Напомним необходимые сведения о комплексных числах.

Комплексное число - это выражение вида a + bi , где a , b - действительные числа, а i - так называемая мнимая единица , символ, квадрат которого равен –1, то есть i 2 = –1. Число a называется действительной частью , а число b - мнимой частью комплексного числа z = a + bi . Если b = 0, то вместо a + 0i пишут просто a . Видно, что действительные числа - это частный случай комплексных чисел.

Арифметические действия над комплексными числами те же, что и над действительными: их можно складывать, вычитать, умножать и делить друг на друга. Сложение и вычитание происходят по правилу (a + bi ) ± (c + di ) = (a ± c ) + (b ± d )i , а умножение - по правилу (a + bi ) · (c + di ) = (ac bd ) + (ad + bc )i (здесь как раз используется, что i 2 = –1). Число = a bi называется комплексно-сопряженным к z = a + bi . Равенство z · = a 2 + b 2 позволяет понять, как делить одно комплексное число на другое (ненулевое) комплексное число:

(Например, .)

У комплексных чисел есть удобное и наглядное геометрическое представление: число z = a + bi можно изображать вектором с координатами (a ; b ) на декартовой плоскости (или, что почти то же самое, точкой - концом вектора с этими координатами). При этом сумма двух комплексных чисел изображается как сумма соответствующих векторов (которую можно найти по правилу параллелограмма). По теореме Пифагора длина вектора с координатами (a ; b ) равна . Эта величина называется модулем комплексного числа z = a + bi и обозначается |z |. Угол, который этот вектор образует с положительным направлением оси абсцисс (отсчитанный против часовой стрелки), называется аргументом комплексного числа z и обозначается Arg z . Аргумент определен не однозначно, а лишь с точностью до прибавления величины, кратной 2π радиан (или 360°, если считать в градусах) - ведь ясно, что поворот на такой угол вокруг начала координат не изменит вектор. Но если вектор длины r образует угол φ с положительным направлением оси абсцисс, то его координаты равны (r · cos φ ; r · sin φ ). Отсюда получается тригонометрическая форма записи комплексного числа: z = |z | · (cos(Arg z ) + i sin(Arg z )). Часто бывает удобно записывать комплексные числа именно в такой форме, потому что это сильно упрощает выкладки. Умножение комплексных чисел в тригонометрической форме выглядит очень просто: z 1 · z 2 = |z 1 | · |z 2 | · (cos(Arg z 1 + Arg z 2) + i sin(Arg z 1 + Arg z 2)) (при умножении двух комплексных чисел их модули перемножаются, а аргументы складываются). Отсюда следуют формулы Муавра : z n = |z | n · (cos(n · (Arg z )) + i sin(n · (Arg z ))). С помощью этих формул легко научиться извлекать корни любой степени из комплексных чисел. Корень n-й степени из числа z - это такое комплексное число w , что w n = z . Видно, что , а , где k может принимать любое значение из множества {0, 1, ..., n – 1}. Это означает, что всегда есть ровно n корней n -й степени из комплексного числа (на плоскости они располагаются в вершинах правильного n -угольника).

New Page 1

Комплексные числа для чайников.Урок 1. Что это такое и с чем их "едят". Мнимая единица.

Для того, что бы понять, что такое комплексные числа, давайте вспомним про обычные числа и всесторонне их рассмотрим. И так, самое простое - это натуральные числа. Они называются натуральными, потому что через них можно что то выразить "в натуре", то есть, что то сосчитать. Вот есть два яблока. Их можно сосчитать. Имеется пять коробок конфет. Их можем можно сосчитать. Иными словами, натуральные числа - это числа, при помощи которых мы можем считать конкретные предметы. Вы прекрасно знаете, что эти числа можно складывать, вычитать, умножать и делить. Со сложением и умножением все понятно. Было два яблока, добавили три, стало пять. Взяли три коробки конфет по 10 штук в каждой, значит, всего тридцать конфет. А вот теперь перейдем к целым числам. Если натуральные числа обозначают конкретное количество предметов, то во множество целых чисел вводятся абстракции. Это нуль и отрицательные числа. почему это абстракции? Нуль - это отсутствие чего либо. Но можем ли мы потрогать, пощупать того, чего нет. Вот два яблока мы можем пощупать, вот они. Мы их можем даже съесть. А что значит нуль яблок? Мы можем потрогать, пощупать этот нуль? Нет, не можем. Значит, это абстракция . Надо же как то обозначать отсутствие чего либо. Вот и обозначили цифрой нуль. Но зачем это как то обозначать? Давайте представим, что у нас было два яблока. Мы съели два. Сколько у нас осталось? Правильно, нисколько. Эту операцию (съели два яблока) мы запишем как вычитание 2-2. И что в итоге то у нас полупилось? Как нам обозначить результат? Только введя новую абстракцию (нуль), которая обозначат, что в результате вычитания (съедения) получилось, что у нас не осталось ни одного яблока. Но мы из двух можем вычесть не 2, а 3. Казалось бы, эта операция бессмысленна. Если у нас только два яблока, как мы сможем съесть три?

Рассмотрим другой пример. Мы идем в магазин за пивом. У нас с собой 100 рублей. Пиво стоит 60 рублей за бутылку. Нам хочется купить две бутылки, но денег у нас не хватает. Нам надо 120 рублей. И тут мы встречаем своего давнего приятеля и занимаем у него двадцатку. Покупаем пиво. Вопрос. Сколько у нас осталось денег? Здравый смысл подсказывает, что нисколько. Но с точки зрения математики это будет абсурд. Почему? Потому что для того, что бы получить в результате нуль, нужно из 100 отнять 100. А мы делаем 100-120. Тут у нас должно получиться что то другое. А что у нас получилось? А то, что мы еще должны приятелю 20 рублей. В следующий раз, когда у нас будет с собой 140 рублей, мы придем в магазин за пивом, встретим приятеля, рассчитаемся с ним по долгам и сможем купить еще две бутылки пива. В итоге у нас получается 140-120-20=0. Обратите внимание на -20. Это очередная абстракция - отрицательное число . То есть, наш долг перед приятелем - это число со знаком минус, потому, что когда мы долг отдаем, мы эту сумму вычитаем. Скажу больше, это еще большая абстракция, чем нуль. Нуль обозначат чего то, чего нет. А отрицательное число - это как бы то, что у нас будет отнято в будущем.

И так, на примере я показал, как в математике рождаются абстракции. И, что, казалось бы, при всей нелепости подобных абстракций (типа отнять больше, чем было), они находят применение в реальной жизни. В случае деления целых чисел возникает еще одна абстракция - дробные числа. На них я подробно останавливается не будут, и так понятно, что они нужны в том случае, когда у нас целы числа не делятся на цело. К примеру, у нас четыре яблока, а надо их разделить на три человека. Тут понятно, что одно оставшееся яблоко делим на три части и получаем дроби.

Теперь очень так плавненько доберемся до сами комплексных чисел. Но, сначала вспомним, что при умножении двух отрицательных числе получается положительное. Кто то спросить - а почему так? Давайте сначала разберемся с умножением отрицательного числа на положительное. Допустим, -20 умножаем на 2. То есть, нам надо сложить -20+-20. В итоге получается -40, так как прибавление отрицательного числа - это вычитание. Почему вычитание - см. выше, отрицательное число - это долг, когда мы отнимем его у нас что то отнимается. Есть и другой житейский смысл. Что будет, если долг увеличился? Например, в том случае, когда нам дали в долг под проценты? В итоге осталось тоже число со знаком минус, то, что после минуса стало больше. А что значит умножить на отрицательное число? Что значит 3*-2? Это значит, что число три нужно взять минус два раза. То есть, поставить минус перед результатом умножения. Кстати, это тоже самое, что -3*2, так как от перестановки множителей произведение не меняется. А теперь внимание. Умножаем -3 на -2. Мы число -3 берем минус два раза. Если мы возьмем число -3 два раза, то в итоге будет -6, это вы поняли. А если взять минус два раза? Но что значит минус взять минус раз? Если взять положительное число минус раз, то в итоге получиться отрицательное, у него меняется знак. В случае если мы отрицательное число берем минус раз, то у него меняется знак и оно становиться положительное.

Для чего мы рассуждали об умножении минус на минус? А для того, что бы рассмотреть еще одну абстракцию, на этот раз она имеет непосредственное отношение к комплексным числам. Это мнимая единица . Мнимая единица равна квадратному корню из минус 1:

Напомню, что такое квадратный корень. Это операция, обратная возведению в квадрат. А возведение в квадрат - это умножение числа само на себя. Таким образом, квадратный корень из 4 равен 2, потому что 2*2=4. Квадратный корень из 9 - это 3, так как 3*3=9. Квадратный корень из единицы так же получается единица, из нуля нуль. Но как нам извлечь квадратный корень из минус единицы? Какое число надо умножить на себя, что бы получить -1? А нет такого числа! Если мы умножим -1 саму на себя, то в итоге получим 1. Если 1 умножим на 1, то получим 1. А минус -1 мы таким образом никак не получим. Но, тем не менее, мы можем столкнуться с ситуацией, когда под корнем окажется отрицательное число. Что же делать? Можно, конечно сказать, что решения нет. Это как при делении на нуль. Все мы до какого то времени считали, что на нуль делить нельзя. Но потом узнали о такой абстракции, как бесконечность , и оказалось, что делить на нуль все таки можно. Более того, такие абстракции, как деление на нуль, или неопределенность, получаемая при делении нуля на нуль или бесконечности на бесконечность, а так же другие подобные операции, широко применяются в вышей математике (), а высшая математика - это основа многих точных наук, которые двигают вперед технический прогресс.Так может и в мнимой единице есть какой то тайный смысл? Есть. И вы его поймете, читая дальнейшие мои уроки по комплексным числам. А пока я расскажу о некоторых сферах, где комплексные числа (числа, в составе которых есть мнимая единица) применяются.

И так, вот перечень областей, где применяются комплексные числа:

    Электротехника. Расчет цепей переменного тока. Использование комплексных чисел в данном случае очень упрощает расчет, без них пришлось бы применять дифференциальные и интегральные уравнения.

    Квантовая механика. Вкратце - в квантовой механике есть такое понятие как волновая функция, которая сама по себе комплекснозначна и квадрат которой (уже действительное число) равен плотности вероятности нахождения частицы в данной точке. См. так же цикл уроков

    Цифровая обработка сигналов. Теория цифровой обработки сигналов включает такое понятие, как z- преобразование, которое очень облегчает различные вычисления, связные с расчетом характеристик различных сигналов, таких как частотная и амплитудная характеристика и прочее.

    Описание процессов плоского течения жидкостей.

    Обтекание профилей жидкостью.

    Волновые движения жидкости.

И это далеко не исчерпывающий перечень, где применяют комплексные числа. На этом первое знакомство с комплексными числами закончено, до новых встреч.

Комплексные числа

Мнимые и комплексные числа. Абсцисса и ордината

комплексного числа. Сопряжённые комплексные числа.

Операции с комплексными числами. Геометрическое

представление комплексных чисел. Комплексная плоскость.

Модуль и аргумент комплексного числа. Тригонометрическая

форма комплексного числа. Операции с комплексными

числами в тригонометрической форме. Формула Муавра.

Начальные сведения о мнимых и комплексных числах приведены в разделе «Мнимые и комплексные числа». Необходимость в этих числах нового типа появилась при решении квадратных уравнений для случая D < 0 (здесь D – дискриминант квадратного уравнения). Долгое время эти числа не находили физического применения, поэтому их и назвали «мнимыми» числами. Однако сейчас они очень широко применяются в различных областях физики

и техники: электротехнике, гидро- и аэродинамике, теории упругости и др.

Комплексные числа записываются в виде: a + bi . Здесь a и b действительные числа , а i мнимая единица, т. e . i 2 = –1. Число a называется абсциссой , a b – ординатой комплексного числа a + bi . Два комплексных числа a + bi и a – bi называются сопряжёнными комплексными числами.

Основные договорённости:

1. Действительное число а может быть также записано в форме комплексного числа: a + 0 i или a – 0 i . Например, записи 5 + 0 i и 5 – 0 i означают одно и то же число 5 .

2. Комплексное число 0+ bi называется чисто мнимым числом . Запись bi означает то же самое, что и 0+ bi .

3. Два комплексных числа a + bi и c + di считаются равными, если a = c и b = d . В противном случае комплексные числа не равны.

Сложение. Суммой комплексных чисел a + bi и c + di называется комплексное число (a + c ) + (b + d ) i . Таким образом, при сложении комплексных чисел отдельно складываются их абсциссы и ординаты.

Это определение соответствует правилам действий с обычными многочленами.

Вычитание. Разностью двух комплексных чисел a + bi (уменьшаемое) и c + di (вычитаемое) называется комплексное число ( a – c ) + (b – d ) i .

Таким образом, при вычитании двух комплексных чисел отдельно вычитаются их абсциссы и ординаты.

Умножение. Произведением комплексных чисел a + bi и c + di называется комплексное число:

( ac – bd ) + (ad + bc ) i . Это определение вытекает из двух требований:

1) числа a + bi и c + di должны перемножаться, как алгебраические двучлены,

2) число i обладает основным свойством: i 2 = 1.

П р и м е р . (a+ bi )( a – bi ) = a 2 + b 2 . Следовательно, произведение

двух сопряжённых комплексных чисел равно действительному

положительному числу.

Деление. Разделить комплексное число a + bi (делимое) на другое c + di (делитель) - значит найти третье число e + f i (чатное), которое будучи умноженным на делитель c + di , даёт в результате делимое a + bi .

Если делитель не равен нулю, деление всегда возможно.

П р и м е р. Найти (8 + i ) : (2 – 3 i ) .

Р е ш е н и е. Перепишем это отношение в виде дроби:

Умножив её числитель и знаменатель на 2 + 3 i

И выполнив все преобразования, получим:

Геометрическое представление комплексных чисел. Действительные числа изображаются точками на числовой прямой:

Здесь точка A означает число –3, точка B – число 2, и O – ноль. В отличие от этого комплексные числа изображаются точками на координатной плоскости. Выберем для этого прямоугольные (декартовы) координаты с одинаковыми масштабами на обеих осях. Тогда комплексное число a + bi будет представлено точкой Р с абсциссой а и ординатой b (см. рис.). Эта система координат называется комплексной плоскостью .

Модулем комплексного числа называется длина вектора OP , изображающего комплексное число на координатной (комплексной ) плоскости. Модуль комплексного числа a + bi обозначается | a + bi | или буквой r

  • Будем основываться на связях, а не на механических формулах.
  • Рассмотрим комплексные числа как дополнение к нашей системе счисления, такому же, как ноль, дробные или отрицательные числа.
  • Визуализируем идеи в графиках, чтобы лучше понять суть, а не просто изложим сухим текстом.

И наше секретное оружие: изучение по аналогии. Мы доберемся до комплексных чисел, начав с их предков, отрицательных чисел. Вот вам небольшое руководство:

Пока что смысла в этой таблице мало, но пусть она будет рядом. К концу статьи всё станет на свои места.

Давайте действительно поймем, что такое отрицательные числа

Отрицательные числа не так просты. Представьте, что вы - европейский математик в XVIII веке. У вас есть 3 и 4, и вы можете написать 4 – 3 = 1. Всё просто.

Но сколько будет 3 – 4? Что, собственно, это означает? Как можно отнять 4 коровы от 3? Как можно иметь меньше, чем ничего?

Отрицательные числа рассматривались как полная чушь, что-то, что «бросало тень на всю теорию уравнений» (Фрэнсис Масерес, 1759). Сегодня было бы полной чушью думать об отрицательных числах, как о чем-то нелогичном и неполезном. Спросите вашего учителя, нарушают ли отрицательные числа основы математики.

Что же произошло? Мы изобрели теоретическое число, которое обладало полезными свойствами. Отрицательные числа нельзя потрогать или ощутить, но они хорошо описывают определенные связи (как задолженность, например). Это очень полезная выдумка.

Вместо того, чтобы сказать «Я должен вам 30», и читать слова, чтобы понять в плюсе я или в минусе, я могу просто записать «-30», и знать, что это означает. Если я заработаю деньги и оплачу свои долги (-30 + 100 = 70), я смогу легко записать эту транзакцию несколькими символами. У меня останется +70.

Знаки плюса и минуса автоматически фиксируют направление - вам не нужно целое предложение, чтобы описать изменения после каждой транзакции. Математика стала проще, элегантнее. Стало не важно, являются ли отрицательные числа «осязаемыми» - у них есть полезные свойства, и мы пользовались ими, пока они крепко не вошли в наш обиход. Если кто-то из ваших знакомых еще не понял суть отрицательных чисел, теперь вы ему поможете.

Но не будем умалять человеческие страдания: отрицательные числа были настоящим сдвигом в сознании. Даже Эйлер, гений, открывший число е и много еще чего, не понимал отрицательные числа так же хорошо, как мы сегодня. Они рассматривались как «бессмысленные» результаты вычислений.

Странно требовать от детей, чтобы они спокойно понимали идеи, которые когда-то смущали даже самых лучших математиков.

Ввод мнимых чисел

С мнимыми числами та же история. Мы можем решать уравнения вроде этого целыми днями:

Ответами будут 3 и -3. Но представим, что какой-то умник приписал сюда минус:

Ну и ну. Такой вопрос заставляет людей съеживаться, первый раз видя его. Вы хотите вычислить квадратный корень из числа, меньшего, чем ноль? Это немыслимо! (Исторически реально существовали подобные вопросы, но мне удобнее представлять какого-то безликого умника, чтобы не вгонять в краску ученых прошлого).

Выглядит безумно, как в свое время выглядели и отрицательные числа, ноль и иррациональные числа (неповторяющиеся числа). В этом вопросе нет «реального» смысла, правда?

Нет, не правда. Так называемые «мнимые числа» нормальны настолько же, как и все другие (или настолько же ненормальные): они являются инструментом для описания мира. В том же духе, как мы представляем, что -1, 0.3 и 0 «существуют», давайте предположим, что существует некое число i, где:

Другими словами, вы умножаете i на себя же, чтобы получить -1. Что сейчас происходит?

Ну, сначала у нас конечно болит голова. Но, играя в игру «Давайте представим, что i существует», мы действительно делаем математику проще и элегантнее. Появляются новые связи, которые мы с легкостью можем описать.

Вы не поверите в i, как и те старые математики-ворчуны не верили в существовании -1. Все новые, сворачивающие мозг в трубочку понятия сложны для восприятия, и их смысл вырисовывается не сразу, даже для гениального Эйлера. Но, как показали нам отрицательные числа, странные новые идеи могут быть чрезвычайно полезными.

Я не люблю сам термин «мнимые числа» - такое чувство, что он был выбран специально, чтобы оскорбить чувства i. Число i такое же нормальное, как и другие, но за ним закрепилась кличка «мнимое», так что мы тоже будем ей пользоваться.

Визуальное понимание отрицательных и комплексных чисел

Уравнение x^2 = 9 на самом деле означает следующее:

Какое преобразование x, применяемое дважды, превращает 1 в 9?

Есть два ответа: «x = 3» и «x = -3». То есть, вы можете «масштабировать в» 3 раза или «масштабировать в 3 раза и перевернуть» (переворачивание или взятие обратного результата - всё это интерпретации умножения на отрицательную единицу).

А теперь давайте подумаем об уравнении x^2 = -1, которое можно записать так:

Какое преобразование x, применяемое дважды, превращает 1 в -1? Хм.

  • Мы не можем умножить дважды положительное число, потому что результат будет положительным.
  • Мы не можем умножить дважды отрицательное число, потому что результат опять будет положительным.

А как насчёт… вращения! Звучит, конечно, необычно, но что если представить х как «поворот 90 градусов», тогда применив х дважды, мы совершим поворот на 180 градусов на координатной оси, и 1 обернется в -1!

Вот это да! И если мы еще немного над этим поразмышляем, то мы можем совершить два оборота в противоположном направлении, и также перейти с 1 на -1. Это «отрицательное» вращение или умножение на -i:

Если мы дважды умножим на-i, то при первом умножении получим -i из 1, а при втором -1 из -i. Так что на самом деле существует два квадратных корня -1: i и -i.

Это довольно круто! У нас есть что-то вроде решения, но что оно означает?

  • i - это «новая мнимая размерность» для измерения числа
  • i (или -i) - это то, чем «становятся» числа при вращении
  • Умножение на i - это вращение на 90 градусов против часовой стрелки
  • Умножение на -i - это вращение на 90 градусов по часовой стрелке.
  • Двойное вращение в любом из направлений дает -1: оно опять возвращает нас к «обычной» размерности положительных и отрицательных чисел (ось x).

Все числа 2-мерные. Да, это трудно принять, но древним римлянам было бы также трудно принять десятичные дроби или деление в столбик. (Как это так, между 1 и 2 есть еще числа?). Выглядит странно, как и любой новый способ мыслить в математике.

Мы спросили «Как превратить 1 в -1 в два действия?» и нашли ответ: повернуть 1 на 90 градусов дважды. Довольно странный, новый способ мыслить в математике. Но очень полезный. (Между прочим, эта геометрическая интерпретация комплексных чисел появилась только десятилетия спустя после открытия самого числа i).

Также, не забывайте, что принятие оборота против часовой стрелки за положительный результат - это сугубо человеческая условность, и всё могло бы быть совсем по-другому.

Поиск множеств

Давайте углубимся немного в детали. При умножении отрицательных чисел (как -1), вы получаете множество:

  • 1, -1, 1, -1, 1, -1, 1, -1

Поскольку -1 не меняет размер числа, а только знак, вы получаете одно и то же число то со знаком «+», то со знаком «-». Для числа х у вас получится:

  • x, -x, x, -x, x, -x…

Это очень полезная мысль. Число «х» может представлять хорошие и плохие недели. Представим, что хорошая неделя сменяет плохую; это хорошая неделя; а какой будет 47-я неделя?

X означает, что неделя выдастся плохой. Видите, как отрицательные числа «следят за знаком» - мы можем просто ввести (-1)^47 в калькуляторе вместо того, чтобы считать («Неделя 1 хорошая, неделя 2 плохая… неделя 3 хорошая…»). Вещи, которые постоянно чередуются можно отлично смоделировать, используя отрицательные числа.

Хорошо, а что будет, если мы продолжим умножать на i?

Очень смешно, давайте немного это всё упростим:

Вот всё то же представлено графически:

Мы повторяем цикл каждый 4-й поворот. В этом определенно есть смысл, да? Любой ребенок скажет вам, что 4 поворота влево - это всё равно, что не поворачиваться вовсе. А теперь оторвитесь от мнимых чисел (i, i^2)и посмотрите на общее множество:

  • X, Y, -X, -Y, X, Y, -X, -Y…

Точно, как отрицательные числа моделируют зеркальное отражение чисел, мнимые числа могут моделировать что угодно, что вращается между двумя измерениями «Х» и «Y». Или что угодно с циклической, круговой зависимостью - есть что-нибудь на примете?

Понимание комплексных чисел

Есть еще одна деталь для рассмотрения: может ли число быть и «реальным», и «мнимым»?

Даже не сомневайтесь. Кто сказал, что нам обязательно нужно поворачивать строго на 90 градусов? Если мы одной ногой станем на «реальную» размерность, а другой - на «мнимую», то будет выглядеть примерно так:

Мы находимся на отметке в 45 градусов, где вещественная и мнимая части одинаковы, и само число равно «1 + i». Это как хот-дог, где есть и кетчуп, и горчица - кто сказал, что нужно обязательно выбирать что-то одно?

По сути, мы можем выбрать любую комбинацию вещественной и мнимой части и сделать из всего этого треугольник. Угол становится «углом вращения». Комплексное число - это заумное название для чисел, в которых есть вещественная и мнимая части. Они пишутся, как «a + bi», где:

  • a - вещественная часть
  • b - мнимая часть

Неплохо. Но остается один последний вопрос: как «велико» комплексное число? Мы не можем измерить вещественную часть или мнимую отдельно, потому что мы упустим общую картину.

Давайте сделаем шаг назад. Размер отрицательного числа - это расстояние от нуля:

Это другой способ найти абсолютную величину. Но как измерить оба компонента на 90 градусах для комплексных чисел?

Это птица в небе… или самолет… Пифагор спешит на помощь!

Эта теорема выскакивает, где только можно, даже в числах, придуманных через 2000 лет после самой теоремы. Да, мы делаем треугольник, и его гипотенуза и будет равна расстоянию от нуля:

Хоть измерить комплексное число не так просто, как «просто опустить знак -», у комплексных чисел есть очень полезные применения. Давайте рассмотрим некоторые из них.

Реальный пример: Вращения

Мы не будем дожидаться университетского курса физики, чтобы попрактиковаться с комплексными числами. Мы займемся этим уже сегодня. Много можно рассказать на тему умножения комплексных чисел, но пока нужно понять главное:

  • Умножение на комплексное число совершает вращение на его угол

Давайте посмотрим, как это работает. Представьте, что я на лодке, движусь с курсом 3 единицы на Восток каждые 4 единицы на Север. Я хочу изменить свой курс на 45 градусов против часовой стрелки. Каким будет мой новый курс?

Кто-то может сказать «Это просто! Вычислите синус, косинус, погуглите значение по тангенсу…и тогда…» Кажется, я сломал свой калькулятор…

Давайте пойдем более простым путем: мы идем по курсу 3 + 4i (не важно, какой тут угол, нам всё равно пока) и хотим повернуться на 45 градусов. Ну, 45 градусов это 1 + i (идеальная диагональ). Так что мы можем умножить наш курс на это число!

Вот в чем суть:

  • Исходный курс: 3 единицы на Восток, 4 единицы на Север = 3 + 4i
  • Вращение против часовой стрелки на 45 градусов = умножение на 1 + i

При умножении мы получаем:

Наш новый ориентир - 1 единица на Запад (-1 на Восток) и 7 единиц на Север, можете нарисовать координаты на графике и следовать им.

Но! Мы нашли ответ за 10 секунд, без всяких синусов и косинусов. Не было векторов, матриц, отслеживания, в каком квадранте мы находимся. Это была простая арифметика и немного алгебры для приведения уравнения. Мнимые числа отлично справляются с вращением!

Более того, результат такого вычисления очень полезен. У нас есть курс (-1, 7) вместо угла (atan(7/-1) = 98.13, и сразу ясно, что мы во втором квадранте. Как, собственно, вы планировали нарисовать и следовать указанному углу? Используя транспортир под рукой?

Нет, вы бы конвертировали угол в косинус и синус (-0.14 и 0.99), нашли бы примерное соотношение между ними (около 1 к 7) и набросали бы треугольник. И тут комплексные числа несомненно выигрывают - аккуратно, молниеносно, и без калькулятора!

Если вы похожи на меня, то это открытие покажется вам сногсшибательным. Если нет, боюсь, что математика вас совсем не зажигает. Уж извините!

Тригонометрия хороша, но комплексные числа значительно упрощают вычисления (вроде поиска cos(a + b)). Это только маленький анонс; в следующих статьях я предоставлю вам полное меню.

Лирическое отступление: некоторые люди думают примерно так: «Эй, ну не удобно же иметь курс Север/Восток вместо простого угла для следования судна!»

Правда? Ну хорошо, посмотрите на свою правую руку. Какой угол между основанием вашего мизинца и кончиком указательного пальца? Удачи с вашим способом вычисления.

А можно просто ответить «Ну, кончик находится на Х дюймов вправо и Y дюймов вверх» и с этим уже можно что-то сделать.

Комплексные числа стали ближе?

Мы пронеслись смерчем по моим базовым открытиям в области комплексных чисел. Посмотрите на самую первую иллюстрацию, теперь он должен стать более понятным.

Есть еще столько всего интересного в этих красивых, чудных числах, но мой мозг уже устал. Моя цель была проста:

  • Убедить вас в том, что комплексные числа только рассматривались как «сумасшествие», а на деле они могут быть очень полезными (точно как и отрицательные числа)
  • Показать, как комплексные числа могут упростить некоторые задачи вроде вращения.

Если я кажусь слишком озабоченным этой темой, то для этого есть причина. Мнимые числа годами были моей навязчивой идеей - недостаток понимания меня раздражал.

Но зажечь свечу лучше, чем пробираться сквозь кромешную тьму: вот мои мысли, и я уверен, что огонек зажжется и в умах моих читателей.

Эпилог: Но они по-прежнему довольно странные!

Я знаю, они и для меня всё еще выглядят странными. Я пытаюсь мыслить, как мыслил первый человек, открывший ноль.

Ноль - это такая странная идея, «что-то» представляет «ничего», и это никак не могли понять в Древнем Риме. То же самое и с комплексными числами - это новый способ мышления. Но и ноль, и комплексные числа значительно упрощают математику. Если бы мы никогда не внедряли странности вроде новых систем счисления, мы бы до сих пор считали всё на пальцах.

Я повторяю эту аналогию, потому что так легко начать думать, что комплексные числа «не нормальные». Давайте быть открытыми к новшествам: в будущем люди будут только шутить над тем, как кто-то вплоть до XXI века не верил в комплексные числа.

23 октября 2015

Комплексные или мнимые числа впервые появились в известном сочинении Кардано «Великое искусство, или об алгебраических правилах» 1545 года. По мнению автора, эти числа не были пригодны к употреблению. Однако это утверждение было позднее опровергнуто. В частности, Бомбелли в 1572 году при решении кубического уравнения обосновал пользу мнимых чисел. Он составил основные правила действий с комплексными числами.

И все же долгое время в математическом мире не было единого представления о сущности комплексных чисел.

Впервые символ мнимых чисел был предложен выдающимся математиком Эйлером. Предложенная символика выглядела следующим образом: i = sqr -1 , где i - imaginarius , что означает фиктивный. В заслугу Эйлера также входит идея об алгебраической замкнутости поля комплексных чисел.

Итак, необходимость в числах нового типа появилась при решении квадратных уравнений для случая D < 0 (где D - дискриминант квадратного уравнения). В настоящее время комплексные числа нашли широкое применение в физике и технике, гидро- и аэродинамике, теории упругости и т.п.

Графическая запись комплексных чисел имеет вид: a + bi , где a и b - действительные числа, а i - мнимая единица, т.e. i 2 = -1 . Число a называется абсциссой, a b - ординатой комплексного числа a + bi . Два комплексных числа a + bi и a - bi называются сопряжёнными комплексными числами.

Существует ряд правил, связанных с комплексными числами:

  • Во-первых, действительное число а может быть записано в форме комплексного числа: a+ 0 i или a - 0 i . К примеру, 5 + 0 i и 5 - 0 i означают одно и то же число 5 .
  • Во-вторых, комплексное число 0+ bi называется чисто мнимым числом. Запись bi означает то же самое, что и 0+ bi .
  • В третьих, два комплексных числа a + bi и c + di считаются равными, если a = c и b = d . В ином случае комплексные числа не равны.

К основным действиям над комплексными числами относятся:


В геометрическом представлении комплексные числа в отличие от действительных, которые изображаются на числовой прямой точками, отмечаются точками на координатной плоскости. Возьмем для этого прямоугольные (декартовы) координаты с одинаковыми масштабами на осях. В этом случае комплексное число a + bi будет представлено точкой Р с абсциссой а и ординатой b . Такая система координат называется комплексной плоскостью .

Модулем комплексного числа является длина вектора OP, изображающего комплексное число комплексной плоскости. Модуль комплексного числа a + bi записывается в виде |a + bi| или буквой r и равен: r = |a + ib| = sqr a 2 + b 2 .

У сопряженных комплексных чисел имеется одинаковый модуль.