 · b · (2 · a + 5 · b 2) + a · b · (2 · a 2 + 1) · (6 · a + 15 · b 2) − 15 · a · b 3 . Для того чтобы привести подобные, необходимо предварительно произвести умножение по правилам преобразования сложного выражения. Получаем выражение вида

− 6 · a 3 · b · (2 · a + 5 · b 2) + a · b · (2 · a 2 + 1) · (6 · a + 15 · b 2) − 15 · a · b 3 = = − 12 · a 4 · b − 30 · a 3 · b 3 + (2 · a 3 · b + a · b) · (6 · a + 15 · b 2) − 15 · a · b 3 = = − 12 · a 4 · b − 30 · a 3 · b 3 + 12 · a 4 · b + 30 · a 3 · b 3 + 6 · a 2 · b + 15 · a · b 3 − 15 · a · b 3 = = (− 12 · a 4 · b + 12 · a 4 · b) + (− 30 · a 3 · b 3 + 30 · a 3 · b 3) + 6 · a 2 · b + (15 · a · b 3 − 15 · a · b 3) = 6 · a 2 · b

Ответ: (2 · a · (− 3) · a 2 · b) · (2 · a + 5 · b 2) + a · b · (a 2 + 1 + a 2) · (6 · a + 15 · b 2) + + (5 · a · b · (− 3) · b 2) = 6 · a 2 · b

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

«Урок Многочлен» - И выполнить проверку: 2.Выполнить умножение многочленов: 4.Выполнить деление многочлена A(x) на В(х). 3.Разложить многочлен на множители. 1.Выполнить сложение и вычитание многочленов: P(x)=-2x3 + x2 -x-12 и Q(x)= x3 -3x2 -4x+1. Действия с многочленами. Урок 15.

«Преобразование целого выражения в многочлен» - Развивать вычислительные навыки учащихся. Ввести понятие целого выражения. Преобразование целых выражений. Многочлены и, в частности, одночлены являются целыми выражениями. Упражнять учащихся в приведении подобных слагаемых. Примерами целых выражений служат такие выражения: 10y?+(3x+y)(x?-10y?), 2b(b?-10c?)-(b?+2c?), 3a?-(a(a+2c))/5+2,5ac.

«Умножение многочленов» - -x6+3x7-2x4+5x2 3 -1 0 -2 0 5 0 0 7 -8 3 5 -6 7x4-8x3+3x2+5x-6. Презентация. Позиционное число многочлена. Умножение многочленов с использова-нием позиционного числа. Рябов Павел Юрьевич. Руководитель: Калетурина А. С.

«Многочлен стандартного вида» - Стандартный вид многочлена. Примеры. 3x4 + 2x3 – x2 + 5. Сложение многочленов. Подготовка к с/р №6. Словарь. Глава 2 , §1b. Для многочленов с одной буквой старший член определен однозначно. Проверь себя. 6x4 – x3y + x2y2 + 2y4.

«Многочлены» - Одночлен считают многочленом, состоящим из одного члена. Вынесение общего множителя за скобки. Алгебра. Многочлены. Умножим многочлен a+b на многочлен c+d. Произведение одночлена и многочлена Умножение одночлена на многочлен. Подобными слагаемыми является и члены 2 и -7, не имеющие буквенную часть. Членами многочлена 4xz-5xy+3x-1 является 4xz, -5xy, 3x и -1.

«Урок Разложение на множители» - Применение ФСУ. Формулы сокращенного умножения. Тема урока: Ответы: вар 1: б, г, б, г, в; вар 2: а, г, в, б, а; вар 3: в, в, в, а, б; Вар 4: г, г, в, б, г. Ну и как? Вынесение общего множителя за скобки. 3. Закончите разложение на множители: Работа в группах: Вынесите общий множитель за скобки. 1.Закончите разложение на множители: а).