Инструкция

Расстояние от точки (x, y) до центра координат равно длине отрезка, соединяющего ее с точкой (0, 0). Этот отрезок вместе с его проекциями на координатные оси составляют прямоугольный треугольник, катеты которого равны x0 и y0, а гипотенуза, по теореме Пифагора, равна √(x^2 + y^2).

Чтобы получить окружность, вам уравнение, определяющее все точки, для которых это расстояние будет равно R. Таким образом:√(x^2 + y^2) = R, а следовательно,
x^2 + y^2 = R^2.

Аналогичным способом составляется уравнение окружности радиусом R, центр которой находится в точке (x0, y0). Расстояние от произвольной точки (x, y) до заданной точки (x0, y0) равно √((x - x0)^2 + (y - y0)^2). Следовательно, уравнение нужной вам окружности будет выглядеть так:(x - x0)^2 + (y - y0)^2 = R^2.

Вам может понадобиться также составить уравнение окружности с центром в точке координат, проходящей через заданную точку (x0, y0). В этом случае радиус искомой окружности не задан в явном виде, и его придется вычислять. Очевидно, он будет равен расстоянию от точки (x0, y0) до начала координат, то есть √(x0^2 + y0^2). Подставляя это значение в уже выведенное уравнение окружности , вы получите:x^2 + y^2 = x0^2 + y0^2.

Если вам предстоит построить окружность по выведенным формулам, то их придется разрешать относительно y. Даже самое простое из этих уравнений при этом превращается в:y = ±√(R^2 - x^2).Знак ± необходим здесь , что квадратный числа всегда неотрицателен, а , что без знака ± уравнение описывает только верхнюю полуокружность.Чтобы построить окружность, удобнее составить ее параметрическое уравнение, в котором обе координаты x и y зависят от параметра t.

Согласно определению тригонометрических функций, если гипотенуза равна 1, а один из углов при гипотенузе равен φ, то прилежащий к нему катет равен cos(φ), а противолежащий - sin(φ). Таким образом, sin(φ)^2 + cos(φ)^2 = 1 для любого φ.

Предположим, вам дана окружность единичного радиуса с центром в начале координат. Возьмем любую точку (x, y) на этой окружности и проведем от нее отрезок к центру. Этот отрезок образует угол с положительной полуосью x, который может быть равен от 0 до 360° или от 0 до 2π . Обозначая этот угол t, вы получите зависимость:x = cos(t),
y = sin(t).

Эту формулу можно обобщить на случай окружности радиуса R с центром в произвольной точке (x0, y0):x = R*cos(t) + x0,
y = R*sin(t) + y0.

Источники:

  • уравнение окружности с заданным центром и радиусом

Стандартное уравнение окружности позволяет узнать несколько важных сведений об этой фигуре, например, координаты ее центра, длину радиуса. В некоторых задачах, наоборот, по заданным параметрам требуется составить уравнение.

Инструкция

Определите, сведениями об окружности вы располагаете, исходя из данной вам задачи. Запомните, что конечной целью является необходимость определить координаты центра, а также диаметр. Все ваши действия должны быть направлены на достижение именно этого результата.

Используйте данные о наличии точек пересечения с координатными прямыми или другими прямыми. Обратите внимание, что, если окружность проходит через ось абсцисс, вторая будет иметь координату 0, а если через ось ординат – то первая. Эти координаты позволят вам найти координаты центра окружности, а также вычислить радиус.

Не забывайте об основных свойствах секущих и касательных. В частности, наиболее полезной оказывается теорема о том, что в точке касания радиус и касательная образуют прямой угол. Но обратите внимание на то, что вас могут попросить доказать все использованные в ходе теоремы.

Прорешайте наиболее стандартные типы , чтобы научиться сразу видеть, как использовать те или иные данные для уравнения окружности. Так, помимо уже указанных задач с прямо заданными координатами и теми, в условиях которых даны сведения о наличии точек пересечения, для составления уравнения окружности можно воспользоваться знаниями о центре окружности, длине хорды и , на которой эта хорда лежит.

Для решения постройте равнобедренный треугольник, основанием которого будет данная хорда, а равные стороны – радиусами. Составьте , из которой вы легко найдете необходимые данные. Для этого достаточно воспользоваться формулой для нахождения длины отрезка в плоскости.

Видео по теме

В зависимости от условий задачи и требований, предъявленных в ней, может потребоваться обратиться к каноническому или параметрическому способу задания прямой. Решая геометрические задачи, пробуйте заранее выписать все возможные варианты уравнений.

Инструкция

Проверьте наличие всех необходимых параметров для составления параметрического уравнения. Соответственно, вам потребуются координаты точки, принадлежащей этой прямой, а также направляющего вектора. Таковым будет любой , проходящий параллельно этой прямой. Параметричское задание прямой представляет собой систему из двух уравнений х = х0+txt, y = y0+tyt, где (х0, у0) - координаты точки, лежащей на данной прямой, а (tx, ty) - координаты направляющего вектора по осям абсцисс и ординат, соответственно.

Запишите каноническое уравнение прямой, исходя из имеющихся у вас данных: координаты направляющего вектора на соответствующих осях являются множителями параметрической переменной, а координаты принадлежащей прямой точки – свободными членами параметрического уравнения.

Обратите внимание на все условия, прописанные в задаче, если вам кажется, что не хватает данных. Так, подсказкой для составления параметрического уравнения прямой может стать указание , перпендикулярных направляющему или расположенных к ней под определенным углом. Используйте условия перпендикулярности векторов: это возможно только в случае, если их равно нулю.

Составьте параметрическое уравнение прямой, проходящей через две точки: дают вам необходимые данные для определения направляющего вектора. Запишите две : в числителе должна стоять разность х и координаты по оси абсцисс одной из точек, принадлежащих прямой, в знаменателе – разность между координатами по оси абсцисс обеих данных точек. Запишите таким же образом для значений по оси ординат. Полученные дроби приравняйте к параметру (его принято обозначать буквой t) и выразите через него сперва х, затем у. Система уравнений, ставшая итогом этих преобразований, и будет параметрическим уравнением прямой.

Видео по теме

Совет 4: Как составить уравнение плоскости через точку и прямую

Любая плоскость может быть задана линейным уравнением Ax+By+Cz+D=0. Обратно, каждое такое уравнение определяет плоскость. Чтобы составить уравнение плоскости , проходящей через точку и прямую, надо знать координаты точки и уравнение прямой.

Вам понадобится

  • - координаты точки;
  • - уравнение прямой.

Инструкция

Из трех точек можно составить , однозначно задающее плоскость. Пусть имеются три точки с координатами (x1,y1,z1), (x2,y2,z2), (x3,y3,z3). Запишите детерминант:(x-x1) (y-y1) (z-z1)(x2-x1) (y2-y1) (z2-z1)(x3-x1) (y3-y1) (z3-z1)Приравняйте определитель нулю. Это и будет . Его можно оставить и в таком виде, а можно , раскрыв детерминант:(x-x1)(y2-y1)(z3-z1)+(x3-x1)(y-y1)(z2-z1)+(z-z1)(x2-x1)(y3-y1)-(z-z1)(y2-y1)(x3-x1)-(z3-z1)(y-y1)(x2-x1)-(x-x1)(z2-z1)(y3-y1). Работа кропотливая и, как правило, излишняя, ведь проще вспомнить о свойствах определителя, равного нулю.

Пример. Составьте уравнение плоскости, если известно, что она проходит через точку M(2,3,4) и прямую (x-1)/3=y/5=(z-2)/4.Решение. Вначале надо преобразовать уравнение прямой.(x-1)/(4-1)=(y-0)/(5-0)=(z-2)/(6-2). Отсюда легко выделить две точки, явно принадлежащие данной прямой. Это (1,0,2) и (4,5,6). Всё, три точки есть, можно составлять уравнение плоскости.(x-1) (y-0) (z-2)(4-1) (5-0) (6-2)(2-1) (3-0) (4-2)Детерминант приравнять нулю и упростить.

Итого: (x-1) y (z-2)3 5 41 3 2 =(x-1)·5·2+1·y·4+(z-2)·3·3-(z-2)·5·1-(x-1)·4·3-2·y·3=10x-10+4y+9z-18-5z+10-12x+12-6y=-2x-2y+4z-6=0.Ответ. Искомое уравнение плоскости -2x-2y+4z-6=0.

Полезный совет

Плоскость и прямую можно задать также каноническим, параметрическим, векторно-параметрическим и нормальным уравнением. Прямая может быть задана также в отрезках и через угловой коэффициент. Все способы задания могут быть переведены из одного в другой.

Характеристические уравнения, на основе которых вычисляются, прежде всего, собственные числа (значения), нашли большое применение в математике, физике и технике. Их можно встретить в решениях задач автоматического регулирования, решениях систем дифференциальных уравнений и т. п.

Инструкция

К ответу на вопрос следует подходить на основе рассмотрения простейших задач, для решения которых могут потребоваться характеристические уравнения. Прежде всего – это решение нормальной однородной системы однородных дифференциальных уравнений (ЛОДУ). Ее вид приведен на рисунке 1.Учитывая обозначения, приведенные на рис. 1. Перепишите систему в матричном виде.Получите Y’=AY.

Известно, что система решений (ФСР), рассматриваемой задачи, находится в виде Y=expB, где В - столбец постоянных. Тогда Y’=kY. Возникает система АY-kEY=0 (E – единичная матрица). Или (А-kE)Y=0. Требуются найти ненулевые решения, поэтому эта система имеет вырожденную матрицу и, соответственно, определитель такой равен нулю. В развернутом виде данный определитель (см. рис. 2).На рис. 2 в виде определителя записано алгебраическое уравнение n-го порядка и его решения позволяют составить ФСР исходной системы. Это уравнение характеристическим.

Теперь рассмотрите ЛОДУ n-го порядка (cм. рис. 3).Если левую его часть обозначить как линейный дифференциальный оператор L[y], то ЛОДУ перепишется в виде L[y]=0. Если искать решения ЛОДУ в виде y=exp(kx), то y’=kexp(kx), y’’=(k^2)exp(kx), …, y^(n-1)=(k^(n-1))exp(kx), y^n=(k^n)exp(kx) и, после сокращения на y=exp(kx), получится уравнение: k^n+(a1)k^(n-1)+…+a(n-1)k+an=0, которое также характеристическим.

Для того чтобы убедиться, что суть последнего характеристического уравнения осталась прежней (то есть что это не -то иной объект), перейдите от ЛОДУ n-го порядка к нормальной системе ЛОДУ путем последовательных подстановок. Первая из них y1=y, а далееy1’=y2, y2’1=y3, …, y(n-1)’ = yn, yn’=-an*y1-a(n-2)*yn-…-a1*y(n-1).

Запишите возникшую систему, составьте ее характеристическое уравнение в виде определителя, раскройте его и убедитесь в том, что получилось характеристическое уравнений для ЛОДУ n-го порядка. Заодно возникает и утверждение о фундаментальном смысле характеристического уравнения.

Перейдите к общей задаче поиска собственных чисел линейных преобразований (они могут быть и дифференциальными), что включает в себя составления характеристического уравнения. Число k называют собственным значением (числом) линейного преобразования А, если существует вектор х такой, что Ax=kx.Поскольку каждому линейному преобразованию однозначно может быть поставлена его матрица, то задача сводится к составлению характеристического уравнения для некоторой квадратной матрицы. Делается это в точности так как и в начальном примере для нормальных систем ЛОДУ. Просто замените y на х, если после записи характеристического уравнения последуют еще -то действия. Если же нет, то этого делать не стоит. Просто берите матрицу А (см. рис. 1) и записывайте в виде определителя (см. рис.2). После раскрытия определителя работа завершена.

Химическое – это реакция, выраженная с помощью формул. Химическое уравнение показывает, какие вещества вступают в реакцию и какие в итоге этой реакции получатся вещества. В основе составления химических уравнений лежит закон сохранения массы. Так же оно показывает количественное соотношение веществ, которые участвуют в химической реакции. Чтобы решить химическое уравнение, необходимо знать определенные способы, методы, подходы к этому процессу. Можно следовать такому алгоритму для решения химических уравнений.

Цель урока: ввести уравнение окружности, научить учащихся составлять уравнение окружности по готовому чертежу, строить окружность по заданному уравнению.

Оборудование : интерактивная доска.

План урока:

  1. Организационный момент – 3 мин.
  2. Повторение. Организация мыслительной деятельности – 7 мин.
  3. Объяснение нового материала. Вывод уравнения окружности – 10 мин.
  4. Закрепление изученного материала– 20 мин.
  5. Итог урока – 5 мин.

Ход урока

2. Повторение:

− (Приложение1 Слайд 2 ) записать формулу нахождения координат середины отрезка;

(Слайд 3) З аписать формулу расстояние между точками (длины отрезка).

3. Объяснение нового материала.

(Слайды 4 – 6) Дать определение уравнения окружности. Вывести уравнения окружности с центром в точке (а ;b ) и с центром в начале координат.

(х а ) 2 + (у b ) 2 = R 2 − уравнение окружности с центром С (а ;b ) , радиусом R , х и у координаты произвольной точки окружности.

х 2 + у 2 = R 2 − уравнение окружности с центром в начале координат.

(Слайд 7)

Для того чтобы составить уравнение окружности, надо:

  • знать координаты центра;
  • знать длину радиуса;
  • подставить координаты центра и длину радиуса в уравнение окружности.

4. Решение задач.

В задачах № 1 – № 6 составить уравнения окружности по готовым чертежам.

(Слайд 14)

№ 7. Заполнить таблицу.

(Слайд 15)

№ 8. Построить в тетради окружности, заданные уравнениями:

а) (х – 5) 2 + (у + 3) 2 = 36;
б ) (х + 1) 2 + (у – 7) 2 = 7 2 .

(Слайд 16)

№ 9. Найти координаты центра и длину радиуса, если АВ – диаметр окружности.

Дано: Решение:
R Координаты центра
1 А (0 ; -6)
В (0 ; 2)
АВ 2 = (0 – 0) 2 + (2 + 6) 2 ;
АВ 2 = 64;
АВ = 8 .
А (0; -6)
В (0 ; 2)
С (0 ; – 2) центр
2 А (-2 ; 0)
В (4 ; 0)
АВ 2 = (4 + 2) 2 + (0 + 0) 2 ;
АВ 2 = 36;
АВ = 6.
А (-2;0)
В (4 ;0)
С (1 ; 0) центр

(Слайд 17)

№ 10. Составьте уравнение окружности с центром в начале координат, проходящей через точку К (-12;5).

Решение.

R 2 = ОК 2 = (0 + 12) 2 + (0 – 5) 2 = 144 + 25 = 169;
R = 13;

Уравнение окружности: х 2 + у 2 = 169.

(Слайд 18)

№ 11. Составьте уравнение окружности, проходящей через начало координат с центром в точке С (3; - 1).

Решение.

R 2 = ОС 2 = (3 – 0) 2 + (–1–0) 2 = 9 + 1 = 10;

Уравнение окружности: (х – 3) 2 + (у + 1) 2 = 10.

(Слайд 19)

№ 12. Составьте уравнение окружности с центром А (3;2), проходящей через В (7;5).

Решение.

1. Центр окружности – А (3;2);
2. R = АВ ;
АВ 2 = (7 – 3) 2 + (5 – 2) 2 = 25; АВ = 5;
3. Уравнение окружности (х – 3) 2 + (у − 2) 2 = 25.

(Слайд 20)

№ 13. Проверьте, лежат ли точки А (1; -1), В (0;8), С (-3; -1) на окружности, заданной уравнением (х + 3) 2 + (у − 4) 2 = 25.

Решение.

I . Подставим координаты точки А (1; -1) в уравнение окружности:

(1 + 3) 2 + (−1 − 4) 2 = 25;
4 2 + (−5) 2 = 25;
16 + 25 = 25;
41 = 25 – равенство неверно, значит А (1; -1) не лежит на окружности, заданной уравнением (х + 3) 2 + (у − 4) 2 = 25.

II . Подставим координаты точки В (0;8) в уравнение окружности:

(0 + 3) 2 + (8 − 4) 2 = 25;
3 2 + 4 2 = 25;
9 + 16 = 25;
В (0;8) лежит х + 3) 2 + (у − 4) 2 = 25.

III. Подставим координаты точки С (-3; -1) в уравнение окружности:

(−3 + 3) 2 + (−1− 4) 2 = 25;
0 2 + (−5) 2 = 25;
25 = 25 – равенство верно, значит С (-3; -1) лежит на окружности, заданной уравнением (х + 3) 2 + (у − 4) 2 = 25.

Итог урока.

  1. Повторить: уравнение окружности, уравнение окружности с центром в начале координат.
  2. (Слайд 21) Домашнее задание.
В пятом веке до нашей эры древнегреческий философ Зенон Элейский сформулировал свои знаменитые апории, самой известной из которых является апория "Ахиллес и черепаха". Вот как она звучит:

Допустим, Ахиллес бежит в десять раз быстрее, чем черепаха, и находится позади неё на расстоянии в тысячу шагов. За то время, за которое Ахиллес пробежит это расстояние, черепаха в ту же сторону проползёт сто шагов. Когда Ахиллес пробежит сто шагов, черепаха проползёт ещё десять шагов, и так далее. Процесс будет продолжаться до бесконечности, Ахиллес так никогда и не догонит черепаху.

Это рассуждение стало логическим шоком для всех последующих поколений. Аристотель, Диоген, Кант, Гегель, Гильберт... Все они так или иначе рассматривали апории Зенона. Шок оказался настолько сильным, что "... дискуссии продолжаются и в настоящее время, прийти к общему мнению о сущности парадоксов научному сообществу пока не удалось... к исследованию вопроса привлекались математический анализ, теория множеств, новые физические и философские подходы; ни один из них не стал общепризнанным решением вопроса... " [Википедия, " Апории Зенона "]. Все понимают, что их дурят, но никто не понимает, в чем заключается обман.

С точки зрения математики, Зенон в своей апории наглядно продемонстрировал переход от величины к . Этот переход подразумевает применение вместо постоянных. Насколько я понимаю, математический аппарат применения переменных единиц измерения либо ещё не разработан, либо его не применяли к апории Зенона. Применение же нашей обычной логики приводит нас в ловушку. Мы, по инерции мышления, применяем постоянные единицы измерения времени к обратной величине. С физической точки зрения это выглядит, как замедление времени до его полной остановки в момент, когда Ахиллес поравняется с черепахой. Если время останавливается, Ахиллес уже не может перегнать черепаху.

Если перевернуть привычную нам логику, всё становится на свои места. Ахиллес бежит с постоянной скоростью. Каждый последующий отрезок его пути в десять раз короче предыдущего. Соответственно, и время, затрачиваемое на его преодоление, в десять раз меньше предыдущего. Если применять понятие "бесконечность" в этой ситуации, то правильно будет говорить "Ахиллес бесконечно быстро догонит черепаху".

Как избежать этой логической ловушки? Оставаться в постоянных единицах измерения времени и не переходить к обратным величинам. На языке Зенона это выглядит так:

За то время, за которое Ахиллес пробежит тысячу шагов, черепаха в ту же сторону проползёт сто шагов. За следующий интервал времени, равный первому, Ахиллес пробежит ещё тысячу шагов, а черепаха проползет сто шагов. Теперь Ахиллес на восемьсот шагов опережает черепаху.

Этот подход адекватно описывает реальность без всяких логических парадоксов. Но это не полное решение проблемы. На Зеноновскую апорию "Ахиллес и черепаха" очень похоже утверждение Эйнштейна о непреодолимости скорости света. Эту проблему нам ещё предстоит изучить, переосмыслить и решить. И решение нужно искать не в бесконечно больших числах, а в единицах измерения.

Другая интересная апория Зенона повествует о летящей стреле:

Летящая стрела неподвижна, так как в каждый момент времени она покоится, а поскольку она покоится в каждый момент времени, то она покоится всегда.

В этой апории логический парадокс преодолевается очень просто - достаточно уточнить, что в каждый момент времени летящая стрела покоится в разных точках пространства, что, собственно, и является движением. Здесь нужно отметить другой момент. По одной фотографии автомобиля на дороге невозможно определить ни факт его движения, ни расстояние до него. Для определения факта движения автомобиля нужны две фотографии, сделанные из одной точки в разные моменты времени, но по ним нельзя определить расстояние. Для определения расстояния до автомобиля нужны две фотографии, сделанные из разных точек пространства в один момент времени, но по ним нельзя определить факт движения (естественно, ещё нужны дополнительные данные для расчетов, тригонометрия вам в помощь). На что я хочу обратить особое внимание, так это на то, что две точки во времени и две точки в пространстве - это разные вещи, которые не стоит путать, ведь они предоставляют разные возможности для исследования.

среда, 4 июля 2018 г.

Очень хорошо различия между множеством и мультимножеством описаны в Википедии . Смотрим.

Как видите, "во множестве не может быть двух идентичных элементов", но если идентичные элементы во множестве есть, такое множество называется "мультимножество". Подобную логику абсурда разумным существам не понять никогда. Это уровень говорящих попугаев и дрессированных обезьян, у которых разум отсутствует от слова "совсем". Математики выступают в роли обычных дрессировщиков, проповедуя нам свои абсурдные идеи.

Когда-то инженеры, построившие мост, во время испытаний моста находились в лодке под мостом. Если мост обрушивался, бездарный инженер погибал под обломками своего творения. Если мост выдерживал нагрузку, талантливый инженер строил другие мосты.

Как бы математики не прятались за фразой "чур, я в домике", точнее "математика изучает абстрактные понятия", есть одна пуповина, которая неразрывно связывает их с реальностью. Этой пуповиной являются деньги. Применим математическую теорию множеств к самим математикам.

Мы очень хорошо учили математику и сейчас сидим в кассе, выдаем зарплату. Вот приходит к нам математик за своими деньгами. Отсчитываем ему всю сумму и раскладываем у себя на столе на разные стопки, в которые складываем купюры одного достоинства. Затем берем с каждой стопки по одной купюре и вручаем математику его "математическое множество зарплаты". Поясняем математику, что остальные купюры он получит только тогда, когда докажет, что множество без одинаковых элементов не равно множеству с одинаковыми элементами. Вот здесь начнется самое интересное.

В первую очередь, сработает логика депутатов: "к другим это применять можно, ко мне - низьзя!". Дальше начнутся уверения нас в том, что на купюрах одинакового достоинства имеются разные номера купюр, а значит их нельзя считать одинаковыми элементами. Хорошо, отсчитываем зарплату монетами - на монетах нет номеров. Здесь математик начнет судорожно вспоминать физику: на разных монетах имеется разное количество грязи, кристаллическая структура и расположение атомов у каждой монеты уникально...

А теперь у меня самый интересный вопрос: где проходит та грань, за которой элементы мультимножества превращаются в элементы множества и наоборот? Такой грани не существует - всё решают шаманы, наука здесь и близко не валялась.

Вот смотрите. Мы отбираем футбольные стадионы с одинаковой площадью поля. Площадь полей одинакова - значит у нас получилось мультимножество. Но если рассматривать названия этих же стадионов - у нас получается множество, ведь названия разные. Как видите, один и тот же набор элементов одновременно является и множеством, и мультимножеством. Как правильно? А вот здесь математик-шаман-шуллер достает из рукава козырный туз и начинает нам рассказывать либо о множестве, либо о мультимножестве. В любом случае он убедит нас в своей правоте.

Чтобы понять, как современные шаманы оперируют теорией множеств, привязывая её к реальности, достаточно ответить на один вопрос: чем элементы одного множества отличаются от элементов другого множества? Я вам покажу, без всяких "мыслимое как не единое целое" или "не мыслимое как единое целое".

воскресенье, 18 марта 2018 г.

Сумма цифр числа - это пляска шаманов с бубном, которая к математике никакого отношения не имеет. Да, на уроках математики нас учат находить сумму цифр числа и пользоваться нею, но на то они и шаманы, чтобы обучать потомков своим навыкам и премудростям, иначе шаманы просто вымрут.

Вам нужны доказательства? Откройте Википедию и попробуйте найти страницу "Сумма цифр числа". Её не существует. Нет в математике формулы, по которой можно найти сумму цифр любого числа. Ведь цифры - это графические символы, при помощи которых мы записываем числа и на языке математики задача звучит так: "Найти сумму графических символов, изображающих любое число". Математики эту задачу решить не могут, а вот шаманы - элементарно.

Давайте разберемся, что и как мы делаем для того, чтобы найти сумму цифр заданного числа. И так, пусть у нас есть число 12345. Что нужно сделать для того, чтобы найти сумму цифр этого числа? Рассмотрим все шаги по порядку.

1. Записываем число на бумажке. Что же мы сделали? Мы преобразовали число в графический символ числа. Это не математическое действие.

2. Разрезаем одну полученную картинку на несколько картинок, содержащих отдельные цифры. Разрезание картинки - это не математическое действие.

3. Преобразовываем отдельные графические символы в числа. Это не математическое действие.

4. Складываем полученные числа. Вот это уже математика.

Сумма цифр числа 12345 равна 15. Вот такие вот "курсы кройки и шитья" от шаманов применяют математики. Но это ещё не всё.

С точки зрения математики не имеет значения, в какой системе счисления мы записываем число. Так вот, в разных системах счисления сумма цифр одного и того же числа будет разной. В математике система счисления указывается в виде нижнего индекса справа от числа. С большим числом 12345 я не хочу голову морочить, рассмотрим число 26 из статьи про . Запишем это число в двоичной, восьмеричной, десятичной и шестнадцатеричной системах счисления. Мы не будем рассматривать каждый шаг под микроскопом, это мы уже сделали. Посмотрим на результат.

Как видите, в разных системах счисления сумма цифр одного и того же числа получается разной. Подобный результат к математике никакого отношения не имеет. Это всё равно, что при определении площади прямоугольника в метрах и сантиметрах вы получали бы совершенно разные результаты.

Ноль во всех системах счисления выглядит одинаково и суммы цифр не имеет. Это ещё один аргумент в пользу того, что . Вопрос к математикам: как в математике обозначается то, что не является числом? Что, для математиков ничего, кроме чисел, не существует? Для шаманов я могу такое допустить, но для ученых - нет. Реальность состоит не только из чисел.

Полученный результат следует рассматривать как доказательство того, что системы счисления являются единицами измерения чисел. Ведь мы не можем сравнивать числа с разными единицами измерения. Если одни и те же действия с разными единицами измерения одной и той же величины приводят к разным результатам после их сравнения, значит это не имеет ничего общего с математикой.

Что же такое настоящая математика? Это когда результат математического действия не зависит от величины числа, применяемой единицы измерения и от того, кто это действие выполняет.

Табличка на двери Открывает дверь и говорит:

Ой! А это разве не женский туалет?
- Девушка! Это лаборатория по изучению индефильной святости душ при вознесении на небеса! Нимб сверху и стрелочка вверх. Какой еще туалет?

Женский... Нимб сверху и стрелочка вниз - это мужской.

Если у вас перед глазами несколько раз в день мелькает вот такое вот произведение дизайнерского искусства,

Тогда не удивительно, что в своем автомобиле вы вдруг обнаруживаете странный значок:

Лично я делаю над собой усилие, чтобы в какающем человеке (одна картинка), увидеть минус четыре градуса (композиция из нескольких картинок: знак минус, цифра четыре, обозначение градусов). И я не считаю эту девушку дурой, не знающей физику. Просто у неё дугой стереотип восприятия графических образов. И математики нас этому постоянно учат. Вот пример.

1А - это не "минус четыре градуса" или "один а". Это "какающий человек" или число "двадцать шесть" в шестнадцатеричной системе счисления. Те люди, которые постоянно работают в этой системе счисления, автоматически воспринимают цифру и букву как один графический символ.

Изучение тригонометрии мы начнем с прямоугольного треугольника. Определим, что такое синус и косинус, а также тангенс и котангенс острого угла. Это основы тригонометрии.

Напомним, что прямой угол - это угол, равный 90 градусов. Другими словами, половина развернутого угла.

Острый угол - меньший 90 градусов.

Тупой угол - больший 90 градусов. Применительно к такому углу «тупой» - не оскорбление, а математический термин:-)

Нарисуем прямоугольный треугольник. Прямой угол обычно обозначается . Обратим внимание, что сторона, лежащая напротив угла, обозначается той же буквой, только маленькой. Так, сторона, лежащая напротив угла A, обозначается .

Угол обозначается соответствующей греческой буквой .

Гипотенуза прямоугольного треугольника - это сторона, лежащая напротив прямого угла.

Катеты - стороны, лежащие напротив острых углов.

Катет , лежащий напротив угла , называется противолежащим (по отношению к углу ). Другой катет , который лежит на одной из сторон угла , называется прилежащим .

Синус острого угла в прямоугольном треугольнике - это отношение противолежащего катета к гипотенузе:

Косинус острого угла в прямоугольном треугольнике - отношение прилежащего катета к гипотенузе:

Тангенс острого угла в прямоугольном треугольнике - отношение противолежащего катета к прилежащему:

Другое (равносильное) определение: тангенсом острого угла называется отношение синуса угла к его косинусу:

Котангенс острого угла в прямоугольном треугольнике - отношение прилежащего катета к противолежащему (или, что то же самое, отношение косинуса к синусу):

Обратите внимание на основные соотношения для синуса, косинуса, тангенса и котангенса, которые приведены ниже. Они пригодятся нам при решении задач.

Давайте докажем некоторые из них.

Хорошо, мы дали определения и записали формулы. А для чего все-таки нужны синус, косинус, тангенс и котангенс?

Мы знаем, что сумма углов любого треугольника равна .

Знаем соотношение между сторонами прямоугольного треугольника. Это теорема Пифагора: .

Получается, что зная два угла в треугольнике, можно найти третий. Зная две стороны в прямоугольном треугольнике, можно найти третью. Значит, для углов - свое соотношение, для сторон - свое. А что делать, если в прямоугольном треугольнике известен один угол (кроме прямого) и одна сторона, а найти надо другие стороны?

С этим и столкнулись люди в прошлом, составляя карты местности и звездного неба. Ведь не всегда можно непосредственно измерить все стороны треугольника.

Синус, косинус и тангенс - их еще называют тригонометрическими функциями угла - дают соотношения между сторонами и углами треугольника. Зная угол, можно найти все его тригонометрические функции по специальным таблицам. А зная синусы, косинусы и тангенсы углов треугольника и одну из его сторон, можно найти остальные.

Мы тоже нарисуем таблицу значений синуса, косинуса, тангенса и котангенса для «хороших» углов от до .

Обратите внимание на два красных прочерка в таблице. При соответствующих значениях углов тангенс и котангенс не существуют.

Разберем несколько задач по тригонометрии из Банка заданий ФИПИ.

1. В треугольнике угол равен , . Найдите .

Задача решается за четыре секунды.

Поскольку , .

2 . В треугольнике угол равен , , . Найдите .

Найдем по теореме Пифагора.

Задача решена.

Часто в задачах встречаются треугольники с углами и или с углами и . Основные соотношения для них запоминайте наизусть!

Для треугольника с углами и катет, лежащий напротив угла в , равен половине гипотенузы .

Треугольник с углами и - равнобедренный. В нем гипотенуза в раз больше катета.

Мы рассмотрели задачи на решение прямоугольных треугольников - то есть на нахождение неизвестных сторон или углов. Но это не всё! В вариантах ЕГЭ по математике множество задач, где фигурирует синус, косинус, тангенс или котангенс внешнего угла треугольника . Об этом - в следующей статье.